

About British Columbia

BC is big

 - almost twice the area of Spain (95 000 000 ha vs 50 500 000 ha)

 - larger than the states of Washington, Oregon, and California combined

 - spans five UTM zones

BC is 94% public land. That requires a lot of mapping and makes the province a major data producer..

BC has been using MapServer since 2003. This year we've been working with DM Solutions on the new KML

features in MapServer 6.0.

1. The getMap request for image output is the workhorse of the Web Map Service protocol. In KML, getMap is

supported by the GroundOverlay element. A single GroundOverlay shows all selected vectors within a single

image without giving away the vectors. Vectors n be portrayed in more complex styles than kml placemarks

since dashed lines, arrows, and patterned and hatched fills are not supported in KML styles but they are in

MapServer (and GeoServer). A ground overlay only consumes a single view's worth of memory.

2. In Google Earth, each layer in My Places is refreshed independently and awkwardly. You have to right-click on

the layer name and select Refresh. It would be nice to have a Refresh tool on the tool bar or at least be able to

refresh a folder and have all active layers within the folder refresh themselves.

3. There is also no Zoom To Maximum Inverse Scale tool on each layer.

4. The legend shown here is a screen ovelay.

Here is a a scrollable legend in the description element of a balloon for a single ground overlay containing

dozens of wms layers.

The description element contains getLegendGraphic requests, one for each layer in the ground overlay.

Scrolling makes this legend more useful than screen overlays.

 On the left is a yellow circular disk symbol. It is skewed and the wrong size because the ground overlay

specifies constants for width and height in its getMap request instead of the actual dimensions of the

current map view. Unfortunately, this is how google earth creates ground overlays by default.

 The disk on the right is circular because the associated ground overlay includes a viewFormat element

to specify the width and height of the current map view. Google Earth doesn't let you define a

viewFormat element through its interface so you have to edit the kml in a text editor..

Grouping multiple map layers into a single ground overlay speeds up refresh because every GE layer is

refreshed independently.

This ground overlay includes seventeen map layers from our basemap WMS. That would be seventeen

separate getMap requests if they weren't combined.

Now look at the map carefully. We're going to slightly tilt our view.

When you tilt your view, you change the effective scale of the next getMap request. In this case, GE thinks you

are too far away to see the detailed WMS layers.

The workaround is to offer a ground overlay of the same WMS layer but with auto-refresh turned off.

First, level the view then do a manual refresh (right-click on layer name and click Refresh) so when you tilt

your view, GE won’t try to update the layer...

...Now tilt the view. The ground overlay is cached and doesn't disappear because this layer doesn't auto-

refresh.

Google Earth doesn’t have a feature identify tool for ground overlays. To make up for this, use a

getFeatureInfo request for KML output. Radius, x, and y parameters should be set to cover the current view.

The request should be embedded in a NetworkLink.

Each point placemark in the response is positioned where a label would go and contains attribute information

in its description balloon...

...And here we are zoomed right in and the point placemarks still label the polygons within the much smaller

bbox.

The shplabel template macro makes getFeatureInfo work like this and is new in MapServer 6.0.

GeoServer also supports feature identification in ground overlays using the KMPLACEMARK:TRUE option in the

&format_options parameter of a getMap request.

Why not use polygon placemarks instead? You can. This example was produced by a custom kml template in

response to a getFeatureInfo request. It has lovely rollover effects...

...Here we move the mouse cursor inside one polygon...

...then into another.

You also get feature identification by clicking anywhere inside the polygon and...

Polygon placemarks don’t do the oblique angle disappearing act. What’s not to like?

Well, here are some polygon placemark perils to watch for:

Placemarks can take up a lot of memory and make Google Earth sluggish. Just a few polygons with thousands

of points in their boundaries or thousands of simple polygons will generate a multimegabyte response. With

ground overlays, google earth never gets bloated and there is a fairly short and constant refresh time.

Placemarks can’t support fancy styling like dashed lines, arrows, patterned and hatched fills although it does

support the nice roll-over effects shown here.

... and Placemarks can still do the oblique angle disappearing act. We just weren’t zoomed out enough in the previous

slide to see it happen.

So carefully consider the tradeoffs between ground overlays and polygon placemarks for each WMS map layer. That's

the key to good performance.

1. If a user loads a region containing subregions (as shown on the left) then quickly flies around, this will trigger all of

the subregions to load at virtually the same time and crush your server.

2. Google Earth caches the map data for every activated Region so as more regions get activated, Google Earth gets

more sluggish.

Regions may be a flawed concept but they are brilliantly supported by GeoServer if you would to do some experiments

with your data. Here’s an excerpt from the GeoServer docs explaining the four regionation strategies:

• Best guess (default) The actual strategy is determined by the type of data being operated on. If the data consists

of points, the random strategy is used. If the data consists of lines or polygons, the geometry strategy is used.

external-sorting Creates a temporary auxiliary database within GeoServer. It takes slightly extra time to build the

index upon first request.

• Native-sorting uses the default sorting algorithm of the backend where the data is hosted. It is faster than

external-sorting, but will only work with PostGIS datastores.

• Geometry externally sorts lines by length and polygons by area.

• Random uses the existing order of the data and does not sort.

Now we're going to look at three different ways to display the same data using custom templates in

MapServer 6.0. In this first example, each airphoto is a placemark with the photo year attribute mapped to a

KML TimeSpan element so the time slider will display the photos throughout the 2006 range on the slider.

GeoServer can generate placemarks with time stamps but not time spans.

And here’s an example of airphotos as photoOverlays you can pan,zoom, ...

...And compare to the backdrop using the transparency slider in Google Earth.

GeoServer doesn’t support PhotoOverlay output.

And here’s an example of an attribute report that automatically pops up in a balloon every time the camera

stops.

The description element of the balloon contains attribute information for all features within the current map

view. Each time you pan and zoom, a new report is generated. The report includes a LookAt element so you

can save the report, reload it at some time in the future, and zoom to the report's spatial extent again.

This example also shows how custom KML output is future proof. The BalloonVisible element specifies a KML

feature should have its balloon visible when first opened and is a proprietary extension that is new to Google

Earth v5.1. We can use it in our template now whereas GeoServer users will have to wait until it is supported

in a new GeoServer release.

GeoServer doesn't support the output of a KML feature with a table in a description element that contains the

attributes of all selected features.

To get KML out of MapServer 6.0, you need to create a KML network link in Google Earth that makes either a

getMap request or a getFeatureInfo request. The getMap request should specify an output format of KML.

The getFeatureInfo request should specify the name of the output format you've defined in your .map file that

calls your custom KML output template.

When a getMap request is received, MapServer will generate placemarks based on the existing styles defined

in your .map file. To refine the output, you can add metadata elements to the layer definitions in your .map

file. These elements control what attributes are displayed, how they are formatted, whether vectors or a

single raster is returned, etc. Placemark elements not supported include TimeSpan, TimeStamp, LookAt,

Camera, and ExtendedData. MapServer won't generate a legend but GeoServer will.

When a getFeature request is received, MapServer will look for an output format definition that matches the

output format parameter in the request. If found, it will then generate kml based on the output template

you've defined. This template must specify all aspects of styling and feature structure but it gives you

complete control.

To refine the auto-generated KML, you can define the following layer-level metadata elements in your .map

file:

KML_INCLUDE_ITEMS - to list attributes to display using a default table layout

or KML_DESCRIPTION - define layout of Description element; can use HTML

KML_OUTPUTASRASTER "true" - vector layers rendered as a ground overlay with href pointing to generated

image.

KML_FOLDER_DISPLAY 'check' | 'radioFolder’| ‘checkOffOnly’ | ‘checkHideChildren’ - can use at map level

too

KML_ALTITUDEMODE 'absolute' | 'relativeToGround' | 'clampToGround' - how altitude component of

<coordinates> is interpreted

KML_EXTRUDE - if 'true', connect LinearRing to the ground.

KML_TESSELLATE - if 'true', allow polygon to follow terrain.

We advise setting KML_OUTPUTASRASTER to “true” for all map layers then checking each one to see if it

impacts Google Earth

Placemark elements not supported include TimeSpan, TimeStamp, LookAt, Camera, and ExtendedData

Create a KML folder for each WMS you want to publish.

In each KML folder, create one of the following choices for each layer in your WMS:

 a. A GroundOverlay when no feature identification is required OR

 b. A GroundOverlay and a network link containing a getFeatureInfo request for custom kml output OR

 c. A network link containing a getMapRequest for KML output..

Don't publish your KML folders directly. Provide a KML NetworkLink, to each KML folder. This lets you change

the folder of GroundOverlays while ensuring everyone that ever loaded your NetworkLink will get the latest

version of the folder the next time they start up Google Earth. This KML NetworkLink is called View in Google

Earth in the screenshot shown here.

Create a geo sitemap listing all your WMS services so your users can find your wms in a google search.

Here’s what the NetworkLink to Administrative Forest Boundaries looks like:

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://www.opengis.net/kml/2.2" xmlns:gx="http://www.google.com/kml/ext/2.2"

xmlns:kml="http://www.opengis.net/kml/2.2" xmlns:atom="http://www.w3.org/2005/Atom">

<NetworkLink xsi:schemaLocation="http://www.opengis.net/kml/2.2 ogckml22.xsd">

 <name>BCGov Administrative Forest Boundaries</name>

 <open>1</open>

 <LookAt>

 <longitude>-124.2007629128597</longitude>

 <latitude>54.24685845490458</latitude>

 <altitude>0</altitude>

 <range>1646949.958927546</range>

 <tilt>0</tilt>

 <heading>0.7179964782516244</heading>

 <altitudeMode>relativeToGround</altitudeMode>

 </LookAt>

 <refreshVisibility>1</refreshVisibility>

 <flyToView>1</flyToView>

 <Link>

 <href>http://openmaps.gov.bc.ca/kml/BCGov_Administrative_Forest_Boundaries_WMS.kmz</href>

 </Link>

</NetworkLink>

</kml>

Here are some KML elementsthat we plan to test in custom templates this fall:

1. 2.5D features (e.g., with x,y,z coordinates), This example shows the world's largest water ski ramp as an

extruded 2.5D linestring. 2.5D is useful for visualizing 3D stereo digitized roads, streams, elevation surfaces

(e.g., TINs) and other topographic features.

2. Thematic mapping. Height can be mapped to an attribute value, in this case, park area.

3. Models (e.g., buildings)

4. Tracks (new in GE 5.2)

5. Tours (new in GE 5.1)

To summarize so far, Google Earth is a pretty solid wms platform. Its major weakness is the oblique angle

disappearing trick.

MapServer can support KML output quite nicely in both GroundOverlay and Placemark forms. It lets you

configure auto-generated KML output for thousands of WMS layers with minimal effort. For WMS layers that

require complete control over KML output, custom templates can be used. GeoServer doesn't offer this level

of control.

Now, if there’s time and inclination, we can wander into the deep forest of kml and mapserver configuration

details. Otherwise, feel free to explore the rest of the slides on your own.

Here’s an example of using the kml_description metadata tag in a map layer definition to specify the content

and layout of balloon text in placemarks. The value of the ENGLISH_NAME attribute will be used as the icon

label.

In the icon element of a GroundOverlay, instead of specifying constant width and height values in the href

element, define a <viewFormat> element that tells google earth to set the width and height to the number of

horizontal and vertical pixels in the current map view.

You can use getLegendGraphic requests to construct a legend in the Description element.

You can also include a metadata hyperlink.

Let’s take a look at the network link and kml output template needed to get feature identification to work.

The network link name is highlighted in blue...

...And here is the KML definition of the NetworkLink. It contains a getFeatureInfo request.

Lets look at the radius, x, and y parameters. Usually, our map viewer has a feature identify tool that the user

places directly over a given feature and we set the radius to a few pixels in each direction so the user doesn’t

have to be too precise when positioning the cursor. Since Google Earth doesn’t have an Identify tool, we want

to set radius, x, and y so that the getFeatureInfo request returns all features within the current view. Given

that our requested map dimensions are usually within 1024 x 1024 pixels, we use a centre point of

(x=512,y=512) and a radius of 512.

We have asked the MapServer team to support a new parameter SEARCHALLPIXELS. If set to true, would

direct MapServer to use WIDTH and HEIGHT instead of RADIUS, X, and Y.

... And here is the kml output template

First, there is the magic text that identifies an xml file as a template to MapServer followed by the usual kml

header.

Then comes the layer style definitions; Parks highlighted...

And Parks normal followed by a style map...

Each layer in a .map file requires a resultset element. Here’s the resultset for the parks layer.

All macro variables and expressions are enclosed in square brackets.

The [feature] [/feature] tags define a loop that is iterated for each feature found within the radius of the

getFeatureInfo request.

The shplabel macro returns the x,y coordinates of where the label should go.

Kmplacemark:true instructs GeoServer to label each polygon in the ground overlay with a point placemark

containing the non-spatial attributes of the polygon. The contents of the point placemark can be defined by a

description.ftl macro containing appropriate html.

Kmscore is the value of a formula based on the number of features selected and can range from 0 to 100. At

0, features are rendered into a single ground overlay. At 100, every feature is returned as a distinct placemark.

Other values represent a cutoff level; if below a given number of features selected, placemarks are returned;

otherwise a single ground overlay is returned

Now let’s look at the output template for airphotos as point placemarks.

This resultset will generate a folder full of placemarks, one for each feature selected. The [feature] element

defines the loop around the Placemark definition.

The description element of each placemark will contain an airphoto image url which will load the image into a

web browser for printing, and a table of attributes and their values.

The LookAt element sets the range high enough to match the approximate scale of the airphoto.

The TimeSpan element converts the airphoto year into a time period so the photo will remain visible when the

Google Earth time slider is anywhere within the year. TimeSpans are not supported in GeoServer.

Now the output template for airphotos as PhotoOverlays that a user can pan and zoom around while staying

in Google Earth.

This resultset is similar to the previous one except there is a PhotoOverlay element instead of a Placemark.

Not all airphotos have the same orientation since the plane flies back and forth so the rotation corrects the

upside-down photos. To be useful, we need to offer a photooverlay layer that doesn’t rotate the airphoto so a

user can choose the required layer.

The view volume determines the field of view.

Let’s look at the output template for airphotos as a report instead of some kind of geometry.

When making a request, Google Earth will include both the <href> and the <viewFormat> elements in the

request.

Note the inclusion of additional view parameters such as lookAtRange, lookAtTilt, and lookAtHeading

This template generates a kml folder containing a Description element with a table inside.

The [feature] element defines a loop that generates one table row for each feature selected. This control

structure is quite different from that used in generating placemarks or photo overlays and not possible in

GeoServer.

Because output templates give you complete control, you can easily include new kml extensions such as the

gx:balloonVisibility element which came out in mid 2009.

...The LookAt view is set to the orientation parameters provided by Google Earth in the getFeatureInfo request

Let’s look at the output template for polygons as polygon placemarks.

The shpxy macro returns feature coordinates with appropriate delimiting syntax. Since the coordinates are all

within the LinearRing of the polygon’s outer boundary, this template will only work for polygons without

holes.

A new macro called shpkml has been proposed that will return feature coordinates in the appropriate KML

Geometry object. Here is the template recast using shpkml so it will support polygons with holes or

multigeometries containing polygons.

With shpkml, you will be able to customize your linestring and polygon placemarks to meet the most

specialized of requirements.

More tips

You can do per class kml styles using the [shpclass] macro

You can do per attribute value styles by including the attribute value in the style name (e.g., parks_type_1)

You can integrate restful web services using NetworkLinks. A NetworkLink can make an HTTP Get request

to any public URL that returns a valid KML file. The Geographical Names layer makes requests to the BC

Geographical Names Web Services for all official geographical names within the current view and refreshes

itself every time you stop panning and zooming.

For restful web service requests that need user input, you can use an html form in the Description element of

a placemark or folder. In this screenshot, the Find An Address in BC placemark offers up a HTML form then

makes a HTTP Get request to the BC Civic Address Geocoder.

...

Links
 RFC 58 - KML Output in MapServer

 MapServer Templating

 KML Reference

 KML Output in GeoServer

 GeoBC Web Map Services

 The Homeric Scream

 Fast Hierarchical Methods for the N-body Problem

 Into The Forest

http://mapserver.org/development/rfc/ms-rfc-58.html
http://mapserver.org/development/rfc/ms-rfc-58.html
http://mapserver.org/development/rfc/ms-rfc-58.html
http://mapserver.org/mapfile/template.html
http://mapserver.org/mapfile/template.html
http://mapserver.org/mapfile/template.html
http://mapserver.org/mapfile/template.html
http://code.google.com/apis/kml/documentation/kmlreference.html
http://docs.geoserver.org/stable/en/user/googleearth/features/index.html
http://docs.geoserver.org/stable/en/user/googleearth/features/index.html
http://docs.geoserver.org/stable/en/user/googleearth/features/index.html
http://archive.ilmb.gov.bc.ca/dm/wms/index.html
http://archive.ilmb.gov.bc.ca/dm/wms/index.html
http://www.amazon.com/Simpsons-Homer-Scream-Poster-Print/dp/B0019GXZUG/ref=pd_rhf_shvl_1
http://www.eecs.berkeley.edu/~demmel/cs267/lecture26/lecture26.html
http://brendahodson.ca/2004/intotheforest.htm

