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Quick introduction to
WPS



Web Processing Service
• Wikipedia introduces OGC WPS as:

– [A service] designed to standardize the way 
that GIS calculations are made available to 
the Internet. 

– WPS can describe any calculation 
including all of its inputs and outputs, and 
trigger its execution 

– The specific processes served up by a WPS 
implementation are defined by the owner of 
that implementation. 

– Although WPS was designed to work with 
spatially referenced data, it can be used with 
any kind of data.
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Operations
• GetCapabilities

– Server metadata
– List of processes

• DescribeProcess
– Human process description
– Machine input/output description

• Execute
– Provide inputs, invoke the process, gather 

the outputs



The simplest example

gt:DoubleAddition(input_a, input_b)
= input_a + input_b



DescribeProcess: sum
<?xml version="1.0" encoding="UTF-8"?>
<wps:ProcessDescriptions service="WPS" version="1.0.0"
  xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1"
  xmlns:xlink="http://www.w3.org/1999/xlink">
  <wps:ProcessDescription wps:processVersion="1.0.0"
    statusSupported="false" storeSupported="false">
    <ows:Identifier>gt:DoubleAddition</ows:Identifier>
    <ows:Title>DoubleAddition</ows:Title>
    <ows:Abstract>Adds two floating point numbers</ows:Abstract>
    <wps:DataInputs>
      <wps:Input maxOccurs="1" minOccurs="1">
        <ows:Identifier>input_a</ows:Identifier>
        <ows:Title>First value</ows:Title>
        <ows:Abstract>First value to add</ows:Abstract>
        <wps:LiteralData><ows:DataType>xs:double</ows:DataType>
                         <ows:AnyValue /></wps:LiteralData>
      </wps:Input>
      <wps:Input maxOccurs="1" minOccurs="1">
        <ows:Identifier>input_b</ows:Identifier>
        <ows:Title>Second value</ows:Title>
        <ows:Abstract>Second value to add</ows:Abstract>
        <wps:LiteralData><ows:DataType>xs:double</ows:DataType>
                         <ows:AnyValue /></wps:LiteralData>
      </wps:Input>
    </wps:DataInputs>
    <wps:ProcessOutputs>
      <wps:Output>
        <ows:Identifier>result</ows:Identifier>
        <ows:Title>Result value</ows:Title>
        <wps:LiteralOutput><ows:DataType>xs:double</ows:DataType>
        </wps:LiteralOutput></wps:Output>
    </wps:ProcessOutputs>
  </wps:ProcessDescription>
</wps:ProcessDescriptions>



Execute example: sum
<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute version="1.0.0" service="WPS"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1"
  xmlns:gml="http://www.opengis.net/gml" 
  xsi:schemaLocation="http://www.opengis.net/wps/1.0.0   
                      http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd">
  <ows:Identifier>gt:DoubleAddition</ows:Identifier>
  <wps:DataInputs>
    <wps:Input>
      <ows:Identifier>input_a</ows:Identifier>
      <wps:Data>
        <wps:LiteralData>2</wps:LiteralData>
      </wps:Data>
    </wps:Input>
    <wps:Input>
      <ows:Identifier>input_b</ows:Identifier>
      <wps:Data>
        <wps:LiteralData>5</wps:LiteralData>
      </wps:Data>
    </wps:Input>
  </wps:DataInputs>
  <wps:ResponseForm>
    <wps:RawDataOutput>
      <ows:Identifier>result</ows:Identifier>
    </wps:RawDataOutput>
  </wps:ResponseForm>
</wps:Execute>

7!

http://www.opengis.net/wps/1.0.0
http://www.opengis.net/ows/1.1
http://www.opengis.net/gml
http://www.opengis.net/wps/1.0.0


GeoServer WPS
at a glance



GeoServer WPS history
• Started by Refractions in 2008, with limited 

capabilities (only single geometry and single 
feature support)

• First overhaul attempt end of 2008 by the 
community, added testing, support for vector 
collections

• In heavy development since mid 2010 with 
Sextante integration, JTS processes, raster 
data support



Inputs and outputs
• GeoServer supports

– Primitives: strings, numbers, dates, 
bounding boxes

– Plain geometries: in WKT and GML 2/3 
format

– Feature collections: GML 2/3, GeoJSON, 
zipped shapefile

– Rasters: GeoTiff and ArcGrid

• The WPS spec does not really say what input 
and outputs one has to support, and in which 
format!



Process sources

• JTS: 45 simple 
geometry manipulation 
processes

• Sextante: over 200 
raster processes

• Built-in: 10 processes to 
improve over WFS and 
interact with the 
catalog

• GeoTools: the 
pluggable process API



Built-in demo client



What makes GeoServer
WPS different?



Integration!

• Direct communication with the other 
services, the catalog, the data sources



Communication patterns

• The data exchange with a WPS can 
be carried on in various ways

• Each has different assumptions on:
– The client capabilities
– The network speed
– The availability of other services and 

data local to the WPS



In-line data exchange

• The client sends over 
the data to be processed

• The server returns the 
result fully

• Assumptions
– Fast network

– GML overhead 
acceptable

– Either desktop client or 
small amounts of data



Referring to remote servers

• Client sends a request referring to remote 
resources, the server responds fully

• Might work for thin clients if the result is 
small (for example, a summary)

GML and 
network 
overhead still 
present



Referring to local catalog
• The client refers to some data that is local 

to the WPS server

• Still assumes few data or a summary type 
result • Fast and native 

communication with the 
data source (native 
indexing, no ordinate 
value rounding, possible 
to offload part of the 
computation the data 
source itself)



Full service integration

• The client refers to data 
local to the server

• The result is stored back 
in the integrated server

• The client accesses the 
results with WMS and 
WFS

• The best case scenario for 
a thin client (browser 
based)



Direct storage
• The process is 

executed, the results 
stored and registered 
in the catalog

• Simple to implement 

• Access to the results 
benefits from spatial 
indexing, etc.



Comm. patterns support
• The fourth style is supported via the 

gs:Import process + chaining

Data
Generic
process

gs:Import Catalog



Services learn from each 
other



WFS cross pollination

• WFS common questions:
– Can I get the bounds of the features that 

satisfy a certain filter? (without getting the 
features along?)

– Can I get the min/max/avg/var/sum of a 
certain attribute? (aggregate)

– Can I simplify the geometries so that my thin 
client won't choke on so many ordinates?

• The answer is: no, no and no!

• But WPS can!



Processes helping WFS
• gs:Import: imports vector data into the catalog

• gs:Aggregate: compute min/max/avg/sum/... over a 
certain attribute

• gs:Unique: return the unique values for a certain 
attribute

• gs:Nearest: find the N nearest features to a given 
point

• gs:RectangularClip: clips and returns features inside 
a certain rectangle

• gs:Simplify: generalize geometries

• gs:Snap: snaps the given point to the closest 
geometry vertexes



WPS learning from WFS

• Doing what WFS is capable of, but on 
a remotely provided data set:
– gs:Count: count how many features
– gs:Reproject: reproject a feature 

collection
– Query like filtering is one the way



Sneak peek into the future



Scripting
• A server can have hundreds of processes

• But it often happens that it does not have 
the one you need!

• We want to effortlessly add new processes 
with a light coding environment and 
without restarting the server  → scripting!



GeoScript
• http://geoscript.org

• “GeoScript adds spatial capabilities to 
dynamic scripting languages”

• GeoScript is based on GeoTools just like 
GeoServer

• Work is underway to integrate it into 
GeoServer as a source of WPS processes

• Imagine...

http://geoscript.org/


Scripting processes

• Imagine:
– Writing a process in Python, 

Javascript, Groovy or Scala

– Deploying/updating it to the WPS 
by simply copying a file

– Cover your specific needs in a short 
time and get on with your work

• If high performance or better 
integration is needed, Java is still 
available for a native process 
implementation!



Advanced raster processes
• jgrasstools provides a variety of scalable, 

pure Java processes based on JAI and 
GeoTools

• Various of them are tile based, and 
leverage the extra performance of Java 
Advanced Images libraries

• Stay tuned for advanced raster processes 
in GeoServer!

• http://code.google.com/p/jgrasstools/

http://code.google.com/p/jgrasstools/


Missing bits
• Adding support for asynchronous 

execution
– Submit
– Periodically check
– Eventually get the results

• Better support for external schemas

• Support for unit of measure

• Go beyond process chaining into process 
orchestration (workflow engines)



Closing up

• WPS brings much needed new 
capabilities to GeoServer

• The module is brand new, it requires 
the whole community to test it (yes, I'm 
looking at you)

• Has a staggering potential for 
growth: join the team and help us 
make it great



Questions?



Extras



Result integration strategies

• Storing back in the catalog... how?
• Statically?
• Dynamically?
• Various approaches are possible



Direct storage
• The process is 

executed, the results 
stored and registered 
in the catalog

• Simple to implement, 

• Loses all links to the 
process that 
generated the data

• Access to the results 
benefits from spatial 
indexing, etc.



Monitor and cache approach
• The results are 

stored

• Yet, a data monitor 
maintains memory 
of the process and 
listens for changes 
in the original data

• On data change the 
process is run 
again and the 
results updated



On the fly approach
• Results are not stored

• The definition of the process and the original 
data are instead

• The process is run on the fly as there is 
demand for result data 

• Works for very light processes
• Hard to implement 

efficiently over vector data: 
the process should consider 
the filters over the results to 
avoid needless computation 
(push vs pull)



Strategies support

• GeoServer implements the direct 
storage strategy via the gs:Import 
process

• Implementing a cache and monitor 
approach is not too difficult (monitor 
listens to WFS-T events)

• The third strategy is somewhat harder 
to implement, requires changes at the 
catalog level (a new type of layer)
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