
PostGIS
Tips for Power Users

pramsey@opengeo.org

PostGIS and PostgreSQL can be
intimidating, and there are a lot of things
to learn!
There are hundreds of functions
available, and it is hard to get past simple
things like ST_Intersects and
ST_DWithin to the next level.
But once you get to the next level, youʼll
find that PostGIS is as powerful (or more)
than many desktop GIS systems.

My son suggested the following topical
breakdown.

• Putting things together

• Taking things apart

• Fixing broken things

• Copying other people

• Playing with balls

• Going really fast

Putting things
together

ST_GeomFromText(
 'POINT('||x||' '||y||')'
)

We may only be able to cover the first
few in the time available.

There are lots of functions that build new
geometries from parts

The standard constructors you might see
are ST_GeometryFromText() or perhaps
one of the new ones like
ST_GeometryFromGML(). Because they
read from text, they lead to ugly
statements like this one.

• ST_MakePoint(x, y, [z], [m])

• ST_MakeLine(
 ST_MakePoint(x1, y1),
 ST_MakePoint(x2, y2))

• ST_MakeEnvelope(
 xmin, ymin,
 xmax, ymax,
 srid)

You might call these for constructing
points from coordinate columns, or one-
off in code that constructs queries.
Because they take in numbers, and donʼt
coerce to strings, they are very handy for
use prepared statements.

Letʼs say Google map of a lake we like is
a little rough, so we hire a student to walk
around the edge with a GPS unit.

And for maximum accuracy, letʼs say we
make her wade around the edge.

CREATE TABLE gps_points (
 id SERIAL PRIMARY KEY,
 point GEOMETRY NOT NULL,
 db_time TIMESTAMP DEFAULT now(),
 gps_time TIMESTAMP NOT NULL,
 track_id INTEGER NOT NULL
);

CREATE TABLE gps_tracks AS
SELECT
 ST_MakeLine(point) AS line,
 track_id
FROM (
 SELECT * FROM gps_points
 ORDER BY track_id, gps_time
) AS ordered_points
GROUP BY track_id;

We end up with a series of point
observations, in order of collection time.
How do we assemble that data into a
polygon?

First we put those GPS points into a
database table. Hopefully they will be
time-stamped, but if not we can stamp
them as they arrive, and we can use the
id number as a source of ordering as well
if we need to.

Now create a table of tracks by building
lines from the points.
Note that ST_MakeLine() can be used as
an aggregate.
Note that you want to feed the points into
the aggregate in order, so we use a
subquery that explicitly orders the data
the way we want it.

ST_MakeLine({point})

ST_Union(A,B)

So now we have a line that bounds our
lake, but thereʼs something wrong, look
where the start and and points are.

We have a “non-noded crossing”. We
want to build up a polygon, but the
polygon routines will only build from
noded line-work, where the start- and
end-points of lines are coincident. We
need to fix this crossing.

The two-argument union operation
returns a result that in which no
geometries have interiors that overlap.
We can take advantage of this property.

ST_Union(A,B)

UPDATE gps_tracks
SET line = ST_Union(

line,
‘LINESTRING EMPTY’

)

CREATE TABLE gps_lakes AS
SELECT
 ST_BuildArea(line) AS lake,
 track_id
FROM gps_tracks;

When we feed ST_Union() lines that
have intersecting interiors, we get an
output collection where only the exteriors
(the end points) intersect.

Our examples on the previous slide had
two arguments each, but for our problem
we only have one input line. What do do?
We need a second argument for
ST_Union(). How about ... nothing? The
union of something and nothing is
something, and the ST_Union() process
will still remove all the coincident
geometry from our first argument.

Now we are ready to build our lake
polygon!

ST_BuildArea(multilinestring)

ST_BuildArea(multilinestring)

ST_Polygonize({multilinestring})

vs

LINESTRING(0 0, 1 0)
LINESTRING(0 1, 1 1)
LINESTRING(0 2, 1 2)
LINESTRING(1 0, 2 0)
LINESTRING(1 1, 2 1)
LINESTRING(1 2, 2 2)
LINESTRING(0 0, 0 1)
LINESTRING(1 0, 1 1)
LINESTRING(2 0, 2 1)
LINESTRING(0 1, 0 2)
LINESTRING(1 1, 1 2)
LINESTRING(2 1, 2 2)

The ST_BuildArea() function takes in a
multilinestring and builds the best area it
can from it. Interior partitions are
removed, and interior rings are respected
as holes.

But, this is confusing, there are two
functions in the PostGIS manual that
seem to do the same thing.
ST_Polygonize and ST_BuildArea? What
is the difference?
One difference is that ST_Polygonize is
an aggregate and ST_BuildArea is not.
Aggregates take in sets of rows and
outputs a summary value. Sum() and Avg
() are aggregates. ST_Polygonize takes
in a set of lines and outputs as many
polygons as possible, in a single
geometry collection. ST_BuildArea takes
in a single collection of lines and outputs
a single polygon.

If we create a collection of short lines that
form the edges of polygons we can see
the different behavior or ST_BuildArea
and ST_Polygonize.

ST_BuildArea(ST_Collect(edges))

POLYGON((
 1 0,0 0,0 1,0 2,
 1 2,2 2,2 1,2 0,1 0
))

ST_BuildArea(ST_Collect(edges))

The edges form a simple grid.

If we ST_Collect() the edges into a
multilinestring and then ST_BuildArea()
on them, we get the largest area we can
form from them, in this case the 2x2 unit
square. If we donʼt collect the edges first,
we get 12 NULL rows back, one for each
input line. Because each individual edge
encloses no area at all, ST_BuildArea()
just returns null when passed them.

The outer boundary has a few spare
vertices. We could get rid of them by
running ST_Simplify with a tolerance of
zero.

GEOMETRYCOLLECTION(
 POLYGON((1 0,0 0,0 1,1 1,1 0)),
 POLYGON((1 1,0 1,0 2,1 2,1 1)),
 POLYGON((2 0,1 0,1 1,2 1,2 0)),
 POLYGON((2 1,1 1,1 2,2 2,2 1))
)

ST_Polygonize(edges)

ST_Polygonize(edges)

SELECT
 ST_BuildArea(ST_Collect(edge))
FROM edges
GROUP BY area_id;

ST_Polygonize returns a collection of all
the areas bounded by the edges. Note
that we have four polygons here, not
one. Also note that we didnʼt need to
collect the edges first, as ST_Polygonize
() is an aggregate.

The main use of ST_Polygonize is to
create polygons from relatively
unstructured data, where you do not
know ahead of time what edges belong
to what polygons. Pass it a pile of
linework and see what comes out.
ST_BuildArea is more useful for
structured cases, when you know ahead
of time which edges are going to form a
polygon.

The astute among you will be wondering
now if thereʼs any difference between
ST_BuildArea() and ST_Polygonize()
when it comes to building individual
areas. If ST_Polygonize() is smart
enough to handle unstructured cases, itʼs
smart enough to handle structured cases
too.

SELECT
 ST_Polygonize(edge)
FROM edges
GROUP BY area_id;

ST_BuildArea(ST_Collect(edges))

Surely ST_BuildArea() is redundant,
since it can be replaced by a suitably
grouped ST_Polygonize()?

But the two functions have different
behaviors. ST_Polygonize() is much
more aggressive about finding all
bounded areas in a set of linework. We
can see the philosophical difference by
building these edges using the two
methods.

ST_BuildArea() builds the one
connected area defined by the lines. If
the lines define more than one
disconnected area, it will build a multi-
polygon instead.

ST_Polygonize(edges)

Taking things
apart

geom name

 GEOMETRYCOLLECTION(
 POINT(0 0), POINT(1 1))

Paul

geom name

 POINT(0 0) Paul

 POINT(1 1) Paul

ST_Polygonize builds all possible areas
defined by the edges, both the donut and
its hole.

(“Beating holes in things with a hammer”
didnʼt have the same general utility as
“taking things apart”.)

The ST_Polygonize() function creates
GEOMETRYCOLLECTION outputs, with
one sub-geometry for each POLYGON it
can form. We usually want one geometry
per row, not one big blob of geometries in
a collection. How do we efficiently extract
simple geometries from a collection?

ST_GeometryN(collection, n)

ST_Dump(collection)

vs

SELECT
 ST_GeometryN(geom,1),
 name
FROM the_table;

st_geometryn name

 POINT(0 0) Paul

SELECT
 ST_GeometryN(geom,
 generate_series(
 1,
 ST_NumGeometries(geom))),
 name
FROM the_table;

st_geometryn name

 POINT(0 0) Paul

 POINT(1 1) Paul

Here we have two choices again, the
OGC standard ST_GeometryN() function
and the custom PostGIS function,
ST_Dump().

ST_GeometryN() returns one answer at a
time, so we just get one item back
instead of two. What to do?

The PostgreSQL function
generate_series() returns a tuple set, and
we can use that to force out one row per
sub-geometry!

SELECT
 ST_Dump(geom),
 name
FROM the_table;

st_dump name

 ({1},0101...000000) Paul

 ({2},0101...000000) Paul

geometry_dump
[
 path: array(int)
 geom: geometry
]

SELECT
 (ST_Dump(geom)).geom,
 name
FROM the_table;

geom name

 POINT(0 0) Paul

 POINT(1 1) Paul

ST_Dump() is like generate_series, it
returns a tuple-set, so we get one row for
each sub-component of the collection.
But what the heck is that in the left
column?

ST_Dump() returns a “composite type”
called “geometry_dump” which includes
both the path to the geometry within the
collection (“.path”), and the geometry
itself (“.geom”).

To get just the geometry component we
use the “dot notation” to extract the
portion of the composite type we desire,
in this case just the geometry. ST_Dump
() will dump the simple components of
any collections, whether they be points,
lines or polygons.

ST_Dump(collection)

ST_DumpRings(polygon)

ST_DumpPoints(geometry)*

Fixing broken
things

Validity

The syntax is not elegant, but the
ST_Dump() function is far far faster than
the generate_series() approach to taking
apart collections, so it is recommended.
There is also a ST_DumpRings() function
to take apart polygons, and an
ST_DumpPoints() to reduce a geometry
to a tuple-set of points.
* ST_DumpPoints() is currently a slow
PL/PgSQL function, and needs to be
ported to C internally for maximum
speed. Perhaps in PostGIS 2.0.

The Open Geospatial Consortium
“Simple Features Specification”
describes what makes a feature invalid or
not. Points and linestrings and basically
always valid (linestrings can be closed or
not, simple or not, but a non-simple
linestring is still valid). But polygons have
to be constructed in a particular way.

• Polygon rings are simple,
closed linestrings.

• Rings that define holes should
be inside rings that define
exterior boundaries.

• Rings may not cross.

• Rings may not touch other
rings, except at a single point.

ESRI OGC

This polygon is invalid because its inner
ring touches the outer ring in four places
(once is allowed). The correct way to
represent this area would be as a multi-
polygon, with each lobe as an
independent polygon.

This polygon is invalid because it
consists of just one ring that loops
around and touches itself at the bottom. I
call it a “banana polygon” because it is
like a banana that has been bent until the
ends touch.
The correct way to construct this shape is
with an exterior and an interior ring that
touch at one point.
There is no “right” way to do this. ESRI
actually considers the first case valid and
the second one invalid. They arenʼt
wrong, their internal standard is just
different.

SELECT ST_Area();

0

If there is no “right” way to do validity,
why does it matter? Because algorithms
that work on polygons expect consistent
construction. The form of the consistency
is unimportant, the consistency itself is
the important thing.
My favorite invalid polygon is this one, it
is a figure-eight construction, made of
just one ring. The right way to represent
this would be a two-element multi-
polygon.

This polygon is interesting because of
what ST_Area() returns when run on it.
Can anyone guess what the area is?

Zero.

+1

-1

ST_IsValidReason()

Interior is disconnected[-2 0]

Ring Self-intersection[2 0]

ST_MakeValid()*

*PostGIS 2.0 / GEOS 3.3

The ring actually winds around the area it
bounds in opposite directions for the two
lobes. So the first lobe is calculated with
a positive area, and the second with a
negative. The lobes are the same size,
so they cancel each other out.

We can use the ST_IsValid() function to
get a boolean true/false answer for
validity, and once we find invalid features,
the ST_IsValidReason() function returns
a text description of the invalidity. The
numbers at the end are the coordinates
of the invalidity. For cases that have
multiple invalidity points (like the first
example) only the first coordinate of
invalidity is returned.

We can fix lots of classic cases of
invalidity with the ST_MakeValid()
function, but unfortunately it is not
available in the current releases.

ST_Buffer(geom, 0.0)

ST_Buffer(geom, 0.0)

ST_Buffer(geom, 0.0)

Fortunately, ST_Buffer() used with a zero
tolerance can re-build a large proportion
of invalid polygons into a valid form.

Buffer with zero tolerance will rebuild the
ESRI polygon into an OGC polygon.

But, whooops, it totally mangles our
figure eight!

ST_Perimeter(new)
~

ST_Perimeter(old)

ST_ExteriorRing()

ST_Union()

So, after trying the buffer fix, check your
“fixed” geometries and make sure their
new perimeters are close to their old
ones.

Fortunately, there is another way to clean
up the figure-eight invalid polygon.
Extract the boundary ring first using
ST_ExteriorRing().

Then Use ST_Union() to node the
linestring to itself. We get out a
multilinestring with two distinct parts.

ST_BuildArea()

SELECT
 ST_BuildArea(
 ST_Union(
 ‘LINESTRING EMPTY’,
 ST_ExteriorRing(
 ‘POLYGON((...))’
)
)
);

Copying other
people

Finally, use ST_BuildArea() to convert
the multilinestring into a multipolygon.
Thatʼs it!

Show me that in SQL, you all say. No
problem!

“Dissolve” (Union)

“Union” (Overlay)

“Dissolve” (Union)

SELECT
 ST_Union(geom),
 state
FROM counties
GROUP BY state;

People who start geoprocessing in
PostGIS frequently return to the ur-GIS
use cases, the ones that old skool users
of Arc/INFO know as “dissolve” and
“union”. Dissolve converts a large
collection of small polygons into a small
collection of large polygons. Union
creates a venn diagram of areas created
by overlaying two sets of overlapping
polygons. Weʼre going to review a couple
use cases that copy the traditional GIS
operations of “dissolve” and “union”.

The “dissolve” operation is very easy to
emulate, using the ST_Union() aggregate
function. You can see where confusion
arises when the ST_Union() function
does an Arc/INFO “dissolve” but not an
Arc/INFO “union”.

By grouping on the variable you want to
control the union process you can create
all sorts of resultants. By grouping on
state, we turn a collection of county
polygons into a collection of state
polygons.

“Union” (Overlay)

A

B

AB

AB

ST_Intersection(A,B)

Given two collections of polygons, we
want to figure out which parts of the
plane are in the first collection, which are
in the second and which are in both.

It is a classic venn diagram.

Finding the parts for this simple example
is easy.

A

ST_Difference(A,B)

ST_Difference(B,A)

B

a

b

We just combine intersections with
differences.

To get all the pieces.

In each polygon set, a polygon is one of:
completely covered by the other set;
partially covered by the other set; or,
not covered at all by the other set.

SELECT
 a.*, b.*,
 ST_Intersection(a.geom, b.geom)
FROM
 a, b
WHERE
 ST_Intersects(a.geom, b.geom);

It is a hard problem to solve in SQL. It is
fairly easy to find all the intersecting
parts.

This is the result of the ST_Intersection()
operation on the two layers. There are a
lot of shapes missing.

Finding the parts of the layers that
intersect nothing is not hard. But finding
the parts that partially intersect is quite
complex. One way is to union the area of
intersection, and then difference that
area from the two original layers. The
SQL for that is too complex for a
presentation slide.

There are other approaches to finding the
“union” of two coverages (the merged
information for two overlapping
collections of polygons), however. When
asked this question a couple years ago,
Kevin Neufeld suggested a more
topological approach.The SQL is again
too involved for slides, but the concepts
are easy to describe.
Start with two collections of polygons, we
want to find the places they overlap and
where they donʼt.

First convert the polygons to linework by
extracting their edges with
ST_ExteriorRing() or ST_DumpRings().

Ensure the edges are noded using
ST_Union(). Remember, from the first
section, ST_Union() on a
MULTILINESTRING will ensure that the
interiors of none of the component lines
interact, by adding end points at any
crossing.

Build up the resultant polygons using
ST_Polygonize(). Now we have the final
polygons, but because we built them
from primitives, the attribution has been
lost! Put the polygons to one side for
later.

Convert the polygons to points using
ST_PointOnSurface()

Use ST_Intersects() to determine which
attributes from the original layers adhere
to which points.

A

Aa

a

b
Ab

B

Ba

A

Aa

a

b
Ab

B

Ba

Now we have attributed points!

And we can use ST_Intersects() again to
attach the attributes onto the newly built
polygons.

Voila! For every area we have only one
polygon, but we know what original
polygons that area was formed from.

Playing with
balls

GEOGRAPHY

Balls are round. The earth is round. It
would be nice if we could store our GIS
data in a form that respects their
underlying roundness!

We can, using the GEOGRAPHY type.
The GEOGRAPHY type understands lat/
lon coordinates as spherical coordinates,
not as cartesian coordinates.

That means that, in GEOGRAPHY, the
lines interpolated between points are
great circles on a sphere, which can
make a big difference for things like
calculating how close a plane gets to
Iceland when flying from Los Angeles to
Paris.

• Index over sphere

• Calculate over poles /
dateline

• Precise calculations on
spheroid

GEOGRAPHY Rocks!

• Way slower to do
calculations

• Far fewer functions

GEOGRAPHY Sucks!

double dx = x2 - x1
double dy = y2 - y1;
double d2 = dx * dx + dy * dy;
double d = sqrt(d2);

Pythagoras (Plane)

Geography has a lot of advantages. It
can handle global data sets the pass
over the poles or dateline without any
special code. Just call the usual
ST_Distance, ST_Area, ST_DWithin
functions. The index is actually very
slightly faster than the older 2D index
(though the extra index speed is more
than washed out by the overhead of
spherical math in the final calculations).
And the calculations are done on the
spheroid, very precise.

Unfortunately geography requires
complex calculations (so it is slower) and
it is a new feature, so it has much
narrower function coverage.

The reason for the slowness is simple --
calculations on the sphere require a lot of
math. Hereʼs the cartesian function for
distance (in C)...

double R = 6371000; /* meters */
double d_lat = lat2-lat1; /* radians */
double d_lon = lon2-lon1; /* radians */
double a = sin(d_lat/2) *
 sin(d_lat/2) +
 cos(lat1) *
 cos(lat2) *
 sin(d_lon/2) *
 sin(d_lon/2);
double c = 2 * atan2(sqrt(a),
 sqrt(1-a));
double d = R * c;

Haversine (Sphere)

• ST_Area(g1)

• ST_Distance(g1, g2)

• ST_DWithin(g1, g2, d)

• ST_Intersects(g1, g2)

• ST_Covers(gpoly1, gpt2)

GEOGRAPHY Functions

ST_Buffer(geography)

And hereʼs the spherical function for
distance (in C). The spheroidal function is
even more involved and requires even
more calls to transcendental functions.

As noted before, there are very few
native functions currently available.
However, there is a way to work around
that limitation, though it has performance
penalties.

Watch out! This technique could lead to
very slow code if you arenʼt careful!
It is possible to use the capabilities of the
GEOMETRY type to enhance the abilities
of the GEOGRAPHY type. ST_Buffer()
and ST_Intersection() are actually
examples of casts from GEOGRAPHY to
GEOMETRY. You can use them as
templates for extending the functionality
of GEOGRAPHY to cases where it is
currently unsupported.

 ST_Transform(

 _ST_BestSRID($1)
),

 ST_Buffer(

 $2),

 ST_Transform(

 4326)

SELECT geography(

)

 geometry($1),

ST_Buffer(geography)

_ST_BestSRID(geog)

_ST_BestSRID(geog)

_ST_BestSRID(geog1, geog2)

The big trick is the use of the
_ST_BestSRID() function, which provides
an SRID that “looks good” for a given
geography feature. If the feature is small
enough, the best SRID it is a UTM
projection. If the geography is polar, it
gets a Polar Stereographic projection. If it
is very large, it gets a Mercator
projection.
The rest of the SQL is the necessary
book-keeping to transform the feature to
the chosen projection, do the operation
(buffer in this case) and transform it back.

The “best SRID” has works best with
small features that can fit within regional
projections. If the feature is small
enough, the best SRID fit is a UTM
projection. If the geography is polar, it
gets a Polar Stereographic projection. If it
is very large, it gets a Mercator
projection.

For operations that require two
parameters, you want to choose the best
SRID for the pair. (You donʼt want to
transform them into different SRIDs, then
the operation would not make sense.)
For that, use the two-parameter form of
_ST_BestSRID(). The actual numbers
returned by _ST_BestSRID are not valid
EPSG codes, they are negative! The
projections the numbers correspond to
are hard-coded into PostGIS, so that
changes to the SPATIAL_REF_SYS table
wonʼt break them.

SELECT geography(
 ST_StartPoint(
 geometry($1)
)
)

ST_StartPoint(geography)

Going really
fast

CREATE INDEX your_geoindex
ON your_table

USING GIST (your_geocolumn);

If the operation is simple enough and
doesnʼt involve measurements (like
ST_StartPoint(), or ST_NumRings()) you
can skip all the transformations and
simply cast into geometry, run the
operation, and cast back to geography.

Youʼre all power users, but Iʼm going to
remind you anyways. Your calls to
ST_Intersects(), ST_DWithin(),
ST_Contains(), ST_Within(), and the &&
operator of course, all require an index
for maximum efficiency. This is true for
both GEOGRAPHY and GEOMETRY,
and the index operator is && for both
types.

Server Memory

OS shared_buffers *_mem

15% 65% 20%

Run-time Parameters!

• SET work_mem TO 2GB;

• SET maintenance_work_mem
TO 1GB;

• SET client_min_messages TO
DEBUG;

Spend some money

• I/O is biggest bottleneck

• Invest in

• Great file system

• Good memory

• Adequate CPU(s)

Do not starve your system of memory.
The defaults are low low low!
Go into postgresql.conf and set up
PostgreSQL to make good use of your
server RAM. Assuming you have a
dedicated database server, these are
simple rules of thumb. You have to re-
start the database for the shared_buffers
parameter to take effect.

Some of the memory parameters are
actually run-time! This is hugely powerful.
Building an index on a 100M record
table? Increase your work_mem to 3GB
and watch your index build time drop
75%. Vacuuming after a big update?
Increase your maintenance_work_mem
and watch the process zip along. Doing
some coding on PL/PgSQL functions?
Turn up client_min_messages to
ʻDEBUGʼ and just your session will see
the extra debugging information you
need to work.

Once the size of your database is larger
than your main memory, you are going to
bottleneck at the I/O bus. Get a RAID10
array, and a good quality controller to
back it. (Incidentally, one of the reasons
cloud PostgreSQL is dicey is because
the I/O on the cloud systems is slow and
flakey.) Get as much memory as you can
-- the more things that are in memory
cache, the faster things go. A “good
enough” CPU (or four) will do.

Clustering

Clustering

Cluster on R-Tree

CLUSTER your_table
USING your_geoindex;

When you are drawing maps from
your spatial tables, you tend to
retrieve spatially grouped collections
of records. If the records are
scattered randomly around the disk,
it will require at least one disk
rotation to retrieve them all.

“Clustering” organizes the records on
disk according to a key. Using a
spatial key, we can ensure that
“nearby” features on the ground also
tend to be nearby on the disk
surface.

The easiest way to do this is to just
cluster on the spatial index. The
spatial index tends to group nearby
features together, so clustering on it
yields reasonable improvement.

Cluster on GeoHash

CREATE INDEX your_geohash_index
 ON your_table
 (ST_GeoHash(your_geocolumn));

CLUSTER your_table
 USING your_geohash_index;

A little known fact about the R-Tree
is that, in its usual random access
read/write form, it does not provide
very good spatial coherence. That is,
spatial neighbors can, and often do,
end up in quite different branches of
the tree. This is a visualization of the
top level index pages of an index of
roads in British Columbia. Notice the
odd vertical boxes covering the
whole province from north to south.

Clustering on a key with stronger
spatial coherence can force more
spatial neighbors to be on-disk
neighbors. This picture is of a
“packed r-tree” generated by Chris
Hodgson. Notice how the index
boxes cover unique areas of ground.
That means the index pages below
them will be similarly well organized.
This would be a great tree for spatial
clustering. Unfortunately, this
packing routine has not been added
to PostGIS (yet), so we need a stop-
gap solution.

The ST_GeoHash() function builds a
key that is essentially a quad-tree
key for a given feature. That means
feature are correlated with their
neighbors based on their key
position. Using ST_GeoHash, you can
build a functional index suitable for
driving the clustering operation to
produce a good ordering on disk.

Stay curious

• Join the mailing list
http://postgis.org/mailman/listinfo/postgis-users

• Read the wiki! And add
stuff!
http://trac.osgeo.org/postgis

• Buy the book
http://www.manning.com/obe/

• Read GIS StackExchange
http://gis.stackexchange.com/

• Start using PL/R!
http://www.joeconway.com/plr/

• Use R Geostatistics!
http://geodacenter.asu.edu/r-spatial-projects

• Join IRC!
irc://irc.freenode.net/postgis

• Use the source
http://svn.osgeo.org/postgis/trunk/

PostGIS has gotten really huge! There is
always more to learn!

Thanks

http://s3.opengeo.org/
postgis-power.pdf

Thanks, from me and PT.

You can download the slides and
notes for this talk from this URL.

