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Abstract

Geospatial modelling revolves around the structures of data and the semantics of
these structures. This is enough in simple cases, but becomes insufficient when the
best structure and semantics is hard to find or the solution is too heterogeneous to
fix and reuse. Field-based and objects-based geospatial models often share com-
mon GIS data structures interchangeably, but their all possible meanings are too
many to define in an immutable manner. Less studied approach to geospatial mod-
elling is using mutable structural properties and their semantic interpretation. This
work shows that the functional aspect of geospatial models is just as important as
the structural and semantic aspects. It also shows that semantic and even structural
properties may change when functionality is integral part of the data model, and
not exclusively separated at software implementation level. The paper uses this
modelling paradigm to address the divide caused by field-based and object-based
data models, and other challenges regarding synergy of geospatial systems that
need to use both types of data models.
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1 Introduction

The geospatial branch of information science (GISc) has a dual approach to rep-
resenting the real world. Its duality is manifested by 1) discrete objects, which
are identifiable, countable entities existing in otherwise empty geographic space,
and by 2) continuous fields, which for every location in a given domain of geo-
graphic space have a value forming a field of certain quantity. The twofold nature
of the object / field modelling is a concrete, classical problem that has been eluding
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specialists in GISc since 1980’ (Goodchild (2012)). This work studies the com-
parative suitability of object-based and field-based representations for computable
geospatial models. The goal is to provide a theoretical and engineering solution
supporting both field- and object-based geospatial models in a uniform way. This
is the scope depicted in Figure 1. The problem in principle is that the solution must
provide a better modelling flexibility without hindering simplicity and applicabil-
ity in practice. Due to these unmet requirements the solution to duality of fields
and objects might also address number of other practical issues, such as dealing
with heterogeneity of models across many application domains, design and man-
agement of complex geospatial models, or difficulties with handling and exchange
of the models by various information systems.

Computability is essential for this work since computable geospatial modelling
is the main subject, but it is also important in a much broader sense because com-
putable models can do work that humans would have to do otherwise. The rest
of this section provides a necessary introduction to the computability theory. This
gives a basis to Section 2 where the method for geospatial modelling is formalized
and the engineering design presented. Section 3 reports on implementation related
topics and on the resulting technology.

Figure 1: Computable geospatial modelling in context.

1.1 Computable models

This work deals with geospatial models that are computable. Computable in the
sense that humans could also calculate the model manually. This means that the
set of instructions followed to carry out a computation must be finite, that the com-
putation carried is real - not imaginary (must be effective), and it must be possible
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to show how exactly the computation is performed (must be constructive). Exactly
like in a program or a recipe.

The theory of computation is based on the concept of Turing machine. It im-
plies, for example, that any finite set of Turing machines can be represented by a
single one. Turing machines define a unique and natural class of ”computable”,
which is fundamental for this work, but also for all computer science and mathe-
matical logic.

Therefore, according to Sipser (1996) any computable model M can be for-
malized as Turing machine by a six-tuple:

M(Q,⌃, �, q0, qA, qR) (1)

where: Q is a finite set of all possible computational states of the model; ⌃ is
the alphabet used to describe any possible instance of the model; � is the transition
function that tells how the model is evaluated between two consecutive steps; q0 2
Q is the start state; q

A

2 Q is the accept state; and q

R

2 Q is the reject state.
The central element that makes the model ”work” is the computable function �

also called as algorithm.

� : Q⇥⌃ ! Q⇥⌃⇥ {L,R} (2)

Given a model instance I, which is an input string over alphabet ⌃, the com-
putable function � of M works as follows: for every valid state q 2 Q and input
character c 2 ⌃^ c 2 I, the function returns the next state, writes (outputs) a char-
acter, and moves on reading the next character to the left L, or to the right R, from
the current position in the input string I. This continues forever unless � yields the
accept state q

A

, or the reject state q

R

.
Therefore the input is a model instance I, which should not be confused with

the model M itself. The M refers to a more general solution of the modeled phe-
nomena. In contrast, the model instance I is a rather concrete utterance for which
M computes an output.

For example, consider a model M
A

deciding a ”distance between two points on
Cartesian plane”. The model instance (input) is a pair of Cartesian coordinates, e.g.
[0, 0] and [2, 0], and the decision (output) for this instance is 2, which is the distance
between the points. A different model M

B

would be necessary for ”rendering the
line between two points on a display”. While the instances could be reused from
the previous example, the transition function � and output would be different in
this case. Also, the model M

B

may depend on yet another model, for instance
representing the display. Such model hierarchy is common in practice and often
gets complex.
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The computable model can be understood as a compact collection of the problem-
solving model M together with one or more distinct instances I solvable by M .
Considering and treating computable model this way as a single, compact unit pro-
vides a key postulate in the modelling method suggested in Section 2. The content
unit based on this view of M then has the ability to store not only the data I and
the intermediate results of the computation, but also to store the transition function
� that brought about the computation. In Figure 1 is such compact unit depicted as
T2, in which T2B would correspond to the model instance I and T2C to the tran-
sition function �. The introduction of established computability theory formulated
by Equation 1 is essential for addressing the concepts of space, fields and objects
in the geospatial modelling method.

2 Method

A new method for geospatial modelling is based on the equivalence of finite com-
position of computable models M mentioned in Section 1.1. This composition
equivalence can be expressed as:

M = (M1, ...,Mn

) | n � 1 (3)
� = (�1, ..., �n) (4)

Note that �1 is the transition function of M1, �
n

is the transition function of
M

n

, and therefore � is the function(s) of the computable model M . The principle
of Equation 3 is applied to a universal geospatial model supported by the definition
of geographic space.

2.1 Geographic Space

Every information system is constituted by a unique space and by contents asso-
ciated with that space. This is true of any space. Not only abstract spaces used
in database systems for querying and indexing of data, but any space with certain
order, can be used as a basis for an information system. This includes the represen-
tation of the real-world space where the Earth exists. The conception of contents
here are the computable models and their instances, but the space must be defined
first. Space is critical for an information system because points of the space are
the means of accessing the content. For example the World-Wide-Web (the Web)
employs a non-topological, URL address space, which makes it possible to access
a concrete Web page. Without the URL space the Web cannot exist.

The idea of devising a unique definition of space for all geospatial modelling
is easy to express, but a good, general solution is missing. The definition of geo-
graphic space must sufficiently correspond to physics, but at the same time must
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facilitate the nature of the computable content. Modern geoinformation applica-
tions utilize many different spaces with two, three, and in rare cases with four
and more dimensions resulting in more than thousand different coordinate sys-
tems used in practice (EPSG (2013)). The arguments for unique geocentric space
are well known (Burkholder (2000), Kjems & Kolar (2005)), but a definition that
supports various geospatial models and that can be adopted by a broad variety of
applications at different dimensions and scales still remains to be found.

The majority of geospatial applications can use the Newtonian description of
space to obtain values that are correct to a sufficiently high order of accuracy. The
realization of the geocentric reference frame, however, uses astrometry operating
at the angular resolution exceeding one milliarcsecond, or atomic clock ticking
at nanosecond level and moving on high precision orbits. Modelling events at
such precision level, high speeds and gravitation differences requires considera-
tion of general relativity (Kopeikin (2007)), and relativistic corrections must be
used. Neglecting the relativistic curvature of space in these cases would degrade
the observed measure (Pogge (2013)).

The geographic space is represented through a reference system, which re-
lates coordinates of points existing in reality to a unique and common basis for
computational geospatial models. The coordinates of the geographic space S have
six-dimensions:

S = X⇥Y ⇥ Z⇥T⇥ �⇥⌦ (5)

The space S is defined close to the Earth and is co-rotating with it. Following
the Newtonian physics the space is considered as Euclidean using Cartesian right-
handed coordinates C with the same unit used for each dimension.

C = X⇥Y ⇥ Z ⇢ S (6)

The origin is close to the Earth’s center of mass (geocenter), the orientation uses X
and Y coordinates to represent the equatorial plane and the z+ axis is the direction
of the north pole and of the Earth’s rotation axis. In addition to Cartesian coor-
dinates, other coordinates, e.g. geographical coordinates, could be used (Boucher
(2001)). The temporal coordinates T are associated with the time running at the
reference geopotential level (geoid) of the Earth.

It was mentioned that the coordinates are the means of accessing contents.
However, due to the continuity of the Euclidean space, where all points are topo-
logically relevant to each other, obtaining geospatial models for a given coordinates
leads to a progressive loading of contents from the entire space (all the contents).
Following the principle that closer things are more relevant than distant things the
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geographic space S has two proximity dimensions. The proximity dimensions in
Equation 5 are time proximity ⌦, and spatial proximity �.

The spatial proximity � represents the extent of geometric neighborhood, and
indicates a relative geometric magnitude within the space S. Given a position
p 2 C the spatial proximity � allows to decide the range of relevant neighborhood
for models of various geometric magnitude (size) on the scale from the largest
to the smallest geometric magnitude. The spatial proximity level � = 0 is for
models of the largest geometric magnitude, � = 1 is for smaller and so on. The
levels of spatial proximity are obtained by a recursive octant subdivision (Weisstein
(2013)) of the Euclidean space C. In order to perform computationally such octant
subdivision bounds for the ranges of coordinates X, Y and Z must be specified.
Choosing the same symmetric range for all three coordinates implies that the shape
of the geometric space C is a cube, and its center coincides with the geocenter. This
”root” cube also corresponds to the spatial proximity level � = 0.

Analogously the time proximity ⌦ is a dimension that facilitates decision about
which models are relevant for a given instant on scale ranging from the shortest-
term duration to the longest-term duration. The levels of time proximity are ob-
tained from the interval of all time coordinates T by its binary recursive subdivi-
sion.

2.2 Geospatial Models

A computable geospatial model has a concrete formulation, but it is an abstract
entity that can be applied to an arbitrary more concrete geospatial model. These
models can be object-based, field-based, or complex including models combining
both approaches. All computable geospatial models are defined in the geographic
space S introduced in the previous section and carry several common properties.
With consideration of Equation 3 the computable geospatial model G is expressed
as a three-tuple:

G = (M
sdx

,M

ref

,M

fun

) (7)

The key part is the functional model M
fun

, which can represent any com-
putable model, again by following the concept behind Equation 3. While tradi-
tional solutions strictly separate the functionality � from data I this method, in
contrast, allows structures of data together with functionality. Together they form
the content that is exchanged between applications. Although this perspective is
common to programmers it is unfamiliar to content providers who store and ex-
change data. The traditional separation is depicted in Figure 1 by P1 and P2.
Using this method means fusion of P1 and P2 into a single entity as denoted by
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the dashed line in Figure1. This is a significant concept and a key to the uniform
approach to object-based and field-based geospatial models.

The second term in Equation 7 is the reference model M
ref

, which provides
values that reference the model G in the geographic space S. There are three types
of reference values:

P

ref

(x, y, z) 2 C | P

ref

2 M

ref

(8)
�

ref

2 � | �

ref

2 M

ref

(9)
T

ref

(t
start

, t

end

) | t

start

< t

end

, T

ref

2 M

ref

(10)

The reference point P
ref

specifies Cartesian coordinates with which the model G
is associated. The spatial proximity �

ref

indicates the metric size of both the model
and its spatial neighborhood. Every model in the geographic space S exists for a
limited period of time bounded by temporal coordinates t

start

2 T and t

end

2 T.
The value T

ref

represents these temporal bounds. The only mission of M
ref

is to
return these reference values whenever needed.

2.2.1 Geospatial Index

According to Equation 7 each geospatial model G includes the model of geospatial
index M

sdx

. The geospatial index has two components with close relationship to
the spatial proximity �, and to the time proximity ⌦ introduced in Section 2.1.
They facilitate several properties common for all geospatial models. The spatial
index c

sdx

maps from P

ref

and �

ref

to a set of index coordinates C
sdx

by:

c

sdx

: C⇥ � ! X
sdx

⇥Y
sdx

⇥ Z
sdx

= C
sdx

✓ C | c

sdx

2 M

sdx

. (11)

Every C
sdx

is a subspace of the Euclidean space C in such a way that it coincides
with some octant generated by the subdivision of the spatial proximity �. Given a
spatial proximity level � = k 2 � there are 8k distinct octants denoted as Ck

sdx

.
All Ck

sdx

have equal size, never intersect each other, and their sum fills the entire
space C. It is assumed that the reference point is one of the index coordinates
P

ref

2 Ck

sdx

. The signature of each octant id(C
sdx

) is used for a redundant index-
ing structure that facilitates rapid access to spatially relevant models and can also
provide a paging mechanism for the access. Because � subdivision that generates
C

sdx

is space-driven rather then content-driven the indexing is applicable in dis-
tributed, decentralized information systems. When considered as local coordinate
system C

sdx

can be also utilized for more data-efficient geometry representation
because fewer significant digits can be used. In this sense C

sdx

also facilitates
visual rendering and multiple levels of resolution because utilizing a fixed number

7



of significant digits over large range and over smaller subsection leads to different
resolution over these spatial domains.

The temporal index component is represented by function t

sdx

that maps the
temporal bounds T

ref

to a unique interval of the linear time coordinates T
sdx

as
follows:

t

sdx

: T⇥T ! T
sdx

✓ T | t

sdx

2 M

sdx

. (12)

The signature id(T
sdx

) is utilized for fast access to temporally relevant models,
which is an analogy to the use of id(C

sdx

) for indexing purposes. Because the
Euclidean space C and the time T are independent dimensions of the geographic
space S it is convenient to combine c

sdx

and t

sdx

in the single indexing model
M

sdx

.

2.2.2 Geospatial Object

An object-based representation of any geographic feature that is computable can
be described using the geospatial model G expressed in Equation 7, and is called
computable geospatial object. As used in the introduction, ”object-based” is meant
as a contrast to the field-based representation of geographic features, which will be
addressed in the next section. It must be stressed that an abstract word ”object”,
especially when computer science and engineering is involved, can easily lead to
a confusion. The context to which the term ”object” is related must be clarified.
Here the geospatial object refers to an object related to the geographic space S.
We will see in Section 2.4 that the geospatial model itself can be called as object,
but in context of an engineering solution to computable models - hence completely
different type of object compared to the geospatial object.

The simplest geospatial object can be described by Equation 7 in which the
functional model M

fun

does nothing. Such model of geospatial object provides
the reference values P

ref

, �
ref

, T
ref

, and through the spatial index c

sdx

and tem-
poral index t

sdx

they also have access to their proximity coordinates C
sdx

and
T

sdx

. If any of the reference values are missing then either geospatial model G
cannot be made, or appropriate default values must be specified or generated by
the application.

Any geospatial object can, however, through the functional model M
fun

use
other models arbitrarily, for instance dealing with various geometric types, topo-
logical operations, exchange data formats and other subjects as depicted in Figure
2. Note that the geospatial model is not only an entity in the system diagram,
but also a content unit that can be stored and exchanged. The relatively simple
representation described by Equation 7 is used, regardless of the specialization or
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complexity behind a particular geospatial object, . If an instance requires any spe-
cialized model that is part of M

fun

it will be provided by the geospatial model
G. That provides almost arbitrary flexibility to geospatial modelling while keeping
the actual computable geospatial model G relatively simple for adoption by broad
variety of applications. All the properties of geospatial objects described in this
section also apply to the field-based models described in the following section.

Figure 2: Geospatial model in relationship to the application interface.

2.2.3 Geospatial Field

A field-based representation of any computable geographic feature can be de-
scribed using the geospatial model G from Equation 7, and is called computable
geospatial field. The functional model M

fun

of every geospatial field is character-
ized by a function f that maps from a spatial domain D to a field V as follows:

f : D ! V ⇥ S | f 2 �

fun

^ �

fun

2 M

fun

(13)

The domain D is a geometric space, which may be a subset of the geographic space
S. The function f associates every point from D with value v 2 V ⇥ S, which
means that the value v is also associated with the geographic space S. The values
V can be of any non-variable kind as long as it is computable by the function f .
The function f must be expressed as part of the transition function �

fun

of the
functional model M

fun

. The extra (relatively to geospatial objects) function f for
geospatial fields is required for the reason of computability and aggregates discrete
values v over computable representation of space using discrete coordinates.

Every field-based model requires a certain domain D and a the type of field
values. A good example of such domain is a three-dimensional Euclidean space
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with computable value v being the Cartesian coordinates (x, y, z) 2 C. Note that
in this example both D and C are representations of three-dimensional Euclidean
space, but their definition might be different as long as D allows function f to be
computable. Hence the domain D might cover the geographic space S entirely or
partially, but will always be a redundant representation of S specific to only some
model G. The resulting field of coordinates would contain a set smaller or equal to
all coordinates of the geographic space S.

If we consider a geospatial model G with an empty M

fun

as the simplest case,
one can argue that the object-based approach is superior to the field-based ap-
proach. This is true in the context of this method. All ”computable” is based on a
finite set of discrete steps calculated by a discrete model (see Section 1.1), which
effectively prevents making truly continuous representations. We always end up
1) with many discrete values within a geospatial model, or 2) with many discrete
geospatial models. Either case manifesting the principles of object-based. At best
fields can be represented using a set of computable coordinates that sample the
field sufficiently. Quite similarly to the coordinates of the geographic space S, but
with an important difference that all the coordinates of the field must be evaluated,
which in computable modelling always depends on some transition function �.

Since model G allows for an arbitrary function � under M
fun

an arbitrary com-
putable field-based model can be achieved. A true unification method for object-
based and field-based modelling cannot a priori discount either approach. This
requirement is fulfilled, but on the basis that geospatial model G with empty M

fun

has object-based properties, and therefore each computable geospatial field inher-
its these object-based properties resulting in two layers of structure: first an object,
then a field structure. Both approaches share the resolution limit of the geographic
space coordinates S.

2.3 Engineering Hierarchy of Computable Models

The design and engineering aspects must be addressed In order to facilitate practi-
cal creation and exchange of the computable geospatial model G, which has been
presented in theory. This section introduces four engineering layers considered for
the realization of Equation 7 together with its conceptual design.

Each computable model is expressed as a separate Turing machine M - a the-
oretical computer. Manufacturing a special device for every computable model
would make this method impossible to apply, but because of Equation 3 this re-
quirement can be avoided. The design of general-purpose computers, first ad-
dressed in Burks et al. (1946), utilizes the equivalence of finite composition of
computable models expressed in Equation 3. A general-purpose computer is a
single electronic device that allows to load and run different computable models.
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The assembly of electronic circuitry that can run computable models is the first
engineering layer to consider. It is denoted as L1 in Figure 3. The central pro-
cessing unit (CPU) chip L1A runs machine code. The general-purpose computer
uses machine code that keeps both the transitional functions � (algorithms) and
the model inputs I (data) of computable models together. A special kind of an in-
chip model that can start loading computable models from an attached secondary
memory is denoted as L1B. This loader L1B is the first computable model that is
loaded and run automatically on every computer L1A start-up.

When successful, the loader L1B passes the control over loading and starting
of computable models to the next engineering layer depicted in Figure 3 as L2.
Layer L2, which is called an operating system kernel, makes it easier to make
and run programs by abstracting attached physical devices by computable models
called drivers. Drivers together with the loader model denoted as L2B are the
main interfaces used by programs, and introduce differences between operating
systems. The loader L2B can manage the machine code included in programs and
start them.

The third engineering layer L3 consists of programs that require a particular
kernel for their execution. Note that ”program” is yet another term for a com-
putable model following Equation 3. Figure 3 shows three relevant types of pro-
grams; 1) geoinformation program L3A that can utilize the computable geospatial
model G (see Equation 7); 2) compiler L3B that can translate source code into an
executable code for certain operating system or virtual machine (VM); and 3) VM
L3C that implements similar features as entire layer L2 for the sake of making pro-
grams independent of a particular kernel. Hence VM L3C also has a component
L3D that can load and start programs.

The fourth layer L4 depicted in Figure 3 contains programs that require a par-
ticular VM L3C for their execution, but can (in principle) be independent of layer
L2. Such independence is achieved by an intermediate code that is executed by the
VM L3C. The independent executable code is called bytecode (Dictionary.com
(2013)) and is the key engineering concept used for the unification of geospatial
computable models. The independence of bytecode from operating systems is at-
tractive because it allows computable models to be portable over a broad variety of
devices and systems in a similar manner as data in traditional exchange formats.
Another advantage of VM based on bytecode is that the functionality � can be
coded using many input languages. The layer L4 conceptually mimics the layer
L3, but for this work is necessary only the geoinformation program L4A that can
utilize, on the basis of bytecode, the computable geospatial model G from Equation
7.
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Figure 3: Engineering Hierarchy of Computational Models.

2.4 GMO: Geospatial Managed Object

The engineering hierarchy of general computable models suggests two nodes where
the geospatial model G can be implemented. The two nodes are highlighted in Fig-
ure 3 as L3A and L4A, and the dashed line denotes the interface to the geospatial
model G depicted in Figure 2. Due to the comparative properties of layers L3
and L4 the most flexible design is to implement the geospatial model G under the
node L4A in Figure 3. The on-demand provision of components from the func-
tional model M

fun

, which is the key concept described in Section 2.2.2, then rely
on the loader L3D. The ability of storing the geospatial model G depends on the
serialization1 model depicted in Figure 3 as L3E.

Design employing the loader model L3D and the serialization model L3E is
considerably more advanced then traditional designs for exchange of geographic
data. The traditional exchange data formats enforce fixed predefined structure and
exchange of functionality is usually impossible or very limited, in contrast the
geospatial model G in form of bytecode allows for variable structure and exchange
of functionality. The nodes L3D and L3E from Figure 3 provide the engineering
solution for Equation 3. The computable geospatial model G implemented under
the node L4A using the loader L3D and the serialization model L3E is called

1In terms of computer science the process of transforming computable models from the form
suitable for execution to a form suitable for storage and exchange is called ”serialization”.
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geospatial managed object (GMO). GMO is the engineering design associated with
this method.

Design similar to GMO can be implemented under the node L3A from Figure
3, but with limited applicability in practice. It is also possible to implement the
geospatial model G under the node L4A in a way that is dependent on layer L2, or
limited in serialization of the geospatial model G. Such designs cannot be called
geospatial managed objects. The GMO option is the most powerful engineering
design in terms of sustainability, portability, applicability, and ability to reuse the
geospatial model G.

The term ”object” in GMO refers to an engineering paradigm called ”object-
oriented paradigm” used for programing of computable models and systems in
general. In contrast the ”geospatial object” is from the context of the geographic
space S. Keeping this in mind, the GMO is an engineering entity that corresponds
to the computable geospatial model G. Hence GMO can be used for modelling of
”geospatial fields” as well as of ”geospatial objects” (see Section 2.2.3 and Section
2.2.2.) The term ”managed” in GMO refers to the management of both data and
functionality at the level of content, which is the key property of the presented
method. The management of functionality is more complicated than management
of only data. The bytecode and VM model L3C solves this ”management” of data
and functionality on a common basis.

2.5 Model Incompleteness

The method of geospatial model G fully utilizes the computability theory for mod-
elling geospatial phenomena. GMOs provide the optimal engineering design, but
certain conceptual limits cannot be avoided. They come in three levels: com-
putability, complexity and incompleteness. For example real or irrational numbers
cannot be used in computational models - only their representations. An attempt
to enumerate numbers such as ⇡ or 1/3 would take eternity. The computable tran-
sition function � must be always reducible to a sequence of basic arithmetic and
logical operations that are physically implemented in the CPU L1A.

Complexity limits are given by the time and memory resources needed for
computation. The precision of computable numbers used by GMOs is one aspect,
because too precise representations of numbers (too much data) may not fit into
the memory or take too long to evaluate. Also, many problems are inefficient when
described by the transition function � resulting in an algorithm with complex set of
problem-solving operations. For example, a geospatial model deciding the short-
est path through given number of cities n starting and ending in the same point
requires handling of (n � 1)! distances (Applegate et al. (2007)). A computer ca-
pable of billion operations a second (THz) would compute the solution for n = 20
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cities in about 3.8 years, and for n = 25 cities would already need almost twenty
million years. In the logistics and telecommunication industry, this example is an
essential algorithm. But because it is so hard to compute, the practical solutions
must use approximations and heuristic assumptions, leaving the exact solution un-
known. This example is not exceptional, there are hundreds of such complex prob-
lems (Wikipedia (2013)). Due to their inherent complexity, many solutions to well
defined models are computationally intractable.

The limits of computability and complexity might be surprisingly constrain-
ing, but the reality is even worse. In 1931 Kurt Gödel derived a mathematical
proof showing that a consistent set of axioms cannot be complete. There he also
showed that proof of consistency cannot be derived from the given set of axioms
alone (Hirzel (2000)). This has a profound implication on computational geospa-
tial models, which are in essence axiomatic systems using arithmetic. The Gödel’s
theory informally says the best we can do about any geospatial model is to assume
its consistency and at the same time hope that it sufficiently addresses the problem
we want to model. We have to accept that all important aspects may NOT be ad-
dressed by the model, because there is always some true statement that is relevant
but that cannot be covered by the model (Devlin (1998)).

Let’s consider an example of a geospatial model from Goodchild (2012) that
shifts a representation of a polygon in 2d by a given vector. This is a typical object-
based model, which might be incomplete for field-based features. The shift by a
given vector can lead to a result when polygon intersects other polygon, which
for cadaster boundaries or contour-lines is an invalid result. It highlights again that
field-based and object-based considerations are ubiquitous in geospatial modelling,
but the main point here is the nature of incompleteness. Regardless the limits
of computability and complexity there is always more specialized case for which
a geospatial model is incomplete. Hence, each computable geospatial model G
and all its applications are primarily (and naturally) incomplete, and only then
functional, field- or object-based, complex, secure, elegant and so on.

These limitations are valid for any computational model. They are included due
to their importance in order to provide more consistent description of the method.
The nature of incompleteness is often underestimated in geoinformation science
and neglected by geospatial industry despite its implications on sustainability and
efficiency of geospatial information systems. The geospatial model G provides an
effective and flexible way how to deal with the nature of incompleteness.
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3 Implementation

The design of geospatial managed objects introduced in Section 2.4 has been im-
plemented as a software library named geospatial reference interface for Internet
networks (GRIFIN). This experimental library additionally implements practical
features not addressed in this article including mechanisms for storage and retrieval
of GMOs, exchange of GMOs over network, automatic 2d interpretation of 3d ge-
ometries, support for visualization, and API for client applications to use GMOs.
The experiment is maintained at http://grifinor.net, and the author’s inten-
tion is to provide the library to everyone under the GNU General Public License.

In order for the GMO implementation to be applicable and robust few already
existing technologies have been applied. The most crucial in this regard is the se-
lection of the VM technology. Note that the utilization of VM here is not a mere
software engineering convenience for implementation or porting to different op-
erating systems. The nature of VM, as described in Section 2.4, is an inherent
part of the GMO method. The role of the VM’s bytecode relatively to GMOs is
similar to the importance of HTML relatively to Web pages. The consequence of
a future change to a different VM would have an analogy in changing HTML to,
let’s say, PDF format - making all the previous content obsolete and nonfunctional.
Hence requirements on the VM technology are relatively strict and include: non-
proprietary solution, strong focus on backward compatibility, production quality
with commercial leadership, and widely established availability. Given these pri-
orities the HotSpot VM, which is the original VM used within the Java ecosystem,
stands out as nearly unchallenged choice, despite its currently marginal availability
on mobile platforms.

The GMO concept has been coded in form of an abstract class, which imple-
ments the referencing mechanism M

ref

and an abstract method manage represent-
ing M

fun

. This guarantees access to the referencing mechanism and custom func-
tionality for all implementing subclasses and their GMO instances. The geospatial
index M

sdx

introduced in Section 2.2.1 has been implemented as a hash function
mapping from the geospatial coordinates S to an array of 32 bytes. Examples at
http://grifinor.net/examples also provide references to the source code.
In order to facilitate prototyping and re-use of GMO models most of the examples
utilize Scala language and GRIFIN Shell (GShell), which allows for an interactive
use. GShell can be used to create, manage and consume the geospatial content
on GRIFIN platform. It has all management, server, and remote access features
available from a uniform environment and provides a way to exchange and exe-
cute code on GRIFINs distributed network. This follows the original vision of a
space for collaboration on model development, and not just a one-way publishing
medium for static, predefined, and hard-to-change types of geospatial information.
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Figure 4: Three different software clients consuming identical GMOs from a
server.

Since 2006 several projects used GRIFIN, and many different GMO models
were implemented as both object- and field-based representations of the real world
environment. Figure 4 depicts results from InfraWorld project (Kolar (2010)) in
three different software clients. The city model and a daily energy consump-
tion per building spanning a one-year-period were modelled as GMOs. While
the model is relatively complex the software clients only implement the API for
handling GMOs, which accounts circa twenty methods. The city model itself has
several times more methods. The model brings all its functionality to the different
clients, its specification and definition undertook big changes while the API for
GMO could be implemented independently in parallel, and once the GMO API
is done the software client is ready for all future models using the GMO method.
This summarized three practical properties, which might be hard to address using
non GMO solutions. Figure 5 depicts two examples of field-based representations.
The right-hand side depicts a GMO model for ”Nomenclature of Units for Terri-
torial Statistics” including its hierarchical subdivision of administrative units. The
spherical grids in Figure 5 show a GMO implementation of the Global Indexing
Grid described in Kolar (2009), which is suitable for a spherical subdivision at
arbitrary resolution and is a convenient basis for more complex models using the
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nearest neighbor queries. Energy City Frederikshavn (Wen et al. (2010)) is other
project based entirely on GMO method, featuring an object-based city model and
a field-based terrain representation.

Figure 5: Field-based geospatial representations modelled using the GMO method.

4 Conclusion

A uniform theoretical and engineering solution supporting both field- and object-
based computable geospatial models was presented and implemented. The geospa-
tial model G and its GMO engineering design supports any computable representa-
tion of object-based or field-based geographic features, as well as complex geospa-
tial models combining both approaches. The unification of the method leans on the
definition of geographic space S, which includes time, and which can be adopted
at different scales and subdimensions. Scales are represented as unit-less dimen-
sions of the space S. Computable geospatial field inherits certain object-based
properties enforced by the computability theory resulting in two layers of struc-
ture: first an object, then a field associated with the function �. The key concept
of the method is keeping the structured data together with the functionality � as
one content unit. This is not new in general, but the method fully unfolds this
potential of computability theory in GISc and brings it to geospatial applications.
The bytecode, which is the engineering solution for keeping data and functionality
together, is inherently associated with a particular VM. That is a unique require-
ment compared to solutions based on more traditional data exchange. GMO, as
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the optimal engineering design for the geospatial model G, encapsulates models
on the level L4. This design is more flexible in addition and changes of models,
more portable, and easier to deploy than solutions designed on the level L3 as well
as those on L4 without the GMO encapsulation. GMOs make it possible to han-
dle data and functionality at all ends of a distributed network, also after the object
is instantiated, exchanged and consumed on the client side. This could facilitate
the exchange of research developments of geospatial models. It was stressed that
computational models are naturally incomplete, which has profound implications
for the geospatial industry in terms of efficient sustainability of geospatial appli-
cations and for synergy of various information systems into larger infrastructures.
Although the incompleteness is an unsolvable issue, GMOs provide an effective
and flexible way to mitigate it. It also avoids many issues met by standardization
efforts ongoing in the geospatial industry. The GMO design was implemented in
the GRIFIN framework and is associated with the HotSpot VM. The VM require-
ment is the key engineering disadvantage of the method. Practice shows, however,
that for the useful models the VM overhead can be minimized to a negligible level
by applying adequate representations.
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