/* * See the file LICENSE for redistribution information. * * Copyright (c) 2002-2009 Oracle. All rights reserved. * * $Id$ */ #include "db_config.h" #define LOAD_ACTUAL_MUTEX_CODE #include "db_int.h" #include "dbinc/atomic.h" /* * This is where we load in the actual test-and-set mutex code. */ #include "dbinc/mutex_int.h" /* We don't want to run this code even in "ordinary" diagnostic mode. */ #undef MUTEX_DIAG /* * Common code to get an event handle. This is executed whenever a mutex * blocks, or when unlocking a mutex that a thread is waiting on. We can't * keep these handles around, since the mutex structure is in shared memory, * and each process gets its own handle value. * * We pass security attributes so that the created event is accessible by all * users, in case a Windows service is sharing an environment with a local * process run as a different user. */ static _TCHAR hex_digits[] = _T("0123456789abcdef"); static SECURITY_DESCRIPTOR null_sd; static SECURITY_ATTRIBUTES all_sa; static int security_initialized = 0; static __inline int get_handle(env, mutexp, eventp) ENV *env; DB_MUTEX *mutexp; HANDLE *eventp; { _TCHAR idbuf[] = _T("db.m00000000"); _TCHAR *p = idbuf + 12; int ret = 0; u_int32_t id; for (id = (mutexp)->id; id != 0; id >>= 4) *--p = hex_digits[id & 0xf]; #ifndef DB_WINCE if (!security_initialized) { InitializeSecurityDescriptor(&null_sd, SECURITY_DESCRIPTOR_REVISION); SetSecurityDescriptorDacl(&null_sd, TRUE, 0, FALSE); all_sa.nLength = sizeof(SECURITY_ATTRIBUTES); all_sa.bInheritHandle = FALSE; all_sa.lpSecurityDescriptor = &null_sd; security_initialized = 1; } #endif if ((*eventp = CreateEvent(&all_sa, FALSE, FALSE, idbuf)) == NULL) { ret = __os_get_syserr(); __db_syserr(env, ret, "Win32 create event failed"); } return (ret); } /* * __db_win32_mutex_lock_int * Internal function to lock a win32 mutex * * If the wait paramter is 0, this function will return DB_LOCK_NOTGRANTED * rather than wait. * */ static __inline int __db_win32_mutex_lock_int(env, mutex, wait) ENV *env; db_mutex_t mutex; int wait; { DB_ENV *dbenv; DB_MUTEX *mutexp; DB_MUTEXMGR *mtxmgr; DB_MUTEXREGION *mtxregion; DB_THREAD_INFO *ip; HANDLE event; u_int32_t nspins; int ms, ret; #ifdef MUTEX_DIAG LARGE_INTEGER now; #endif dbenv = env->dbenv; if (!MUTEX_ON(env) || F_ISSET(dbenv, DB_ENV_NOLOCKING)) return (0); mtxmgr = env->mutex_handle; mtxregion = mtxmgr->reginfo.primary; mutexp = MUTEXP_SET(mtxmgr, mutex); CHECK_MTX_THREAD(env, mutexp); /* * See WINCE_ATOMIC_MAGIC definition for details. * Use sharecount, because the value just needs to be a db_atomic_t * memory mapped onto the same page as those being Interlocked*. */ WINCE_ATOMIC_MAGIC(&mutexp->sharecount); event = NULL; ms = 50; ret = 0; /* * Only check the thread state once, by initializing the thread * control block pointer to null. If it is not the failchk * thread, then ip will have a valid value subsequent times * in the loop. */ ip = NULL; loop: /* Attempt to acquire the mutex mutex_tas_spins times, if waiting. */ for (nspins = mtxregion->stat.st_mutex_tas_spins; nspins > 0; --nspins) { /* * We can avoid the (expensive) interlocked instructions if * the mutex is already busy. */ if (MUTEXP_IS_BUSY(mutexp) || !MUTEXP_ACQUIRE(mutexp)) { if (F_ISSET(dbenv, DB_ENV_FAILCHK) && ip == NULL && dbenv->is_alive(dbenv, mutexp->pid, mutexp->tid, 0) == 0) { ret = __env_set_state(env, &ip, THREAD_VERIFY); if (ret != 0 || ip->dbth_state == THREAD_FAILCHK) return (DB_RUNRECOVERY); } if (!wait) return (DB_LOCK_NOTGRANTED); /* * Some systems (notably those with newer Intel CPUs) * need a small pause before retrying. [#6975] */ MUTEX_PAUSE continue; } #ifdef DIAGNOSTIC if (F_ISSET(mutexp, DB_MUTEX_LOCKED)) { char buf[DB_THREADID_STRLEN]; __db_errx(env, "Win32 lock failed: mutex already locked by %s", dbenv->thread_id_string(dbenv, mutexp->pid, mutexp->tid, buf)); return (__env_panic(env, EACCES)); } #endif F_SET(mutexp, DB_MUTEX_LOCKED); dbenv->thread_id(dbenv, &mutexp->pid, &mutexp->tid); #ifdef HAVE_STATISTICS if (event == NULL) ++mutexp->mutex_set_nowait; else ++mutexp->mutex_set_wait; #endif if (event != NULL) { CloseHandle(event); InterlockedDecrement(&mutexp->nwaiters); #ifdef MUTEX_DIAG if (ret != WAIT_OBJECT_0) { QueryPerformanceCounter(&now); printf("[%I64d]: Lost signal on mutex %p, " "id %d, ms %d\n", now.QuadPart, mutexp, mutexp->id, ms); } #endif } #ifdef DIAGNOSTIC /* * We want to switch threads as often as possible. Yield * every time we get a mutex to ensure contention. */ if (F_ISSET(dbenv, DB_ENV_YIELDCPU)) __os_yield(env, 0, 0); #endif return (0); } /* * Yield the processor; wait 50 ms initially, up to 1 second. This * loop is needed to work around a race where the signal from the * unlocking thread gets lost. We start at 50 ms because it's unlikely * to happen often and we want to avoid wasting CPU. */ if (event == NULL) { #ifdef MUTEX_DIAG QueryPerformanceCounter(&now); printf("[%I64d]: Waiting on mutex %p, id %d\n", now.QuadPart, mutexp, mutexp->id); #endif InterlockedIncrement(&mutexp->nwaiters); if ((ret = get_handle(env, mutexp, &event)) != 0) goto err; } if ((ret = WaitForSingleObject(event, ms)) == WAIT_FAILED) { ret = __os_get_syserr(); goto err; } if ((ms <<= 1) > MS_PER_SEC) ms = MS_PER_SEC; PANIC_CHECK(env); goto loop; err: __db_syserr(env, ret, "Win32 lock failed"); return (__env_panic(env, __os_posix_err(ret))); } /* * __db_win32_mutex_init -- * Initialize a Win32 mutex. * * PUBLIC: int __db_win32_mutex_init __P((ENV *, db_mutex_t, u_int32_t)); */ int __db_win32_mutex_init(env, mutex, flags) ENV *env; db_mutex_t mutex; u_int32_t flags; { DB_MUTEX *mutexp; mutexp = MUTEXP_SET(env->mutex_handle, mutex); mutexp->id = ((getpid() & 0xffff) << 16) ^ P_TO_UINT32(mutexp); F_SET(mutexp, flags); return (0); } /* * __db_win32_mutex_lock * Lock on a mutex, blocking if necessary. * * PUBLIC: int __db_win32_mutex_lock __P((ENV *, db_mutex_t)); */ int __db_win32_mutex_lock(env, mutex) ENV *env; db_mutex_t mutex; { return (__db_win32_mutex_lock_int(env, mutex, 1)); } /* * __db_win32_mutex_trylock * Try to lock a mutex, returning without waiting if it is busy * * PUBLIC: int __db_win32_mutex_trylock __P((ENV *, db_mutex_t)); */ int __db_win32_mutex_trylock(env, mutex) ENV *env; db_mutex_t mutex; { return (__db_win32_mutex_lock_int(env, mutex, 0)); } #if defined(HAVE_SHARED_LATCHES) /* * __db_win32_mutex_readlock_int * Try to lock a mutex, possibly waiting if requested and necessary. */ int __db_win32_mutex_readlock_int(env, mutex, nowait) ENV *env; db_mutex_t mutex; int nowait; { DB_ENV *dbenv; DB_MUTEX *mutexp; DB_MUTEXMGR *mtxmgr; DB_MUTEXREGION *mtxregion; HANDLE event; u_int32_t nspins; int ms, ret; long exch_ret, mtx_val; #ifdef MUTEX_DIAG LARGE_INTEGER now; #endif dbenv = env->dbenv; if (!MUTEX_ON(env) || F_ISSET(dbenv, DB_ENV_NOLOCKING)) return (0); mtxmgr = env->mutex_handle; mtxregion = mtxmgr->reginfo.primary; mutexp = MUTEXP_SET(mtxmgr, mutex); CHECK_MTX_THREAD(env, mutexp); /* * See WINCE_ATOMIC_MAGIC definition for details. * Use sharecount, because the value just needs to be a db_atomic_t * memory mapped onto the same page as those being Interlocked*. */ WINCE_ATOMIC_MAGIC(&mutexp->sharecount); event = NULL; ms = 50; ret = 0; /* * This needs to be initialized, since if mutexp->tas * is write locked on the first pass, it needs a value. */ exch_ret = 0; loop: /* Attempt to acquire the resource for N spins. */ for (nspins = mtxregion->stat.st_mutex_tas_spins; nspins > 0; --nspins) { /* * We can avoid the (expensive) interlocked instructions if * the mutex is already "set". */ retry: mtx_val = atomic_read(&mutexp->sharecount); if (mtx_val == MUTEX_SHARE_ISEXCLUSIVE) { if (nowait) return (DB_LOCK_NOTGRANTED); continue; } else if (!atomic_compare_exchange(env, &mutexp->sharecount, mtx_val, mtx_val + 1)) { /* * Some systems (notably those with newer Intel CPUs) * need a small pause here. [#6975] */ MUTEX_PAUSE goto retry; } #ifdef HAVE_STATISTICS if (event == NULL) ++mutexp->mutex_set_rd_nowait; else ++mutexp->mutex_set_rd_wait; #endif if (event != NULL) { CloseHandle(event); InterlockedDecrement(&mutexp->nwaiters); #ifdef MUTEX_DIAG if (ret != WAIT_OBJECT_0) { QueryPerformanceCounter(&now); printf("[%I64d]: Lost signal on mutex %p, " "id %d, ms %d\n", now.QuadPart, mutexp, mutexp->id, ms); } #endif } #ifdef DIAGNOSTIC /* * We want to switch threads as often as possible. Yield * every time we get a mutex to ensure contention. */ if (F_ISSET(dbenv, DB_ENV_YIELDCPU)) __os_yield(env, 0, 0); #endif return (0); } /* * Yield the processor; wait 50 ms initially, up to 1 second. This * loop is needed to work around a race where the signal from the * unlocking thread gets lost. We start at 50 ms because it's unlikely * to happen often and we want to avoid wasting CPU. */ if (event == NULL) { #ifdef MUTEX_DIAG QueryPerformanceCounter(&now); printf("[%I64d]: Waiting on mutex %p, id %d\n", now.QuadPart, mutexp, mutexp->id); #endif InterlockedIncrement(&mutexp->nwaiters); if ((ret = get_handle(env, mutexp, &event)) != 0) goto err; } if ((ret = WaitForSingleObject(event, ms)) == WAIT_FAILED) { ret = __os_get_syserr(); goto err; } if ((ms <<= 1) > MS_PER_SEC) ms = MS_PER_SEC; PANIC_CHECK(env); goto loop; err: __db_syserr(env, ret, "Win32 read lock failed"); return (__env_panic(env, __os_posix_err(ret))); } /* * __db_win32_mutex_readlock * Get a shared lock on a latch * * PUBLIC: #if defined(HAVE_SHARED_LATCHES) * PUBLIC: int __db_win32_mutex_readlock __P((ENV *, db_mutex_t)); * PUBLIC: #endif */ int __db_win32_mutex_readlock(env, mutex) ENV *env; db_mutex_t mutex; { return (__db_win32_mutex_readlock_int(env, mutex, 0)); } /* * __db_win32_mutex_tryreadlock * Try to a shared lock on a latch * * PUBLIC: #if defined(HAVE_SHARED_LATCHES) * PUBLIC: int __db_win32_mutex_tryreadlock __P((ENV *, db_mutex_t)); * PUBLIC: #endif */ int __db_win32_mutex_tryreadlock(env, mutex) ENV *env; db_mutex_t mutex; { return (__db_win32_mutex_readlock_int(env, mutex, 1)); } #endif /* * __db_win32_mutex_unlock -- * Release a mutex. * * PUBLIC: int __db_win32_mutex_unlock __P((ENV *, db_mutex_t)); */ int __db_win32_mutex_unlock(env, mutex) ENV *env; db_mutex_t mutex; { DB_ENV *dbenv; DB_MUTEX *mutexp; DB_MUTEXMGR *mtxmgr; HANDLE event; int ret; #ifdef MUTEX_DIAG LARGE_INTEGER now; #endif dbenv = env->dbenv; if (!MUTEX_ON(env) || F_ISSET(dbenv, DB_ENV_NOLOCKING)) return (0); mtxmgr = env->mutex_handle; mutexp = MUTEXP_SET(mtxmgr, mutex); #ifdef DIAGNOSTIC if (!MUTEXP_IS_BUSY(mutexp) || !(F_ISSET(mutexp, DB_MUTEX_SHARED) || F_ISSET(mutexp, DB_MUTEX_LOCKED))) { __db_errx(env, "Win32 unlock failed: lock already unlocked: mutex %d busy %d", mutex, MUTEXP_BUSY_FIELD(mutexp)); return (__env_panic(env, EACCES)); } #endif /* * If we have a shared latch, and a read lock (DB_MUTEX_LOCKED is only * set for write locks), then decrement the latch. If the readlock is * still held by other threads, just return. Otherwise go ahead and * notify any waiting threads. */ #ifdef HAVE_SHARED_LATCHES if (F_ISSET(mutexp, DB_MUTEX_SHARED)) { if (F_ISSET(mutexp, DB_MUTEX_LOCKED)) { F_CLR(mutexp, DB_MUTEX_LOCKED); if ((ret = InterlockedExchange( (interlocked_val)(&atomic_read( &mutexp->sharecount)), 0)) != MUTEX_SHARE_ISEXCLUSIVE) { ret = DB_RUNRECOVERY; goto err; } } else if (InterlockedDecrement( (interlocked_val)(&atomic_read(&mutexp->sharecount))) > 0) return (0); } else #endif { F_CLR(mutexp, DB_MUTEX_LOCKED); MUTEX_UNSET(&mutexp->tas); } if (mutexp->nwaiters > 0) { if ((ret = get_handle(env, mutexp, &event)) != 0) goto err; #ifdef MUTEX_DIAG QueryPerformanceCounter(&now); printf("[%I64d]: Signalling mutex %p, id %d\n", now.QuadPart, mutexp, mutexp->id); #endif if (!PulseEvent(event)) { ret = __os_get_syserr(); CloseHandle(event); goto err; } CloseHandle(event); } return (0); err: __db_syserr(env, ret, "Win32 unlock failed"); return (__env_panic(env, __os_posix_err(ret))); } /* * __db_win32_mutex_destroy -- * Destroy a mutex. * * PUBLIC: int __db_win32_mutex_destroy __P((ENV *, db_mutex_t)); */ int __db_win32_mutex_destroy(env, mutex) ENV *env; db_mutex_t mutex; { return (0); }