
GeoServer WPS
An integrated Web Processing Service

Andrea Aime

aaime@opengeo.org

Quick introduction to
WPS

Web Processing Service
• Wikipedia introduces OGC WPS as:

– [A service] designed to standardize the way
that GIS calculations are made available to
the Internet.

– WPS can describe any calculation
including all of its inputs and outputs, and
trigger its execution

– The specific processes served up by a WPS
implementation are defined by the owner of
that implementation.

– Although WPS was designed to work with
spatially referenced data, it can be used with
any kind of data.

Buffer SimplifyBuffer

Clip

Operations
• GetCapabilities

– Server metadata
– List of processes

• DescribeProcess
– Human process description
– Machine input/output description

• Execute
– Provide inputs, invoke the process, gather

the outputs

The simplest example

gt:DoubleAddition(input_a, input_b)
= input_a + input_b

DescribeProcess: sum
<?xml version="1.0" encoding="UTF-8"?>
<wps:ProcessDescriptions service="WPS" version="1.0.0"
 xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <wps:ProcessDescription wps:processVersion="1.0.0"
 statusSupported="false" storeSupported="false">
 <ows:Identifier>gt:DoubleAddition</ows:Identifier>
 <ows:Title>DoubleAddition</ows:Title>
 <ows:Abstract>Adds two floating point numbers</ows:Abstract>
 <wps:DataInputs>
 <wps:Input maxOccurs="1" minOccurs="1">
 <ows:Identifier>input_a</ows:Identifier>
 <ows:Title>First value</ows:Title>
 <ows:Abstract>First value to add</ows:Abstract>
 <wps:LiteralData><ows:DataType>xs:double</ows:DataType>
 <ows:AnyValue /></wps:LiteralData>
 </wps:Input>
 <wps:Input maxOccurs="1" minOccurs="1">
 <ows:Identifier>input_b</ows:Identifier>
 <ows:Title>Second value</ows:Title>
 <ows:Abstract>Second value to add</ows:Abstract>
 <wps:LiteralData><ows:DataType>xs:double</ows:DataType>
 <ows:AnyValue /></wps:LiteralData>
 </wps:Input>
 </wps:DataInputs>
 <wps:ProcessOutputs>
 <wps:Output>
 <ows:Identifier>result</ows:Identifier>
 <ows:Title>Result value</ows:Title>
 <wps:LiteralOutput><ows:DataType>xs:double</ows:DataType>
 </wps:LiteralOutput></wps:Output>
 </wps:ProcessOutputs>
 </wps:ProcessDescription>
</wps:ProcessDescriptions>

Execute example: sum
<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute version="1.0.0" service="WPS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:gml="http://www.opengis.net/gml"
 xsi:schemaLocation="http://www.opengis.net/wps/1.0.0
 http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd">
 <ows:Identifier>gt:DoubleAddition</ows:Identifier>
 <wps:DataInputs>
 <wps:Input>
 <ows:Identifier>input_a</ows:Identifier>
 <wps:Data>
 <wps:LiteralData>2</wps:LiteralData>
 </wps:Data>
 </wps:Input>
 <wps:Input>
 <ows:Identifier>input_b</ows:Identifier>
 <wps:Data>
 <wps:LiteralData>5</wps:LiteralData>
 </wps:Data>
 </wps:Input>
 </wps:DataInputs>
 <wps:ResponseForm>
 <wps:RawDataOutput>
 <ows:Identifier>result</ows:Identifier>
 </wps:RawDataOutput>
 </wps:ResponseForm>
</wps:Execute>

7!

http://www.opengis.net/wps/1.0.0
http://www.opengis.net/ows/1.1
http://www.opengis.net/gml
http://www.opengis.net/wps/1.0.0

GeoServer WPS
at a glance

GeoServer WPS history
• Started by Refractions in 2008, with limited

capabilities (only single geometry and single
feature support)

• First overhaul attempt end of 2008 by the
community, added testing, support for vector
collections

• In heavy development since mid 2010 with
Sextante integration, JTS processes, raster
data support

Inputs and outputs
• GeoServer supports

– Primitives: strings, numbers, dates,
bounding boxes

– Plain geometries: in WKT and GML 2/3
format

– Feature collections: GML 2/3, GeoJSON,
zipped shapefile

– Rasters: GeoTiff and ArcGrid

• The WPS spec does not really say what input
and outputs one has to support, and in which
format!

Process sources

• JTS: 45 simple
geometry manipulation
processes

• Sextante: over 200
raster processes

• Built-in: 10 processes to
improve over WFS and
interact with the
catalog

• GeoTools: the
pluggable process API

Built-in demo client

What makes GeoServer
WPS different?

Integration!

• Direct communication with the other
services, the catalog, the data sources

Communication patterns

• The data exchange with a WPS can
be carried on in various ways

• Each has different assumptions on:
– The client capabilities
– The network speed
– The availability of other services and

data local to the WPS

In-line data exchange

• The client sends over
the data to be processed

• The server returns the
result fully

• Assumptions
– Fast network

– GML overhead
acceptable

– Either desktop client or
small amounts of data

Referring to remote servers

• Client sends a request referring to remote
resources, the server responds fully

• Might work for thin clients if the result is
small (for example, a summary)

GML and
network
overhead still
present

Referring to local catalog
• The client refers to some data that is local

to the WPS server

• Still assumes few data or a summary type
result • Fast and native

communication with the
data source (native
indexing, no ordinate
value rounding, possible
to offload part of the
computation the data
source itself)

Full service integration

• The client refers to data
local to the server

• The result is stored back
in the integrated server

• The client accesses the
results with WMS and
WFS

• The best case scenario for
a thin client (browser
based)

Direct storage
• The process is

executed, the results
stored and registered
in the catalog

• Simple to implement

• Access to the results
benefits from spatial
indexing, etc.

Comm. patterns support
• The fourth style is supported via the

gs:Import process + chaining

Data
Generic
process

gs:Import Catalog

Services learn from each
other

WFS cross pollination

• WFS common questions:
– Can I get the bounds of the features that

satisfy a certain filter? (without getting the
features along?)

– Can I get the min/max/avg/var/sum of a
certain attribute? (aggregate)

– Can I simplify the geometries so that my thin
client won't choke on so many ordinates?

• The answer is: no, no and no!

• But WPS can!

Processes helping WFS
• gs:Import: imports vector data into the catalog

• gs:Aggregate: compute min/max/avg/sum/... over a
certain attribute

• gs:Unique: return the unique values for a certain
attribute

• gs:Nearest: find the N nearest features to a given
point

• gs:RectangularClip: clips and returns features inside
a certain rectangle

• gs:Simplify: generalize geometries

• gs:Snap: snaps the given point to the closest
geometry vertexes

WPS learning from WFS

• Doing what WFS is capable of, but on
a remotely provided data set:
– gs:Count: count how many features
– gs:Reproject: reproject a feature

collection
– Query like filtering is one the way

Sneak peek into the future

Scripting
• A server can have hundreds of processes

• But it often happens that it does not have
the one you need!

• We want to effortlessly add new processes
with a light coding environment and
without restarting the server → scripting!

GeoScript
• http://geoscript.org

• “GeoScript adds spatial capabilities to
dynamic scripting languages”

• GeoScript is based on GeoTools just like
GeoServer

• Work is underway to integrate it into
GeoServer as a source of WPS processes

• Imagine...

http://geoscript.org/

Scripting processes

• Imagine:
– Writing a process in Python,

Javascript, Groovy or Scala

– Deploying/updating it to the WPS
by simply copying a file

– Cover your specific needs in a short
time and get on with your work

• If high performance or better
integration is needed, Java is still
available for a native process
implementation!

Advanced raster processes
• jgrasstools provides a variety of scalable,

pure Java processes based on JAI and
GeoTools

• Various of them are tile based, and
leverage the extra performance of Java
Advanced Images libraries

• Stay tuned for advanced raster processes
in GeoServer!

• http://code.google.com/p/jgrasstools/

http://code.google.com/p/jgrasstools/

Missing bits
• Adding support for asynchronous

execution
– Submit
– Periodically check
– Eventually get the results

• Better support for external schemas

• Support for unit of measure

• Go beyond process chaining into process
orchestration (workflow engines)

Closing up

• WPS brings much needed new
capabilities to GeoServer

• The module is brand new, it requires
the whole community to test it (yes, I'm
looking at you)

• Has a staggering potential for
growth: join the team and help us
make it great

Questions?

Extras

Result integration strategies

• Storing back in the catalog... how?
• Statically?
• Dynamically?
• Various approaches are possible

Direct storage
• The process is

executed, the results
stored and registered
in the catalog

• Simple to implement,

• Loses all links to the
process that
generated the data

• Access to the results
benefits from spatial
indexing, etc.

Monitor and cache approach
• The results are

stored

• Yet, a data monitor
maintains memory
of the process and
listens for changes
in the original data

• On data change the
process is run
again and the
results updated

On the fly approach
• Results are not stored

• The definition of the process and the original
data are instead

• The process is run on the fly as there is
demand for result data

• Works for very light processes
• Hard to implement

efficiently over vector data:
the process should consider
the filters over the results to
avoid needless computation
(push vs pull)

Strategies support

• GeoServer implements the direct
storage strategy via the gs:Import
process

• Implementing a cache and monitor
approach is not too difficult (monitor
listens to WFS-T events)

• The third strategy is somewhat harder
to implement, requires changes at the
catalog level (a new type of layer)

	Slide 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41

