Introducing PostGIS WKT Raster

Seamless Raster/Vector Operations
in a Spatial Database

w ‘. .‘.

T

p":""l FOSS4G 2010

w-p‘-';# Barcelona

SEP 6th-9th

Boreal Avian

s
Léé(; Modelling Project

i
A %‘ The Canadian BEACONs Project
1 Boreal Ecosystems Analysis of Conservation Networks.

Pierre Racine

Research Professional
Centre d’étude de la forét

Département des

sciences

du bois et de la forét

Université Laval
Quebec, Canada

aaaaaaaaaaa

Fondation canadienne pour l'innovation

Canada Foundation for Innovation

PostgreSQL

W Cadcorp’

deim s

B o [R
w/ C&j v
D & S |
fi
X CORPORATION
<
:

eeb dzavea

MichiganTech

cel

Centre d'étude de la forét

Seil UNIVERSITE
.0 LAVAL

Espana
Virtual

Introducing PostGIS WKT Raster

Support for rasters in the PostGIS spatial database

new native base type
very much like easy to use as the GEOMETRY
type
One row = one raster
One table = one coverage
Integrated
SQL API easy to learn for usual PostGIS users
Full raster/vector analysis capacity. Seamless when possible.

Development Team
Current:

Past:

Chapter 13 on

FOunding WKT Raster

The Context
The Canadian Spatial Data Foundry

A web site for researchers in forestry, ecology and
environment

Doing buffer analysis over HUGE raster and vector
datasets (covering the extent of Canada)

geom obsID cutProp meanTemp elevation etc...

polygon 1 75.2 20.3 450.2
temperature poygon 2 26.3 15.5 467.3
polygon 3 56.8 17.5 564.8
polygon 4 69.2 10.4 390.2

elevation, etc...

Strategies for Implementing the
Base Buffering Process

We need code for...

A

Strategy
B

C

* vector storage &
manipulation

* raster storage &
manipulation

* analysis processes

database

outside
database

specific
homemade
application

database

database

(non-native
support)

specific
homemade
application

database

database
(native support)

database

Strategy C (implementing raster as a native type into
PostGIS) is a more elegant and generic solution

answering many more GIS problems

(actually WKT Raster features...)

Support for georeferenced, multi-band,
multi-resolution and tiled raster coverages

[Raster in the Database Requirements

SQL operators and functions for raster
manipulation and analysis

SQL operators and functions
working seamlessly on raster and vector data

Easy import/export of rasters from/to the
filesystem

Registration (in the database) of metadata
for rasters staying outside the database

1) Georeferenced, Multiband,
Multiresolution and Tiled Coverages

IN
Georeferenced ulx, uly R skewx
georeferenced pixelsizex -
- ml
- : rotation skewy %
Multiband -~
- band with different
pixeltypes pixelsizey
1BB, 8BSlI, 8BUI, 16BSI, 16BUI, 32BSI, 32BUI, 32BF, 64BF
nodata values
Tiled

0. SRTM Coverage for Canada
- @\g%fﬁf

1 GB per tile, 32 TB per coverage (table)

Rasters are compressed (by PostgreSQL)

Wwf%ﬁy %%
non-rectangular
Multlresolutlon (or overviews) are stored in different tabl

Q)

C L L] %Fﬁ% |

List of raster columns available in a raster_columns table simmnar to tne
geometry_columns table

2) SQL Operators and Functions for
Raster Manipulation and Analysis

implemented, , planned
All indexing operators: <<, &<, <<|, &<|, &&, &>, >>, |&>, |>>, ~=, @, ~

Get and set raster properties: width(), height(), upperleft(),
setupperleft(), pixelsize(), setpixelsize(), skew(), setskew(), numbands(),

Get and set raster band properties: bandpixeltype(),
bandnodatavalue(), setbandnodatavalue(), bandhasnodatavalue(),
setbandhasnodatavalue(), bandpath(), setbandpath()

Get and set pixel values: value(), setvalue(),
getstats(), etc...

Creation: makeemptyraster(), addband(), addrastercolumn(), etc...
Transformation: resample(), etc...

Conversion: toimage(), tojpeg(), totiff(), tokml(), etc...

Simple Examples

SQL
ST _UpperLeftX(rast), ST _UpperLeftY(rast)

PL/pgSQL

ST_DeleteBand(rast raster, band int)
raster

numband int := ST_NumBands(rast)
newrast raster := ST_MakeEmptyRaster(rast)

FOR b IN 1..numband LOOP
IF b '= band THEN
newrast := ST_AddBand(newrast, rast, b, NULL);
END IF;
END LOOP;
RETURN newrast;

3) SQL Operators and Functions Working
Seamlessly on Raster and Vector

The time is past when we wanted to

work on raster data differently than on vector data!
We just want to work on COVERAGES!
(in whatever format they are: vector, raster, TIN, point cloud, etc...)

Seamless raster versions of existing geometry functions: srid(),
setsrid(), convexhull(), envelope(), area(), is valid(),
centroid(), transform(), rotate(), scale(), translate(), etc...

Easy raster to vector conversion functions: dumpaspolygons(),
polygon(), pixelaspolygon(), pixelaspolygons(), etc...

Easy vector to raster conversion functions:
interpolate(), etc...

Major vector-like analysis functions working with rasters:
intersection(), intersects(), within(), contains(), overlaps(), etc...

Major raster-like analysis functions working with vectors:
etc...

3 b) Lossless Conversion Between
Vector and Raster Coverages

Categorical rasters layers convert c

well to vector layers ®

- one variable one column g

- together S

- contiguous or not landcover landcover
. geometry type

- continuous polygon 4

polygon 3

polygon 7

Vector layers do not convert well to raster layers
- each attribute

c

one raster %
- no support for nominal values _g.%;
- global values meaning S
- overlaps landcover
- resolution high 9:;;“;;? e Ll g

polygon 3 M33 1543 area

- features lose unique identities p°'_’f?°" 7 M33 1?:?-6
- reconversion is very difficult or impossible

We need a better way to convert vector layers to rasters without destroying objects’ identities

3 b) Lossless Conversion Between
Vector and Raster Layers

In a vector layer, each object has its own identity

landcover
geometry type mapsheet area
polygon 4 M34 13.34
polygon 3 M33 15.43
polygon 7 M33 10.56
polygon 9 M34 24.54 d’i
polygon g M33 23.43 s

polygon M32 12.34
In a raster layer converted from a vector layer, each object should also

conserve its own identity —
landcover FrE

raster type mapsheet area -
raster 4 M34 13.34 EssaT/ANENEN
raster M33 15.43 TR

i

3
raster 7 M33 10.56
raster 9 M34 24.54 L
raster 5 M33 23.43 L ae
raster 2 M32 12.34 — TES masem
: its own georeference Rasters become just another way to store
- “nodata values” geographic features in a more expressive

- overlap vector object-oriented-like style
Raster algorithms “blend”

ST Intersection
(implemented)

The goal is to be able to do overlay operation on coverages the same
way we are used to do them on vector coverage but without worrying if
data are stored in vector format or raster format.

Y [‘,‘a}

observ cover result
geom obsid raster ctyp geom obsid ctype area
polygon 24 e == PoOlygon 24 4 10.34
polygon 31 n raster 4 === polygon 53 3 11.23
polygon 45 raster 3 polygon 24 5 14.23
' raster 5 polygon 23 2 9.45
raster 2 .. .

SELECT obsid,(gv).geom, (gv).val, ST_Area((gv).geom) as area FROM (

SELECT ST_Intersection(ST_Buffer(observ.geom, 1000), cover.rast 1) as gv,
obsids-ctype
FROM observation, cover
WHERE ST _Intersects(ST_Buffer(observation.geom, 1000), cover.rast)
) foa

takes nodata value into account
- simplification
- tutorial

ST_MapAligebra
(being implemented)

Generate a new raster, pixel by pixel, as a the result of an expression

involving one, two or more rasters

One input two input la] =
extent first -
second intersection 7 6

union —
Misaligned different resolution ,_-2= _4.'_

resampled

Absent values
provided value

pixeltype

replaced with NULL

surrounding or neighbor tile pixels

evaluated by the PostgreSQL SQL
engine
passing geometries and values

[b]

+

o

[-1,1]

[0,1]

[1.1]

[-1,0]

[0,0]

[1,0]

['1 !'1]

[0,-1]

[1,-1]

ST_MapAlgebra
(being implemented)

Example 1: Reclassifying pixel values (one raster version)
SELECT

412 |0 0| 2

4|42 => 0|0

FROM elevation
2|01 0|0

Example 2: Computing the mean + some personnal adjustment (two
rasters version)

SELECT

FROM elev1, elev2 WHERE

10/ 0 | 0
You can also intersect or merge 4l olsll 2
rasters, create raster aggregates, s ol 1

and many funny things!

4) Easy Import/Export of
Raster From/To the Filesystem

import Tt

/p\A PostgreSQL export A

/\A ‘.s;" A

(or load) (or dump)
coverage table e | P—

Import is done with gdal2wktraster.py
shp2pgsql
Batch import overviews tiling index
many file formats

gdal2wktraster.py —r “c:/temp/mytiffolder/*.tif’ -t mytable -s 4326 -k 50x50 -1 >
c:\temp\mytif.sql

psql -f c:\temp\mytif.sql testdb
Export is done using the GDAL WKT Raster driver

5) Registration of Metadata for Rasters
Staying Outside the Database

eb Client

() (1

Web server
Web service

A
@ JPEGsw
BDV

Image01.jpg
landcover 7
raster /

| 2.
raster /7 0 JPQ
raster ———2 liiggeyc g
raster —— Image04.jpg

raster —
>

[A Complete Framework for Light

GIS Application Development

SQL

A

table,
vector,
raster

Introducing
WKT Raster "Raster Objects"™

Raster Objects VS Other GIS Objects

Point and Line Coverages

Polygon Coverages
constant surface identity and

properties

Raster Object Coverages H

Constant Raster Objects (categorical) L
constant surface identity and properties

polygon, better processed
using existing raster algorithms
land use; land cover

buffers, animal territories

Variable Raster Objects (field)
variable field identity and properties

difficult to ENNEEEEEN
model as polygons L

fire, fuzzy objects (lakes, land cover, forest
stands, soil), area of influence, animal territories F

Traditional Raster Coverages
variable field

elevation, climate h ‘

[Comparison with Oracle GeoRaster

See Jorge Arevalo’s presentation, just following...

Summary

Lightweight applications (web or desktop) like the Canadian Spatial Data
Foundry needs server APl to manipulate and analyse vector and raster
data. When possible, seamlessly. Ideally in SQL.

PostGIS WKT Raster aims to provide such an integration
multiband, multiresolution, tiled non-rectangular raster
coverages

Seamless operators & functions
Lossless conversion between raster & vector layers
ST_Intersection and ST_MapAlgebra and many others working seamlessly on raster and vector

Storage outside
Easy
A new approach to geospatial application development
All GIS processes can now be done in the database

Introduction of a new kind of GIS raster objects useful for:
categorical features
fuzzy objects identities

Thanks!

http://[trac.osgeo.org/postgis/wiki/WKTRaster

. PostgreSQL |\ W Cad °

. Boreal Avian W= Ladcorp
‘Aé; Modelling Project jﬁhﬂw.‘ﬁ FOSS4G 2010
- | | deim s ap-#® Darcelona

% The Canadian BEACONs Proklect

\W AT LR 2 S S E P 6 th _ 9 th

BF . | 'O S RGN

- Jyazavea Cﬁf HHel UNIVERSITE

Fondation canadienne pour I'innovation
Canada Foundation for Innovation

MichiganTech

2

i LAVAL

Centre d'étude de la fordt| | v

Espana
Vutum

	Introducing PostGIS WKT Raster Seamless Raster/Vector Operations in a Spatial Database
	Introducing PostGIS WKT Raster
	The Context The Canadian Spatial Data Foundry
	Strategies for Implementing the Base Buffering Process
	Raster in the Database Requirements (actually WKT Raster features…)
	1) Georeferenced, Multiband, Multiresolution and Tiled Coverages
	2) SQL Operators and Functions for Raster Manipulation and Analysis
	Simple Examples
	3) SQL Operators and Functions Working Seamlessly on Raster and Vector
	3 b) Lossless Conversion Between Vector and Raster Coverages
	3 b) Lossless Conversion Between Vector and Raster Layers
	ST_Intersection (implemented)
	ST_MapAlgebra (being implemented)
	ST_MapAlgebra (being implemented)
	4) Easy Import/Export of Raster From/To the Filesystem
	5) Registration of Metadata for Rasters Staying Outside the Database
	A Complete Framework for Light GIS Application Development
	Introducing WKT Raster "Raster Objects"
	Raster Objects VS Other GIS Objects
	Comparison with Oracle GeoRaster
	Summary
	Thanks!

