A benchmark of graphic APIs for use in GIS
rendering

Abstract

In this paper we will look at the rendering perfamue of several Graphics
Application Programming Interfaces (API's) with actis on geographic map
rendering. A mixture of 2D and 3D engines will benbhmarked. We will focus
on two aspects: Rendering speed of 2D geograpliedbdata and the ease of
implementing a rendering system based on eachedARi’s. From this data we
discern which API is best suited for building a open source Geographic
Information System (GIS) rendering engine. The Itesaf the implemented
benchmarks are discussed in further detail andést API for implementing a
GIS rendering system is identified.

Keywords - Header Times 12pt bold

Architectures and frameworks for open source sofiveend data, Benchmarking,
Graphics, GDI, GDI+, OpenGL, DirectX, Direct2D

1. INTRODUCTION

What graphics API should be employed in order titddbau rendering engine for a
GIS? How does one go about finding the best APIfhRe (2009) states that a
requirement for creating a fast good quality magpapplication starts at the
selection of the graphics rendering API. This igyddy due to the fact that
performance tuning a mapping application is depende the drawing speed
which is directly related to the graphics API uskds thus important to select an
API with good performance.

Computer graphics are used everywhere today and &sult there are a
number of API's available. Each API has its own sétadvantages and
disadvantages. Some are easier to use at thefcgstex. Others provide a lower
level of abstraction with a higher speed but whk tdded overhead of larger
implementation costs. The APIs can be broken dovwm two categories. High
level and low level. High level APIs allow for fastdevelopment times due to
their higher abstraction. They are easier to useamast of the lower level
functionality has already been abstracted into drigavel functions. They often
provide tools for scene management which has theflteof not having to be

built from scratch. High level libraries may noopide the flexibility required to
do specialized rendering. Low level API's providelod more flexibility and
customizability. They provide little or no addit@ntools besides the rendering
engine. The large overhead associated with buildimdy application on top of a
low level APl makes them a less attractive option.

Rendering speed is important for a GIS. Gahedgl®99) asserts this
importance from the highly interactive nature ofplexing geographical
information and datasets. Users require a mechawoisnove around and through
the data in an immersive, virtual and dynamic ways therefore important to
choose an API that will deliver the required perfance. This will result in a
better understanding and interpretation of the data due to higher interaction
and fluidity within the system and provide a betieerall user experience. There
are two criteria of measurement that are import@hey directly relate to the
speed or performance of the API coupled with thiatikee quality of the
rendering. In other words, the objective is to gatethe best image in the fastest
time.

The easiest way to discern the most approprialdsAi® use them to perform
a series of benchmark tests. The tests should fmcuke functionality that will
most likely be implemented when creating a GIS eeimg) system. At the very
least a GIS should be able to adequately rend@ird, pine and polygon layer.
Various rendering libraries can be tested to perfahe rendering. The
performance of each of the rendering functionszetil can then be compared and
evaluated. One must however be careful when irdény the results of
benchmarks. It is easy to get a skewed view of vilratresults actually mean.
The process of benchmarking the various APIs véldiscussed in further detalil
later in this paper.

The paper is structured as follows: Section 2udises related work. Section 3
discusses the process of computer benchmarkingio8ecgives an overview of
the various API's that were benchmarked. Sectialisbusses the methodology
in performing the benchmarks. Section 6 gives atstiscussion on the results of
each API. In section 7 we draw some conclusions.

2. BACKGROUND AND RELATED WORK

The International Organization for Standardizatid8O 19101:2002, 4.16),
define a GIS as information concerning phenomenagligitly or explicitly
associated with a location relative to the earth.

GIS data is linked to or represents real worldiapabjects. The visual aspect of
GIS is a powerful tool. The human mind coupled witlcomputer generated

“picture” of data is what is referred to as vismation. Tory & Moller (2004)
define visualization as “a graphical representatibrdata or concepts which is
either an internal construct of the mind or an exkartifact supporting decision
making. In other words visualizations assist humaith data analysis by
representing data visually.”

The visual aspect of GIS data means that largaiate@f data can be quickly
and easily interpreted by a person. The adage ttum is worth a thousand
words” - Fred R. Barnard, is well substantiated mvhpplied to the realm of GIS
data.

There are, however, several problems associatdd the rendering of the

large amounts of data comprising most GIS systamdayt Gahegan (1999)
explores several barriers that need to be overdanoeder to successfully and
adequately render geographic information. The Gfghese barriers are graphic
in nature. They are the speed at which a scendeaandered coupled with the
combination effects that can be employed in ordediscern relationships and
trends between different datasets in a visual nranfiee fact that most GIS
systems comprise such large amounts of data meatnqgthick rendering is
essential. The combinational compounding effecthhefamount of data coupled
with the complexity of the effects utilized to remdhe data will influence the
total speed at which a map can be drawn. In amtéffepeed up the rendering of
data, generalizations may be applied to the gebgrafeatures which are
representations of real world objects. Basaran802p defines the process of
generalization in a GIS environment as derivingppse oriented lower detailed
datasets at smaller scales or lower resolution fdmtailed data sources or a
dataset at larger scale or higher resolution. Gi&ets inherently already
represent spatial features in a generalized mauether generalization allows
for the volumes of data to be reduced at the cbslata accuracy. One of the
outstanding research questions to be answered lst ' the most effective
visualization platform to be used when creatingl@ @ndering system, Gahegan
(1999).
The goals of this paper are to write some basiplgcarendering functions that
utilize the various API's in order to determine tieative performance of the
rendering. Other factors such as ease of use @&Pdnwill also be noted as it
plays an important role for the development andnieamiance of a software
product.

In terms of benchmarking, Renhart (2009) has coteduresearch on various
mobile graphics API's with the goal of deciding wiiof the available ones will
be best suited for implementing a GIS mapping systé is important to note
however that the criteria for a mobile phone agian and the criteria for a
desktop application are quite different. Mobile idegs have a lot more

restrictions imposed on them in terms of memoryfgumance, screen size and
storage. Renhart (2009) accomplished the resegratelsuring the performance
times of graphic operations and comparing themtherolibraries. The metrics
are simple. The API with the fastest overall timeoas different rendering
functions will be the best API to use for buildiags1S rendering system.

3. MORE ON COMPUTER BENCHMARKS

Zhang (2001) defines a benchmark as a set of pregthat are run on different
systems to give a measure of their performance.eAclhmark is useful for
measuring the relative performance of a systenspects thereof which can then
be compared to other existing systems. Care musaken when designing a
benchmark to ensure that one is measuring whatuslly of value. Focusing on
a single dimension like computational performanaey mot yield an accurate
depiction of how the system will perform in a readrld environment. During the
implementation phase of benchmarks, special caedsn® be given to ensure
that the graphics API being benchmarked receiveguate volumes of data. The
bottleneck is almost always getting the data fraek.dwe will later discuss a
simple way to enable the fast delivery of datehtodraphics API.

Benchmarks can be broadly subdivided into two gmies. Zhang (2001)
summarizes these as micro benchmarks and macrohiarks. A micro
benchmark tests the performance of a function endiwvest level. An example
of this is the time it takes to draw a simple ptivé on the screen. The
advantages of this type of benchmark are that ate @ very good idea of the
fundamental cost of a function. On the downsidepaly be difficult to translate
the actual measurements into values that will b@vetent to the cumulative
result of the system in its entirety.

A macro benchmark consists of a larger inclusige af functionality and
more accurately measures the performance of amsystea whole. It is a much
more accurate and practical representation of ¢cheahperformance that will be
achievable by an application. The downside to dipisroach is the cost and time
associated with the implementation of such a teis¢.sCare will also have to be
taken to ensure the implementation does not indluilentional bottlenecks.
Benchmarks may measure various values like mentiigation and processing
speed. Depending on where the focus is, some iariteay be given a higher
importance. The focus in this paper is renderiregsdp

4 GRAPHICS API'S

A graphics API in this context is the library ofdm that sits between the
application and the graphics hardware performirgy réndering. Not all API's
utilize hardware acceleration via the Graphics €semg Unit (GPU). These
libraries are executed on the Central Processing (@PU) and are called
software rendered API's. Software rendering is galhe orders of magnitude
slower than their GPU counterparts.

4.1 GDI API

Walbourn (2009) notes that the primary graphics siRte early days has been
that of Graphics Device Interface (GDI). This hotdse even for many of the
latest GIS mapping applications today. It is stitiployed as the primary API for
doing graphics in Windows. This is a trend that Wikely continue for some time
still.

GDI was developed to keep the application programuignostic of the
underlying details associated with a particulapldig device, Richard (2002). It
acts as middleware between the programmer and haedthat facilitates the
final rendering. Four types of primitives are suped by GDI: lines, curves,
filled areas, bitmaps and text.

Legacy
GDI |GDI+| 295 |D3D9

(User-Mode / Kemnel-Mode Boundary)

XPDM (GDI)| XPDM (D3D)

Figure 1: Walbourn (2009). Graphic Outlay of WindoP

The above figure serves to illustrate the grapAiB$s layout for the Windows
XP operating system. The Windows XP Display Drivdodel (XPDM) is

divided into two sections. One that runs the GDplementation which is not
hardware accelerated, i.e. GDI performs all remggeriia the CPU. The other
section is the Direct3D section which utilizes heade rendering. GDI's lack of

hardware rendering under Windows XP was a big dimathge. Most computers
today have powerful graphic hardware on board whicbperly utilized, would
bring major speed advantages.

(User-Mode / Kernel-Mode Boundary)

WDDM
(KERNEL)

Figure 2: Walbourn (2009). Graphic Outlay of WindoWista and Windows 7

The above figure shows how the API's were reshdfifeWindows Vista and up.
A new driver model, the Windows Vista Display Dniwdodel (WDDM), brings
GPU and Direct3D to the forefront. This allows feome of the previous
GDI/GDI+ calls that used software rendering to bedkvare accelerated should a
graphics card be available and present.

4.2 GDI+ API

GDI+ is the revised version of GDI and its succesk@xpands on and provides
new capabilities to GDI adding additional flexibilito the programming model.
It is not built on top of GDI but exists side bylsion the same level (See Figure
1 and Figure 2 above). This library provides fumadlity for imaging, two-
dimensional vector graphics and typography. GDIr ba used in conjunction
with GDI if so desired.

There are several open sources mapping API’s ablailtoday that utilize
GDI+ as their rendering engine. Examples are ShapM
(http://sharpmap.codeplex.com/), MapWindow
(http://www.mapwindow.org/index.php) and DotSpatial
(http://dotspatial.codeplex.com). This is by no n®an exhaustive list but
merely serves as proof of the widespread use of @D+ for GIS systems.

4.3 DIRECTX API

DirectX is Windows'’s premier game programming ARdnes (2004). It consists
of two layers. The first is the API layer and tleeend the hardware abstraction
layer (HAL). The HAL links the API functions witlhé underlying hardware and
is usually implemented by the graphic hardware rfeturer. The DirectX API
sends commands to the graphic card via the HAL. ARkitself is based on the
component object model (COM). Jones (2004), stdias the DirectX COM
objects consist of a collection of interfaces expgsnethods which are usable by
developers to access the graphics API. The COMctbjthemselves usually
consist of DLL files that have been registered \lith system.

4.4 OPENGL

The Khronos Group (2012) claim OpenGL to be themiee environment for
developing portable, interactive 2D and 3D grappplications. The OpenGL
platform is designed to allow vendors to easily lenpent their own extensions
and so allow for their own spin on implementing thignd graphic functions.
OpenGL incorporates a broad set of rendering, textuapping, special effects,
and other powerful visualization functions. One bdyantage to using OpenGL
is that it is supported on a wide range of opegasiystems and software systems
making it very portable. The industry tends to epreOpenGL for doing
application type graphics such as CAD applicatiwhsreas DirectX is preferred
for creating games (Luten, 2007). DirectX and Open&e two directly
competing API's. The full implementation specificat for OpenGL is available
on its website (www.opengl.org) should it be regdir

4.5 DIRECT 2D API

Microsoft (2012) has introduced Direct2D as a neR for Windows 7. It is a

hardware accelerated, immediate mode 2D graphick tA& provides high

performance and high quality rendering. Immediat@lenmeans that the API
does not cache any of the objects sent to it fodedng. For each frame that
needs to be rendered the API has to be resenteldata. This APl has been
primarily designed for developers to give them ablé replacement to
GDI/GDI+.

5. METHODOLOGY

In order to determine the fastest APl a simple egimg system was implemented
in C# utilizing each of the listed API's. A real vid point, line and polygon layer

was rendered and the performance times of eadfedeature types were logged.
The point layer consisted of a collection of poinfsinterest covering most of
South Africa. The line layer contained spatial fiees for a large part of the
South African road network. The polygon layer cetesd of polygons denoting
property stands across South Africa. Table 1 giaeshort overview of the

composition of the test data utilized.

Point Layer | Line Layer | Polygon Layer
Feature count | 249313 900000 900000
Total Points 249313 10158849 | 9679727
Size of Database1.04 GB

Table 1: Spatial Data Statistics

Each API is required to render points, lines, polygand text from the supplied
data. The spatial reference system of the testisl®t45S84. The data was not re-
projected for display on screen. Due to this fabiteof distortion occurs when
rendering the data. Figure 3, which denotes thpubutf the points of interest
layer, shows how the above-mentioned distortion ifests itself. The image
seems stretched in the horizontal axis. The distoiis cause by the fact that
WGS84 is a geographic coordinate system. It ugbsea-dimensional spherical
surface to define locations on earth. A computegest is inherently a 2D object
so re-projection is required in order to corredigplay the data. In order to
project the data a mathematical equation is appiedransform each point.
Unless explicitly performed in a GPU shader progrdm computation is
performed on the CPU. A shader is a small pieceode written specifically for
execution on a GPU. As the focus is on the grapdndering speed, coordinate
re-projection was ignored. Each API is still reqdirto render and process each
point so the projected state of the data will mbtuence the rendering speed of
the API. Of the benchmarked API's only OpenGL ank€rX support the use of
a custom shader program. The other API's will hivase a CPU based function
to perform the re-projection.

Figure 3: Distortion due to displaying geograploorinates un-projected on a
2D surface

It is important to be able to serve up data fastan what the graphic engine can
utilize it as we have previously touched upon. Whilorking with the datasets it
was immediately evident that the first bottleneakuld be disk input and output
(10). A number of experiments were conducted ireottd determine the fastest
way to serve up the data from the storage medium.

The first experiment read directly from a shajpe, fivhich is Esri’'s geospatial
vector format for storing dataThe binary reader proved to be the bottleneck in
this case and the performance was not adequate.

The second experiment involved the loading of tlgadinto a SpatiaLife
database. .NET’s ActiveX Data Objects (ADO) datavpier was used to load
the data into the application. Performance wag hdter out of the database but
was still not sufficient.

A third experiment involved removing disk IO froitine equation by
performing the first and second experiments agatnlith a single difference. A
RAM disk was created and used as the storage mediuRAM disk allows a
partition of memory to be mounted and then acceasédutilized like a normal
hard disk partition. The speed increase is sigmificThe results of the IO RAM
disk benchmark vs. the hard disk can be seen bledvevin Figure 4. RAM is so
much faster than a HDD that it is barely visibletba graph. The bottleneck was
found to be the shape file and database driverIt®onative methods were
explored.

! Esri Geoportal Server is a free open source piaitiat enables discovery and use of geospatial
resources.

2 SpatiaLite is a spatial extension to the SQLitatienal database management system. It provides
vector geodatabase functionality.

10 Benchmark

GB/s
SR MNWEN DN ®

@HDD

@ Virtual RAM Disk

{T=qo)

il pray Wopury
{t=ao)

DIF A Wopuey
(ee=aD)

i PEIY Wopuey
=au)

(T€

peay [enuanbag
UM |BnUANbas
A SHIAN Wopuey

MICTS preY WopURY
M CLS 2HIAN UOpUEY

Figure 4: 10 Benchmark

In the end the best method proved to be the cadifiige data directly in main
memory in the form of a dictionary object. This ydes the fastest access to the
data. The total time averaged across three testimexto loop through the data
and convert it to floats:

* Point Layer :20.3ms

* Line Layer :1690.7ms

* Polygon Layer :881.8ms
The above-mentioned values represent the fastestetical rendering time if the
graphics API could render instantaneously. Itimply a measurement of the
time it takes to loop through each of the featwrastained in the test datasets.
The benchmarking of each APl was done by feedinthet point, line and
polygon data and drawing the appropriate primitwvescreen. Additionally the
point layer was used as a location to repetitidiebw the same piece of text. The
time for the rendering of each of the mentionedhjiives was then logged. Each
test was run ten times and an average was calduatd then displayed on
graphs. The test application was run on three mashiThe specifications of
each of the machines are noted in table 2 below.

PC1 Laptopl Laptop?2
Inter® Core™ i7- Intel Core 2 Duog Intel® Core™ i7-
CPU | 2600 CPU @ 3.4T72502.00 GHz 28600Q0m CPU @ 2.5
GHz 3.4 GHz GHz 2.5Ghz
RAM | 8.00 GB 4.00 GB 16 GB
GPU NVIDIA GeForce| Intel Display with| NVIDIA Quadro
GTX 560 Ti Mobile Intel 965 1000M

10

Express Chipset

OS Windows 7 64-bit Windows 7 64-bit Windows 7 G4-b

Table 2: Hardware specifications of benchmark PC'’s

Two machines have relatively decent graphic candslable with the other
having a standard Intel display card.

Ants Performance Profiler was run on each of thelamted rendering functions
to determine the function in code where most ofpifteessing time was spent.
The reason for this was to determine if the grapAiBl was being used to its full
potential.

6. RESULTS

Each of the above mentioned graphics API's wertededNe will now discuss
each of the API's in more detail. We will take akoat the method used to
implement the drawing of each of the primitivesaoper API basis. We will also
mention where the bulk of the processing time vt

In terms of the test computers in order of dinhimg performance we have
PC1, Laptop2 and lastly Laptopl. The benchmarksifam immediate mode
rendering only. This was to try to eliminate difaces between API's. Not all of
the libraries allow for more advanced drawing mdtholmmediate mode
rendering is the common denominator across thehmeaiked API's.

A vertex buffer object benchmark was performed @penGL merely to
highlight what hardware optimizations could brimgthe table. It serves to give
an idea of what is possible to achieve in termseatiering performance. This
will later be discussed in more detail. Below felk the results of the API
benchmarks. Take note however that the OpenGL wbdé&er benchmark does
not include the spin times. This can be addededitkt run time if a comparable
value is required. It was omitted due to the fhat the vertex buffer is only setup
once during initialization and then remains in thdeo card’s memory. This
initialization was done on application startup dwerée was no perceived
performance penalty.

Figures 5 to 8 show the average rendering timesacen runs for each API.
Also visible in each graph is the results of ea¢h grouped by the computer it
was executed on. This was in order to discern vVirftaa more powerful GPU
would vyield faster rendering time when compared th@ non-hardware
accelerated libraries.

11

Points Rendering Comparison
100000
” 10000
T
c
S
S
ﬂ 1000
g
£ 100
o
E
= 10
1
Laptopl Laptop2 PC1
M GDI+ 567 312 265
HGDI 32976 12783 12671
i OpenGL Immediate Mode 52 1338 31
H OpenGLVBO's 20 15 1
M Direct2D 937 341 323
M DirectX 135 55 63
i Spin Through Data 28 17 16

Figure 5. Points Rendering Comparison

We will now discuss in more detail the benchmarkeath of the previously
mentioned API's.

Text Rendering Comparison
100000
10000
@
T
c
o
o 1000
H
= 100
o
E
=
10
1
Laptopl Laptop2 PC1
HGDI+ 1415 741 622
M GDI 3659 1706 1570
i OpenGL Immediate Mode 3394 1846 437
& Direct2D 8011 3015 2823
M DirectX 19537 9521 5814

Figure 6. Text Rendering Comparison

12

Lines Rendering Comparison
100000
" 10000
T
c
o
8
3 1000
z
£ 100
Q
£
= 10
1
Laptopl Laptop2 PC1
HGDI+ 27653 14261 12426
HGDI 46837 22695 21156
i OpenGL Immediate Mode 2085 3927 759
HOpenGLVBO's 1368 949 80
W Direct2D 8050 4264 3931
M DirectX 21672 6049 5794
M Spin Through Data 2457 1196 1103
Figure 7. Lines Rendering Comparison
Polygons Rendering Comparison
100000
" 10000
T
2
o
8
3 1000
z
£ 100
Q
£
= 10
1
Laptopl Laptop2 PC1
HGDI+ 12831 6460 5656
HGDI 45115 22630 21754
i OpenGL Immediate Mode 2659 4063 935
HOpenGLVBO's 1253 955 97
H Direct2D 8733 4411 4196
i DirectX 22680 6230 5994
M Spin Through Data 2773 1356 1269

Figure 8. Polygons Rendering Comparison

6.2 GDI API

GDl is the old drawing API utilized by Windows.Has been replaced by GDI+
but as it is still in active use on the Windows mgeg system it is still
applicable. It is not directly available for use@#. Platform Invoke (P/Invoke)
calls were utilized in order to make use of the &Ddll library drawing
functions. P/Invoke is a feature of the Microsofton@dmon Language
infrastructure implementation allowing managed ctwdeall native code. It is not

13

an intuitive way to utilize a library as the methgignatures are not always that
well documented. It does however work very well.ingsGDI itself is not
difficult and works very similarly to GDI+. The onktaveat is that one needs to
make sure one correctly disposes of variables onong leaks will result.

Drawing of the point, line, polygon and text wasc@uoplished using the
following methods:

Points : FillRect() — 89% of all rendering time.

Lines : PolyDraw() — 10% of all rendering time. The rekthe time was spent
on coordinate transformations.

Polygon PolyDraw() — 10% of all drawing time. The resttbé time was spent
on coordinate transformations.

Text : TextOut() — 40% of all rendering time. The reéthe time was spent
on coordinate transformations.

Coordinate transformations were manually handledthes library does not
provide built in matrix functions to help with tleeordinate transformations. GDI
expects all coordinates to be specified in termscoéen coordinates. Most of the
rendering time was spent translating the pointsh® correct locations on the
screen. GDI rendering scored the lowest out othal benchmarks performed.
The only exception to this was text rendering whpelformed in the mid ranges
compared to the other libraries. The time to traesthe coordinate system to
screen coordinates has been included in all thehmearks as it is a vital and
necessary function that will have to be performega lgraphic rendering system.
To clarify translation should not be confused wihkprojection. Translation here
means the conversion of the arbitrarily defined ld/@oordinate system to the
screen coordinate system.

6.2 GDI+ API

GDI+ is contained in the System.Drawing library @ahiis one of the libraries
available to .Net. The GDI+ API proved easy to udee library uses a graphics
object which encapsulates a drawing surface. Itatos methods for drawing
lines, rectangles, paths and other primitives. Tiivary does not have a point
primitive. The recommended way to draw a point ia the fill rectangle
function.

Drawing of the point, line, polygon and text wasc@mplished using the
following methods:
Points : Graphics.FillRectangle() — 75% of all rendertimge.
Lines : Graphics.DrawLines() — 98% of all rendering time
Polygon Graphics.DrawPolygon() — 92% of all drawing time.
Text : Graphics.DrawString() — 91% of all renderingéim

14

Coordinate transformations were accomplished vigirggle matrix. The
Graphics class has a property to allow the setifrytranslation matrix which is
then applied to all points sent to the API. Ovetladl performance was not bad.
On the two laptops GDI+ had the fastest text rendetimes of all the API's.
The PC having a good graphics card managed to doitpe GDI+ slightly via
OpenGL. GDI+ outperformed Direct2D and GDI in teraigoints rendering. In
terms of rendering lines and polygon GDI+ endedegnnd last.

6.3 DIRECTX API

DirectX was utilized through the Microsoft.DirectX and
Microsoft.DirectX.Direct3D libraries. In order teeference these libraries it is
necessary to install the DirectX software developinké. The June 2010 version
of this library was used. This library was rath#ficult to use. Implementing the
benchmark on this library took significantly longbian the other libraries. The
library has methods to draw points, lines and gies. Other primitives need to
be constructed using these basic primitives.

Drawing of the point, line, polygon and text wasc@uoplished using the
following methods:

Points : Device.DrawUserPrimitives(PrimitiveType.Point)is— 4% of all
rendering time. The rest of the time was spendingl the arrays of structs which
contain the required data points to be passedreciX for rendering.

Lines : Device.DrawUserPrimitives(PrimitiveType.Lineblist - 51% of all
rendering time. The rest of the time was spendingl the arrays of structs which
contain the required data points to be passedreciX for rendering.

Polygon : Device.DrawUserPrimitives(PrimitiveType.Line piri- 49% of
all rendering time. The rest of the time was spmnlding the arrays of structs
which contain the required data points to be pass@&irectX for rendering.

Text : Direct3d.Font.DrawText() — 98% of all renderitige.

Coordinate transformations were once again accehgdi via a translation
matrix which can be passed to the device context.

Performance results were mixed. The actual rengl¢iimes are really good if the
time it takes to morph the data into a format aectX can utilize is ignored.
On the rendering of points the DirectX APl was oblsted by OpenGL. The
rendering performance in terms of lines and polggaas midway between the
other libraries. DirectX text rendering was thensdgt of all the libraries.

6.4 OPENGL

OpenGL was utilized via a®party wrapper called OpenTK. It is a lightweight
wrapper that more or less directly wraps the nafypenGL function calls. The

15

library does make use of the advantages assodcidtieh managed language like
generics and strongly typed enumerations. Open@hrigparatively very easy to
use and there is a lot of help available. It iseayvpowerful API which can
accomplish the rendering of very high quality griaphat high speeds. OpenGL
supports the required primitives for rendering pminlines and polygons.
OpenGL does not have support for drawing text an@®penTK extension was
utilized in order to facilitate this functionalitythe extension library utilized is
called QuickFont. In order for OpenGL to renderttéxis converted to a bitmap
which is then sent to the graphics card in the fartexture. The texture is then
displayed showing the text.

Drawing of the point, line, polygon and text wasc@uoplished using the
following methods:

Points : GL.Begin(BeginMode.Points) and Vertex2 — 6% bfrendering time.
The rest of the time was spent setting up the OpartBtext.

Lines : GL.Begin(BeginMode.Lines) and Vertex2 — 58% bfrandering time.
The rest of the time was spent setting up the Open@ntext and looping
through the data.

Polygon GL.Begin(BeginMode.Polygon) and Vertex2 — 53%adif rendering
time. The rest of the time was spent setting upQpenGL context and looping
through the data.

Text: QFont.Print() — 91% of all rendering time.

Coordinate transformation was accomplished yetnagsing a translation matrix.
An orthographic projection was utilized during #etup of the OpenGL context.
OpenGL has really good performance. The only rendefunction that had
slightly slower performance was that of text reiugrOn the two laptops where
the graphics card was not as good as the PC'setteréndering was faster in
GDI+.

6.5 DIRECT 2D API

In order to use Direct2D a“3party lightweight wrapper called SharpDX was
used. SharpDX is a fully featured managed DirectXl hat wraps the COM
libraries. Direct2D is also quite easy to use amdimilar to GDI/GDI+. The
library also does not have a point feature sol addtangle structure was used to
render points. It supports lines and path geonsewigich can be utilized to build
up more complex objects.

Drawing the point, line, polygon and text was acpbshed using the following
methods:

Points : Direct2DRenderer.FillRect() — 85% of all renagritime.

Lines : Direct2DRenderer.FillGeometry() and LineStrir% of all rendering

16

time. The rest of the time was spent getting thi diato the geometry path
structure.

Polygon Direct2DRenderer.FillGeometry() and Polygon— 2&#@ll rendering
time. The rest of the time was spent getting thia diato the geometry path
structure.

Text: Direct2DRenderer.DrawText() — 94% of all rendgriime.

Coordinate transformation was done using a mathickv can be passed to the
Direct2D context much like GDI+.

7. DISCUSSION/CONCLUSION

The conclusion of the benchmark has yielded somgrising results. OpenGL
and DirectX were assumed to have the best perfaenanterms of rendering
speed and quality. Although this fact is true fope@GL, DirectX did not
perform as well as expected. As previously mentiamest of the time was spent
creating structs which could be consumed by Diredifere are optimizations
available for DirectX to increase its performanag Eurther research in this
regard will have to be conducted in order to deteemthe magnitude of the
benefit. The research conducted here was to detertne fastest library to use in
order to implement a GIS rendering system keepingind ease of use. In terms
of utilizing a library for software development, alonentation is of utmost
importance. In this regard there is a lot availdbleOpenGL. There was also no
shortage available for Direct2D and GDI+. Direct¥amples were scarce for C#
and in terms of managed languages the documeniat®non-existent. There is
however a number of usage examples as part ofke Bhe examples however
are for C++ and although they are somewhat helpgfulas tricky to get the
library to render the graphics using C#. This wae tb the fact that not all the
functions map directly to their managed countemadf all the libraries GDI+
and OpenGL were found to be easiest and mostiirguid use. OpenGL yielded
the best results with the overall best ease oftag®rformance ratio. Direct2D
was also not difficult to get working althoughstanly slightly faster than GDI+.
The performance of GDI was poor, due to the fadt tthe coordinate
transformations had to be performed via CPU. Thd A$elf expects all
coordinates to be in device coordinates which tea@slirectly to the screen. In
the case of the other libraries dedicated functiwaese available for translation
making the process easier and more efficient.

DirectX and OpenGL perform the vertex translatiovia the graphics
hardware if it is available. This makes the proapsisk and efficient. The newer
versions of OpenGL and DirectX allow for the usesbfder programs. This
gives a lot of flexibility and control over how aene is rendered. A major speed

17

increase could be achievable by preforming re-ptime in a shader program.
This makes OpenGL and DirectX a very good candiftatehe implementation
of a rendering engine. If more time is spent onnoiging the current benchmark
implementation of GDI the rendering speed will benparable to GDI+.

One other benchmark that was performed and whigerdes mention was
the use of a vertex buffer for rendering the polimss and polygons in OpenGL.
The results here show truly what the benefits aigisardware acceleration can
yield. Every frame after initial data load was miagghes faster than the other
methods. In terms of the graphics card availabkbeédPC the re-rendering of the
frames was instantaneous (less than 1 millisecoft). down side here is that
video memory on the graphics card is limited andisg an entire GIS data set in
video memory is not going to be feasible. The @mge in building a high
performance GIS renderer will be to efficiently raakse of the limited on-board
video memory. Streaming data to and from the g@aphrd is also comparably
slower than the speed at which the GPU can pratesslata so to get good
performance this will have to be carefully managad optimized.

Although using OpenGL is slightly more complex th#ilizing a pure 2D API
like GDI+ these results show that there are somefiie. Hardware acceleration
can greatly benefit 2D drawing for use in a GISdemer especially where
advanced drawing methods are concerned. An additiadded benefit to
utilizing this library is the support for 3D dat&wtures which will allow the
expansion of the renderer to accommodate 3D scenes.

After implementing the rendering via the differé&®lI’s, the best conclusion that
can be drawn is that OpenGL is a viable solutiotheoGIS rendering problem.
Correctly utilizing this library will allow for fashigh quality rendering to be
performed which will benefit a GIS greatly.

18

8 REFERENCES

Gahegan, M. (1999). Four barriers to the developroéreffective exploratory
visualization tools for the geosciencéNT. J. Geographical Information
Science, 13(4), 289-309.

Jones, W. (2004). Beginning DirectX 9. Boston: $tacHiquet.

Microsoft. (2012, March)7 About Direct2D Retrieved April 19, 2012, from
Windows Desktop Development: http://msdn.microsoft.com/en-
us/library/windows/desktop/dd370987%28v=vs.85%2%as

Renhart, Y. (2009). Fast Map Rendering for Mobilevides Master Thesis,
University of Gothenburg, Department of Applieddmhation Technology,
Gothenburg.

Richard, N. G. (2002, November 15). Microsoft Wingd Graphics Device
Interface (GDy. Retrieved April 16, 2012, from
http://classes.engr.oregonstate.edu/eecs/spring2@Bix/groups/gl/Whit
ePaperRichard.pdf

The Khronos Group. (2012). OpenGL Overview. Regtepril 19, 2012, from
OpenGL:http://www.opengl.org/about/

Tory, M., & Moller, T. (2004). Research, Human FastIn Visualization] EEE
Transactions on Visualization and Computer Graphics, 10(1).

Walbourn, C. (2009, August). Graphics APIs in Winwdo Retrieved April 16,
2012, from MSDN Dev Center: http://msdn.microsoft.com/en-
us/library/windows/desktop/ee417756%28v=vs.85%2X as

19

Wang, Y.-M., & Chung, P.-Y. E. (n.d.). RetrievedrA\[19, 2012, from Exploring
Customization of Distributed Systems using COM:
http://research.microsoft.com/en-
us/um/people/lymwang/papers/HTML/COMEssay/S.htm

International Organization for Standardization, OIS19101, Geographic
Information, 2002

Luten, Eddy. OpenGLBook.cam19 12 2007. http://openglbook.com/the-
book/preface-what-is-opengl/ (accessed May 23, 2012

20

