
1

A benchmark of graphic APIs for use in GIS
rendering

Abstract

In this paper we will look at the rendering performance of several Graphics
Application Programming Interfaces (API’s) with a focus on geographic map
rendering. A mixture of 2D and 3D engines will be benchmarked. We will focus
on two aspects: Rendering speed of 2D geographic based data and the ease of
implementing a rendering system based on each of the API’s. From this data we
discern which API is best suited for building a c# open source Geographic
Information System (GIS) rendering engine. The results of the implemented
benchmarks are discussed in further detail and the best API for implementing a
GIS rendering system is identified.

Keywords - Header Times 12pt bold

Architectures and frameworks for open source software and data, Benchmarking,
Graphics, GDI, GDI+, OpenGL, DirectX, Direct2D

1. INTRODUCTION
What graphics API should be employed in order to build a rendering engine for a
GIS? How does one go about finding the best API? Renhart (2009) states that a
requirement for creating a fast good quality mapping application starts at the
selection of the graphics rendering API. This is largely due to the fact that
performance tuning a mapping application is dependent on the drawing speed
which is directly related to the graphics API used. It is thus important to select an
API with good performance.
 Computer graphics are used everywhere today and as a result there are a
number of API’s available. Each API has its own set of advantages and
disadvantages. Some are easier to use at the cost of speed. Others provide a lower
level of abstraction with a higher speed but with the added overhead of larger
implementation costs. The APIs can be broken down into two categories. High
level and low level. High level APIs allow for faster development times due to
their higher abstraction. They are easier to use as most of the lower level
functionality has already been abstracted into higher level functions. They often
provide tools for scene management which has the benefit of not having to be

2

built from scratch. High level libraries may not provide the flexibility required to
do specialized rendering. Low level API’s provide a lot more flexibility and
customizability. They provide little or no additional tools besides the rendering
engine. The large overhead associated with building and application on top of a
low level API makes them a less attractive option.
 Rendering speed is important for a GIS. Gahegan (1999) asserts this
importance from the highly interactive nature of exploring geographical
information and datasets. Users require a mechanism to move around and through
the data in an immersive, virtual and dynamic way. It is therefore important to
choose an API that will deliver the required performance. This will result in a
better understanding and interpretation of the data sets due to higher interaction
and fluidity within the system and provide a better overall user experience. There
are two criteria of measurement that are important. They directly relate to the
speed or performance of the API coupled with the relative quality of the
rendering. In other words, the objective is to generate the best image in the fastest
time.
 The easiest way to discern the most appropriate API is to use them to perform
a series of benchmark tests. The tests should focus on the functionality that will
most likely be implemented when creating a GIS rendering system. At the very
least a GIS should be able to adequately render a point, line and polygon layer.
Various rendering libraries can be tested to perform the rendering. The
performance of each of the rendering functions utilized can then be compared and
evaluated. One must however be careful when interpreting the results of
benchmarks. It is easy to get a skewed view of what the results actually mean.
The process of benchmarking the various APIs will be discussed in further detail
later in this paper.
 The paper is structured as follows: Section 2 discusses related work. Section 3
discusses the process of computer benchmarking. Section 4 gives an overview of
the various API’s that were benchmarked. Section 5 discusses the methodology
in performing the benchmarks. Section 6 gives a short discussion on the results of
each API. In section 7 we draw some conclusions.

2. BACKGROUND AND RELATED WORK

The International Organization for Standardization (ISO 19101:2002, 4.16),
define a GIS as information concerning phenomena implicitly or explicitly
associated with a location relative to the earth.
GIS data is linked to or represents real world spatial objects. The visual aspect of
GIS is a powerful tool. The human mind coupled with a computer generated

3

“picture” of data is what is referred to as visualization. Tory & Moller (2004)
define visualization as “a graphical representation of data or concepts which is
either an internal construct of the mind or an external artifact supporting decision
making. In other words visualizations assist humans with data analysis by
representing data visually.”
 The visual aspect of GIS data means that large amounts of data can be quickly
and easily interpreted by a person. The adage “A picture is worth a thousand
words” - Fred R. Barnard, is well substantiated when applied to the realm of GIS
data.
 There are, however, several problems associated with the rendering of the
large amounts of data comprising most GIS systems today. Gahegan (1999)
explores several barriers that need to be overcome in order to successfully and
adequately render geographic information. The first of these barriers are graphic
in nature. They are the speed at which a scene can be rendered coupled with the
combination effects that can be employed in order to discern relationships and
trends between different datasets in a visual manner. The fact that most GIS
systems comprise such large amounts of data mean that quick rendering is
essential. The combinational compounding effects of the amount of data coupled
with the complexity of the effects utilized to render the data will influence the
total speed at which a map can be drawn. In an effort to speed up the rendering of
data, generalizations may be applied to the geographic features which are
representations of real world objects. Basaraner (2002) defines the process of
generalization in a GIS environment as deriving purpose oriented lower detailed
datasets at smaller scales or lower resolution from detailed data sources or a
dataset at larger scale or higher resolution. GIS models inherently already
represent spatial features in a generalized manner. Further generalization allows
for the volumes of data to be reduced at the cost of data accuracy. One of the
outstanding research questions to be answered is: What is the most effective
visualization platform to be used when creating a GIS rendering system, Gahegan
(1999).
The goals of this paper are to write some basic graphic rendering functions that
utilize the various API’s in order to determine the relative performance of the
rendering. Other factors such as ease of use of an API will also be noted as it
plays an important role for the development and maintenance of a software
product.
 In terms of benchmarking, Renhart (2009) has conducted research on various
mobile graphics API’s with the goal of deciding which of the available ones will
be best suited for implementing a GIS mapping system. It is important to note
however that the criteria for a mobile phone application and the criteria for a
desktop application are quite different. Mobile devices have a lot more

4

restrictions imposed on them in terms of memory, performance, screen size and
storage. Renhart (2009) accomplished the research by measuring the performance
times of graphic operations and comparing them to other libraries. The metrics
are simple. The API with the fastest overall time across different rendering
functions will be the best API to use for building a GIS rendering system.

3. MORE ON COMPUTER BENCHMARKS
Zhang (2001) defines a benchmark as a set of programs that are run on different
systems to give a measure of their performance. A benchmark is useful for
measuring the relative performance of a system or aspects thereof which can then
be compared to other existing systems. Care must be taken when designing a
benchmark to ensure that one is measuring what is actually of value. Focusing on
a single dimension like computational performance may not yield an accurate
depiction of how the system will perform in a real world environment. During the
implementation phase of benchmarks, special care needs to be given to ensure
that the graphics API being benchmarked receives adequate volumes of data. The
bottleneck is almost always getting the data from disk. We will later discuss a
simple way to enable the fast delivery of data to the graphics API.
 Benchmarks can be broadly subdivided into two categories. Zhang (2001)
summarizes these as micro benchmarks and macro benchmarks. A micro
benchmark tests the performance of a function on the lowest level. An example
of this is the time it takes to draw a simple primitive on the screen. The
advantages of this type of benchmark are that one gets a very good idea of the
fundamental cost of a function. On the downside, it may be difficult to translate
the actual measurements into values that will be equivalent to the cumulative
result of the system in its entirety.
 A macro benchmark consists of a larger inclusive set of functionality and
more accurately measures the performance of a system as a whole. It is a much
more accurate and practical representation of the actual performance that will be
achievable by an application. The downside to this approach is the cost and time
associated with the implementation of such a test suite. Care will also have to be
taken to ensure the implementation does not include unintentional bottlenecks.
Benchmarks may measure various values like memory utilization and processing
speed. Depending on where the focus is, some criteria may be given a higher
importance. The focus in this paper is rendering speed.

5

4 GRAPHICS API’S
A graphics API in this context is the library of code that sits between the
application and the graphics hardware performing the rendering. Not all API’s
utilize hardware acceleration via the Graphics Processing Unit (GPU). These
libraries are executed on the Central Processing Unit (CPU) and are called
software rendered API’s. Software rendering is generally orders of magnitude
slower than their GPU counterparts.

4.1 GDI API

Walbourn (2009) notes that the primary graphics API since early days has been
that of Graphics Device Interface (GDI). This holds true even for many of the
latest GIS mapping applications today. It is still employed as the primary API for
doing graphics in Windows. This is a trend that will likely continue for some time
still.
 GDI was developed to keep the application programmer agnostic of the
underlying details associated with a particular display device, Richard (2002). It
acts as middleware between the programmer and hardware that facilitates the
final rendering. Four types of primitives are supported by GDI: lines, curves,
filled areas, bitmaps and text.

Figure 1: Walbourn (2009). Graphic Outlay of WindowsXP

The above figure serves to illustrate the graphics API’s layout for the Windows
XP operating system. The Windows XP Display Driver Model (XPDM) is
divided into two sections. One that runs the GDI implementation which is not
hardware accelerated, i.e. GDI performs all rendering via the CPU. The other
section is the Direct3D section which utilizes hardware rendering. GDI’s lack of

6

hardware rendering under Windows XP was a big disadvantage. Most computers
today have powerful graphic hardware on board which, properly utilized, would
bring major speed advantages.

Figure 2: Walbourn (2009). Graphic Outlay of Windows Vista and Windows 7

The above figure shows how the API’s were reshuffled in Windows Vista and up.
A new driver model, the Windows Vista Display Driver Model (WDDM), brings
GPU and Direct3D to the forefront. This allows for some of the previous
GDI/GDI+ calls that used software rendering to be hardware accelerated should a
graphics card be available and present.

4.2 GDI+ API

GDI+ is the revised version of GDI and its successor. It expands on and provides
new capabilities to GDI adding additional flexibility to the programming model.
It is not built on top of GDI but exists side by side on the same level (See Figure
1 and Figure 2 above). This library provides functionality for imaging, two-
dimensional vector graphics and typography. GDI+ can be used in conjunction
with GDI if so desired.
 There are several open sources mapping API’s available today that utilize
GDI+ as their rendering engine. Examples are SharpMap
(http://sharpmap.codeplex.com/), MapWindow
(http://www.mapwindow.org/index.php) and DotSpatial
(http://dotspatial.codeplex.com). This is by no means an exhaustive list but
merely serves as proof of the widespread use of GDI/GDI+ for GIS systems.

7

4.3 DIRECTX API

DirectX is Windows’s premier game programming API, Jones (2004). It consists
of two layers. The first is the API layer and the second the hardware abstraction
layer (HAL). The HAL links the API functions with the underlying hardware and
is usually implemented by the graphic hardware manufacturer. The DirectX API
sends commands to the graphic card via the HAL. The API itself is based on the
component object model (COM). Jones (2004), states that the DirectX COM
objects consist of a collection of interfaces exposing methods which are usable by
developers to access the graphics API. The COM objects themselves usually
consist of DLL files that have been registered with the system.

4.4 OPENGL

The Khronos Group (2012) claim OpenGL to be the premier environment for
developing portable, interactive 2D and 3D graphic applications. The OpenGL
platform is designed to allow vendors to easily implement their own extensions
and so allow for their own spin on implementing high end graphic functions.
OpenGL incorporates a broad set of rendering, texture mapping, special effects,
and other powerful visualization functions. One big advantage to using OpenGL
is that it is supported on a wide range of operating systems and software systems
making it very portable. The industry tends to prefer OpenGL for doing
application type graphics such as CAD applications whereas DirectX is preferred
for creating games (Luten, 2007). DirectX and OpenGL are two directly
competing API’s. The full implementation specification for OpenGL is available
on its website (www.opengl.org) should it be required.

4.5 DIRECT 2D API

Microsoft (2012) has introduced Direct2D as a new API for Windows 7. It is a
hardware accelerated, immediate mode 2D graphics API that provides high
performance and high quality rendering. Immediate mode means that the API
does not cache any of the objects sent to it for rendering. For each frame that
needs to be rendered the API has to be resent all the data. This API has been
primarily designed for developers to give them a viable replacement to
GDI/GDI+.

8

5. METHODOLOGY

In order to determine the fastest API a simple rendering system was implemented
in C# utilizing each of the listed API’s. A real world point, line and polygon layer
was rendered and the performance times of each of the feature types were logged.
The point layer consisted of a collection of points of interest covering most of
South Africa. The line layer contained spatial features for a large part of the
South African road network. The polygon layer consisted of polygons denoting
property stands across South Africa. Table 1 gives a short overview of the
composition of the test data utilized.

 Point Layer Line Layer Polygon Layer
Feature count 249313 900000 900000
Total Points 249313 10158849 9679727
Size of Database 1.04 GB

Table 1: Spatial Data Statistics

Each API is required to render points, lines, polygons and text from the supplied
data. The spatial reference system of the test data is WGS84. The data was not re-
projected for display on screen. Due to this fact a bit of distortion occurs when
rendering the data. Figure 3, which denotes the output of the points of interest
layer, shows how the above-mentioned distortion manifests itself. The image
seems stretched in the horizontal axis. The distortion is cause by the fact that
WGS84 is a geographic coordinate system. It uses a three-dimensional spherical
surface to define locations on earth. A computer screen is inherently a 2D object
so re-projection is required in order to correctly display the data. In order to
project the data a mathematical equation is applied to transform each point.
Unless explicitly performed in a GPU shader program the computation is
performed on the CPU. A shader is a small piece of code written specifically for
execution on a GPU. As the focus is on the graphic rendering speed, coordinate
re-projection was ignored. Each API is still required to render and process each
point so the projected state of the data will not influence the rendering speed of
the API. Of the benchmarked API’s only OpenGL and DirectX support the use of
a custom shader program. The other API’s will have to use a CPU based function
to perform the re-projection.

9

Figure 3: Distortion due to displaying geographic coordinates un-projected on a

2D surface

It is important to be able to serve up data faster than what the graphic engine can
utilize it as we have previously touched upon. While working with the datasets it
was immediately evident that the first bottleneck would be disk input and output
(IO). A number of experiments were conducted in order to determine the fastest
way to serve up the data from the storage medium.
 The first experiment read directly from a shape file, which is Esri’s geospatial
vector format for storing data1. The binary reader proved to be the bottleneck in
this case and the performance was not adequate.
The second experiment involved the loading of the data into a SpatiaLite2
database. .NET’s ActiveX Data Objects (ADO) data provider was used to load
the data into the application. Performance was a lot better out of the database but
was still not sufficient.
 A third experiment involved removing disk IO from the equation by
performing the first and second experiments again but with a single difference. A
RAM disk was created and used as the storage medium. A RAM disk allows a
partition of memory to be mounted and then accessed and utilized like a normal
hard disk partition. The speed increase is significant. The results of the IO RAM
disk benchmark vs. the hard disk can be seen below here in Figure 4. RAM is so
much faster than a HDD that it is barely visible on the graph. The bottleneck was
found to be the shape file and database driver so alternative methods were
explored.

1 Esri Geoportal Server is a free open source product that enables discovery and use of geospatial

resources.
2 SpatiaLite is a spatial extension to the SQLite relational database management system. It provides

vector geodatabase functionality.

10

Figure 4: IO Benchmark

In the end the best method proved to be the caching of the data directly in main
memory in the form of a dictionary object. This provides the fastest access to the
data. The total time averaged across three test machines to loop through the data
and convert it to floats:

• Point Layer : 20.3ms
• Line Layer :1690.7ms
• Polygon Layer :881.8ms

The above-mentioned values represent the fastest theoretical rendering time if the
graphics API could render instantaneously. It is simply a measurement of the
time it takes to loop through each of the features contained in the test datasets.
The benchmarking of each API was done by feeding it the point, line and
polygon data and drawing the appropriate primitive on screen. Additionally the
point layer was used as a location to repetitively draw the same piece of text. The
time for the rendering of each of the mentioned primitives was then logged. Each
test was run ten times and an average was calculated and then displayed on
graphs. The test application was run on three machines. The specifications of
each of the machines are noted in table 2 below.

PC1 Laptop1 Laptop2

CPU
Inter® Core™ i7-
2600 CPU @ 3.4
GHz 3.4 GHz

Intel Core 2 Duo
T7250 2.00 GHz

Intel® Core™ i7-
2860Qm CPU @ 2.5
GHz 2.5Ghz

RAM 8.00 GB 4.00 GB 16 GB

GPU
NVIDIA GeForce
GTX 560 Ti

Intel Display with
Mobile Intel 965

NVIDIA Quadro
1000M

11

Express Chipset

OS Windows 7 64-bit Windows 7 64-bit Windows 7 64-bit

Table 2: Hardware specifications of benchmark PC’s

Two machines have relatively decent graphic cards available with the other
having a standard Intel display card.
Ants Performance Profiler was run on each of the implanted rendering functions
to determine the function in code where most of the processing time was spent.
The reason for this was to determine if the graphics API was being used to its full
potential.

6. RESULTS
Each of the above mentioned graphics API’s were tested. We will now discuss
each of the API’s in more detail. We will take a look at the method used to
implement the drawing of each of the primitives on a per API basis. We will also
mention where the bulk of the processing time was spent.
 In terms of the test computers in order of diminishing performance we have
PC1, Laptop2 and lastly Laptop1. The benchmarks focus on immediate mode
rendering only. This was to try to eliminate differences between API’s. Not all of
the libraries allow for more advanced drawing methods. Immediate mode
rendering is the common denominator across the benchmarked API’s.
 A vertex buffer object benchmark was performed on OpenGL merely to
highlight what hardware optimizations could bring to the table. It serves to give
an idea of what is possible to achieve in terms of rendering performance. This
will later be discussed in more detail. Below follows the results of the API
benchmarks. Take note however that the OpenGL vertex buffer benchmark does
not include the spin times. This can be added to the first run time if a comparable
value is required. It was omitted due to the fact that the vertex buffer is only setup
once during initialization and then remains in the video card’s memory. This
initialization was done on application startup so there was no perceived
performance penalty.
 Figures 5 to 8 show the average rendering time across ten runs for each API.
Also visible in each graph is the results of each API grouped by the computer it
was executed on. This was in order to discern if having a more powerful GPU
would yield faster rendering time when compared to the non-hardware
accelerated libraries.

12

Figure 5. Points Rendering Comparison

We will now discuss in more detail the benchmark of each of the previously
mentioned API’s.

Figure 6. Text Rendering Comparison

13

Figure 7. Lines Rendering Comparison

Figure 8. Polygons Rendering Comparison

6.2 GDI API

GDI is the old drawing API utilized by Windows. It has been replaced by GDI+
but as it is still in active use on the Windows operating system it is still
applicable. It is not directly available for use in C#. Platform Invoke (P/Invoke)
calls were utilized in order to make use of the GDI32.dll library drawing
functions. P/Invoke is a feature of the Microsoft Common Language
infrastructure implementation allowing managed code to call native code. It is not

14

an intuitive way to utilize a library as the method signatures are not always that
well documented. It does however work very well. Using GDI itself is not
difficult and works very similarly to GDI+. The only caveat is that one needs to
make sure one correctly disposes of variables or memory leaks will result.
Drawing of the point, line, polygon and text was accomplished using the
following methods:
Points : FillRect() – 89% of all rendering time.
Lines : PolyDraw() – 10% of all rendering time. The rest of the time was spent
on coordinate transformations.
Polygon: PolyDraw() – 10% of all drawing time. The rest of the time was spent
on coordinate transformations.
Text : TextOut() – 40% of all rendering time. The rest of the time was spent
on coordinate transformations.
Coordinate transformations were manually handled as the library does not
provide built in matrix functions to help with the coordinate transformations. GDI
expects all coordinates to be specified in terms of screen coordinates. Most of the
rendering time was spent translating the points to the correct locations on the
screen. GDI rendering scored the lowest out of all the benchmarks performed.
The only exception to this was text rendering which performed in the mid ranges
compared to the other libraries. The time to translate the coordinate system to
screen coordinates has been included in all the benchmarks as it is a vital and
necessary function that will have to be performed by a graphic rendering system.
To clarify translation should not be confused with re-projection. Translation here
means the conversion of the arbitrarily defined world coordinate system to the
screen coordinate system.

6.2 GDI+ API

GDI+ is contained in the System.Drawing library which is one of the libraries
available to .Net. The GDI+ API proved easy to use. The library uses a graphics
object which encapsulates a drawing surface. It contains methods for drawing
lines, rectangles, paths and other primitives. The library does not have a point
primitive. The recommended way to draw a point is via the fill rectangle
function.
 Drawing of the point, line, polygon and text was accomplished using the
following methods:
Points : Graphics.FillRectangle() – 75% of all rendering time.
Lines : Graphics.DrawLines() – 98% of all rendering time.
Polygon: Graphics.DrawPolygon() – 92% of all drawing time.
Text : Graphics.DrawString() – 91% of all rendering time.

15

 Coordinate transformations were accomplished via a single matrix. The
Graphics class has a property to allow the setting of a translation matrix which is
then applied to all points sent to the API. Overall the performance was not bad.
On the two laptops GDI+ had the fastest text rendering times of all the API’s.
The PC having a good graphics card managed to outperform GDI+ slightly via
OpenGL. GDI+ outperformed Direct2D and GDI in terms of points rendering. In
terms of rendering lines and polygon GDI+ ended up second last.

6.3 DIRECTX API

DirectX was utilized through the Microsoft.DirectX and
Microsoft.DirectX.Direct3D libraries. In order to reference these libraries it is
necessary to install the DirectX software development kit. The June 2010 version
of this library was used. This library was rather difficult to use. Implementing the
benchmark on this library took significantly longer than the other libraries. The
library has methods to draw points, lines and triangles. Other primitives need to
be constructed using these basic primitives.
Drawing of the point, line, polygon and text was accomplished using the
following methods:
Points : Device.DrawUserPrimitives(PrimitiveType.PointList) – 4% of all
rendering time. The rest of the time was spent building the arrays of structs which
contain the required data points to be passed to DirectX for rendering.
Lines : Device.DrawUserPrimitives(PrimitiveType.LineList) - 51% of all
rendering time. The rest of the time was spent building the arrays of structs which
contain the required data points to be passed to DirectX for rendering.
Polygon : Device.DrawUserPrimitives(PrimitiveType.LineStrip) – 49% of
all rendering time. The rest of the time was spent building the arrays of structs
which contain the required data points to be passed to DirectX for rendering.
Text : Direct3d.Font.DrawText() – 98% of all rendering time.
Coordinate transformations were once again accomplished via a translation
matrix which can be passed to the device context.
Performance results were mixed. The actual rendering times are really good if the
time it takes to morph the data into a format that DirectX can utilize is ignored.
On the rendering of points the DirectX API was only bested by OpenGL. The
rendering performance in terms of lines and polygons was midway between the
other libraries. DirectX text rendering was the slowest of all the libraries.

6.4 OPENGL

OpenGL was utilized via a 3rd party wrapper called OpenTK. It is a lightweight
wrapper that more or less directly wraps the native OpenGL function calls. The

16

library does make use of the advantages associated with a managed language like
generics and strongly typed enumerations. OpenGL is comparatively very easy to
use and there is a lot of help available. It is a very powerful API which can
accomplish the rendering of very high quality graphics at high speeds. OpenGL
supports the required primitives for rendering points, lines and polygons.
OpenGL does not have support for drawing text and an OpenTK extension was
utilized in order to facilitate this functionality. The extension library utilized is
called QuickFont. In order for OpenGL to render text, it is converted to a bitmap
which is then sent to the graphics card in the form a texture. The texture is then
displayed showing the text.
Drawing of the point, line, polygon and text was accomplished using the
following methods:
Points : GL.Begin(BeginMode.Points) and Vertex2 – 6% of all rendering time.
The rest of the time was spent setting up the OpenGL context.
Lines : GL.Begin(BeginMode.Lines) and Vertex2 – 58% of all rendering time.
The rest of the time was spent setting up the OpenGL context and looping
through the data.
Polygon: GL.Begin(BeginMode.Polygon) and Vertex2 – 53% of all rendering
time. The rest of the time was spent setting up the OpenGL context and looping
through the data.
Text: QFont.Print() – 91% of all rendering time.
Coordinate transformation was accomplished yet again using a translation matrix.
An orthographic projection was utilized during the setup of the OpenGL context.
OpenGL has really good performance. The only rendering function that had
slightly slower performance was that of text rendering. On the two laptops where
the graphics card was not as good as the PC’s the text rendering was faster in
GDI+.

6.5 DIRECT 2D API

In order to use Direct2D a 3rd party lightweight wrapper called SharpDX was
used. SharpDX is a fully featured managed DirectX API that wraps the COM
libraries. Direct2D is also quite easy to use and is similar to GDI/GDI+. The
library also does not have a point feature so a fill rectangle structure was used to
render points. It supports lines and path geometries which can be utilized to build
up more complex objects.
Drawing the point, line, polygon and text was accomplished using the following
methods:
Points : Direct2DRenderer.FillRect() – 85% of all rendering time.
Lines : Direct2DRenderer.FillGeometry() and LineString– 20% of all rendering

17

time. The rest of the time was spent getting the data into the geometry path
structure.
Polygon: Direct2DRenderer.FillGeometry() and Polygon– 21% of all rendering
time. The rest of the time was spent getting the data into the geometry path
structure.
Text: Direct2DRenderer.DrawText() – 94% of all rendering time.
Coordinate transformation was done using a matrix which can be passed to the
Direct2D context much like GDI+.

7. DISCUSSION/CONCLUSION
The conclusion of the benchmark has yielded some surprising results. OpenGL
and DirectX were assumed to have the best performance in terms of rendering
speed and quality. Although this fact is true for OpenGL, DirectX did not
perform as well as expected. As previously mentioned most of the time was spent
creating structs which could be consumed by DirectX. There are optimizations
available for DirectX to increase its performance but further research in this
regard will have to be conducted in order to determine the magnitude of the
benefit. The research conducted here was to determine the fastest library to use in
order to implement a GIS rendering system keeping in mind ease of use. In terms
of utilizing a library for software development, documentation is of utmost
importance. In this regard there is a lot available for OpenGL. There was also no
shortage available for Direct2D and GDI+. DirectX examples were scarce for C#
and in terms of managed languages the documentation it is non-existent. There is
however a number of usage examples as part of the SDK. The examples however
are for C++ and although they are somewhat helpful, it was tricky to get the
library to render the graphics using C#. This was due to the fact that not all the
functions map directly to their managed counterparts. Of all the libraries GDI+
and OpenGL were found to be easiest and most intuitive to use. OpenGL yielded
the best results with the overall best ease of use to performance ratio. Direct2D
was also not difficult to get working although it is only slightly faster than GDI+.
The performance of GDI was poor, due to the fact that the coordinate
transformations had to be performed via CPU. The API itself expects all
coordinates to be in device coordinates which translate directly to the screen. In
the case of the other libraries dedicated functions were available for translation
making the process easier and more efficient.
 DirectX and OpenGL perform the vertex translations via the graphics
hardware if it is available. This makes the process quick and efficient. The newer
versions of OpenGL and DirectX allow for the use of shader programs. This
gives a lot of flexibility and control over how a scene is rendered. A major speed

18

increase could be achievable by preforming re-projection in a shader program.
This makes OpenGL and DirectX a very good candidate for the implementation
of a rendering engine. If more time is spent on optimizing the current benchmark
implementation of GDI the rendering speed will be comparable to GDI+.
 One other benchmark that was performed and which deserves mention was
the use of a vertex buffer for rendering the points lines and polygons in OpenGL.
The results here show truly what the benefits of using hardware acceleration can
yield. Every frame after initial data load was magnitudes faster than the other
methods. In terms of the graphics card available to the PC the re-rendering of the
frames was instantaneous (less than 1 millisecond). The down side here is that
video memory on the graphics card is limited and storing an entire GIS data set in
video memory is not going to be feasible. The challenge in building a high
performance GIS renderer will be to efficiently make use of the limited on-board
video memory. Streaming data to and from the graphic card is also comparably
slower than the speed at which the GPU can process the data so to get good
performance this will have to be carefully managed and optimized.
Although using OpenGL is slightly more complex than utilizing a pure 2D API
like GDI+ these results show that there are some benefits. Hardware acceleration
can greatly benefit 2D drawing for use in a GIS renderer especially where
advanced drawing methods are concerned. An additional added benefit to
utilizing this library is the support for 3D data structures which will allow the
expansion of the renderer to accommodate 3D scenes.
After implementing the rendering via the different API’s, the best conclusion that
can be drawn is that OpenGL is a viable solution to the GIS rendering problem.
Correctly utilizing this library will allow for fast high quality rendering to be
performed which will benefit a GIS greatly.

19

8 REFERENCES

Gahegan, M. (1999). Four barriers to the development of effective exploratory

visualization tools for the geosciences. INT. J. Geographical Information
Science, 13(4), 289-309.

Jones, W. (2004). Beginning DirectX 9. Boston: Stacy L. Hiquet.

Microsoft. (2012, March 7). About Direct2D. Retrieved April 19, 2012, from

Windows Desktop Development: http://msdn.microsoft.com/en-
us/library/windows/desktop/dd370987%28v=vs.85%29.aspx

Renhart, Y. (2009). Fast Map Rendering for Mobile Devices. Master Thesis,
University of Gothenburg, Department of Applied Information Technology,
Gothenburg.

Richard, N. G. (2002, November 15). Microsoft Windows' Graphics Device
Interface (GDI). Retrieved April 16, 2012, from
http://classes.engr.oregonstate.edu/eecs/spring2003/ece44x/groups/g1/Whit
ePaperRichard.pdf

The Khronos Group. (2012). OpenGL Overview. Retrieved April 19, 2012, from
OpenGL: http://www.opengl.org/about/

Tory, M., & Moller, T. (2004). Research, Human Factors In Visualization. IEEE
Transactions on Visualization and Computer Graphics, 10(1).

Walbourn, C. (2009, August). Graphics APIs in Windows. Retrieved April 16,
2012, from MSDN Dev Center: http://msdn.microsoft.com/en-
us/library/windows/desktop/ee417756%28v=vs.85%29.aspx

20

Wang, Y.-M., & Chung, P.-Y. E. (n.d.). Retrieved April 19, 2012, from Exploring
Customization of Distributed Systems using COM:
http://research.microsoft.com/en-
us/um/people/ymwang/papers/HTML/COMEssay/S.htm

International Organization for Standardization, ISO 19101, Geographic
Information, 2002

Luten, Eddy. OpenGLBook.com. 19 12 2007. http://openglbook.com/the-
book/preface-what-is-opengl/ (accessed May 23, 2012).

