// // SWIG typemaps for std::vector types // Luigi Ballabio // May 7, 2002 // Chris Seatory // August 5, 2002 // Igor Bely // May 16, 2003 // // Perl implementation %include std_common.i %include exception.i // containers // methods which can raise are caused to throw an IndexError %exception std::vector::get { try { $action } catch (std::out_of_range& e) { SWIG_exception(SWIG_IndexError,const_cast(e.what())); } } %exception std::vector::set { try { $action } catch (std::out_of_range& e) { SWIG_exception(SWIG_IndexError,const_cast(e.what())); } } %exception std::vector::pop { try { $action } catch (std::out_of_range& e) { SWIG_exception(SWIG_IndexError,const_cast(e.what())); } } // ------------------------------------------------------------------------ // std::vector // // The aim of all that follows would be to integrate std::vector with // Perl as much as possible, namely, to allow the user to pass and // be returned Perl arrays. // const declarations are used to guess the intent of the function being // exported; therefore, the following rationale is applied: // // -- f(std::vector), f(const std::vector&), f(const std::vector*): // the parameter being read-only, either a Perl sequence or a // previously wrapped std::vector can be passed. // -- f(std::vector&), f(std::vector*): // the parameter must be modified; therefore, only a wrapped std::vector // can be passed. // -- std::vector f(): // the vector is returned by copy; therefore, a Perl sequence of T:s // is returned which is most easily used in other Perl functions // -- std::vector& f(), std::vector* f(), const std::vector& f(), // const std::vector* f(): // the vector is returned by reference; therefore, a wrapped std::vector // is returned // ------------------------------------------------------------------------ %{ #include #include #include %} // exported class namespace std { template class vector { %typemap(in) vector (std::vector* v) { if (SWIG_ConvertPtr($input,(void **) &v, $&1_descriptor,1) != -1) { $1 = *v; } else if (SvROK($input)) { AV *av = (AV *)SvRV($input); if (SvTYPE(av) != SVt_PVAV) SWIG_croak("Type error in argument $argnum of $symname. " "Expected an array of " #T); SV **tv; I32 len = av_len(av) + 1; T* obj; for (int i=0; i& (std::vector temp, std::vector* v), const vector* (std::vector temp, std::vector* v) { if (SWIG_ConvertPtr($input,(void **) &v, $1_descriptor,1) != -1) { $1 = v; } else if (SvROK($input)) { AV *av = (AV *)SvRV($input); if (SvTYPE(av) != SVt_PVAV) SWIG_croak("Type error in argument $argnum of $symname. " "Expected an array of " #T); SV **tv; I32 len = av_len(av) + 1; T* obj; for (int i=0; i { int len = $1.size(); SV **svs = new SV*[len]; for (unsigned int i=0; i { { /* wrapped vector? */ std::vector* v; if (SWIG_ConvertPtr($input,(void **) &v, $1_&descriptor,0) != -1) { $1 = 1; } else if (SvROK($input)) { /* native sequence? */ AV *av = (AV *)SvRV($input); if (SvTYPE(av) == SVt_PVAV) { SV **tv; I32 len = av_len(av) + 1; if (len == 0) { /* an empty sequence can be of any type */ $1 = 1; } else { /* check the first element only */ T* obj; tv = av_fetch(av, 0, 0); if (SWIG_ConvertPtr(*tv, (void **)&obj, $descriptor(T *),0) != -1) $1 = 1; else $1 = 0; } } } else { $1 = 0; } } } %typecheck(SWIG_TYPECHECK_VECTOR) const vector&, const vector* { { /* wrapped vector? */ std::vector* v; if (SWIG_ConvertPtr($input,(void **) &v, $1_descriptor,0) != -1) { $1 = 1; } else if (SvROK($input)) { /* native sequence? */ AV *av = (AV *)SvRV($input); if (SvTYPE(av) == SVt_PVAV) { SV **tv; I32 len = av_len(av) + 1; if (len == 0) { /* an empty sequence can be of any type */ $1 = 1; } else { /* check the first element only */ T* obj; tv = av_fetch(av, 0, 0); if (SWIG_ConvertPtr(*tv, (void **)&obj, $descriptor(T *),0) != -1) $1 = 1; else $1 = 0; } } } else { $1 = 0; } } } public: vector(unsigned int size = 0); vector(unsigned int size, const T& value); vector(const vector &); unsigned int size() const; bool empty() const; void clear(); %rename(push) push_back; void push_back(const T& x); %extend { T pop() { if (self->size() == 0) throw std::out_of_range("pop from empty vector"); T x = self->back(); self->pop_back(); return x; } T& get(int i) { int size = int(self->size()); if (i>=0 && isize()); if (i>=0 && i class vector { %typemap(in) vector (std::vector* v) { if (SWIG_ConvertPtr($input,(void **) &v, $&1_descriptor,1) != -1){ $1 = *v; } else if (SvROK($input)) { AV *av = (AV *)SvRV($input); if (SvTYPE(av) != SVt_PVAV) SWIG_croak("Type error in argument $argnum of $symname. " "Expected an array of " #T); SV **tv; I32 len = av_len(av) + 1; for (int i=0; i& (std::vector temp, std::vector* v), const vector* (std::vector temp, std::vector* v) { if (SWIG_ConvertPtr($input,(void **) &v, $1_descriptor,1) != -1) { $1 = v; } else if (SvROK($input)) { AV *av = (AV *)SvRV($input); if (SvTYPE(av) != SVt_PVAV) SWIG_croak("Type error in argument $argnum of $symname. " "Expected an array of " #T); SV **tv; I32 len = av_len(av) + 1; T* obj; for (int i=0; i { int len = $1.size(); SV **svs = new SV*[len]; for (unsigned int i=0; i { { /* wrapped vector? */ std::vector* v; if (SWIG_ConvertPtr($input,(void **) &v, $1_&descriptor,0) != -1) { $1 = 1; } else if (SvROK($input)) { /* native sequence? */ AV *av = (AV *)SvRV($input); if (SvTYPE(av) == SVt_PVAV) { SV **tv; I32 len = av_len(av) + 1; if (len == 0) { /* an empty sequence can be of any type */ $1 = 1; } else { /* check the first element only */ tv = av_fetch(av, 0, 0); if (CHECK_T(*tv)) $1 = 1; else $1 = 0; } } } else { $1 = 0; } } } %typecheck(SWIG_TYPECHECK_VECTOR) const vector&, const vector* { { /* wrapped vector? */ std::vector* v; if (SWIG_ConvertPtr($input,(void **) &v, $1_descriptor,0) != -1) { $1 = 1; } else if (SvROK($input)) { /* native sequence? */ AV *av = (AV *)SvRV($input); if (SvTYPE(av) == SVt_PVAV) { SV **tv; I32 len = av_len(av) + 1; if (len == 0) { /* an empty sequence can be of any type */ $1 = 1; } else { /* check the first element only */ tv = av_fetch(av, 0, 0); if (CHECK_T(*tv)) $1 = 1; else $1 = 0; } } } else { $1 = 0; } } } public: vector(unsigned int size = 0); vector(unsigned int size, T value); vector(const vector &); unsigned int size() const; bool empty() const; void clear(); %rename(push) push_back; void push_back(T x); %extend { T pop() { if (self->size() == 0) throw std::out_of_range("pop from empty vector"); T x = self->back(); self->pop_back(); return x; } T get(int i) { int size = int(self->size()); if (i>=0 && isize()); if (i>=0 && i