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Abstract

Visualization of large spatial data is a complex process and many GIS packages
use their own assumptions or special storage formats to render quality data. While
Image pyramids and tile based rendering are used for raster data visualization, vec-
tor datasets use feature limiting mechanism for progressive rendering. For vector
datasets these methods improve rendering but have very little visual appeal and
make visual interpretation difficult. This paper proposes a method for rendering
Vector data, called Vector pyramids, that is designed to improve rendering and
visual interpretation of large vector datasets. The method is a combination of ge-
ometric aggregation and attribute level amalgamation to generate multi-scale data
that can be appropriately called for rendering based on both the zoom level and
map display extent. Vector pyramids is an automatic method, that mines the at-
tributes of the thematic layer data itself to suitably amalgamate and hierarchically
rank them. For a dataset with more than 200,000 features, the results of the al-
gorithm show that Vector pyramids perform at orders of 2 to 14 times faster than
current implementations of vector data rendering, depending on the zoom level and
map display extent, while improving the data visualization quality. The algorithm
is suitable for both desktop or web-based rendering of geospatial data.
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1 Introduction

Data visualization is one of the very first steps in handling geospatial dataset. Size
of data plays an important role in this visualization process irrespective of plat-
form of choice as spatial data is stored in a variety of formats and nature of storage
highly depends on the selected format. For instance GML2.0 format doesn’t in-
clude topology but the same dataset in GML3.0(OGC 2002) format takes more
disk space due to the storage of topology within the same file. Even with the in-
creasing computational power in these systems large datasets are computationally
expensive and every GIS packages has its own model of data rendering, while try-
ing to keep a balance with the data quality. Though visualization of data implies
the on-screen display of the data contents, the model of rendering the data can vary
from simple geometry display to symbology and labeling in a way appropriate to
the end user needs.
Most GIS packages use a feature count based filtering approach for vector data,
hereinafter referred to as feature-count approach, to progressively load the geospa-
tial data by reading or accessing a limited feature set that is pre-defined or randomly
selected from the entire data and loaded at a time, sequentially till the whole dataset
is displayed. Once such data loading is done, based on the user zoom level and the
map extent, the requisite data is fetched from the primary or secondary memory and
displayed on-screen. This technique is used in both desktop and web based GIS
applications. While, this does help render the data, the problem with the feature-
count approach is that the first and successive N features that are selected may
have no relation to the users’ area of interest within the map that the user wants
to visualize. For instance, given a single thematic layer of river network with say
four categories of river types : main rivers, perennial, non-perennial and drainage
channels; the feature-count approach will scan first N features which may be a mix
of all categories of rivers which will result in showing up of parts of the entire data
at a time, as seen from Figure 1, and not based on either the data category or area
of interest.

In case of large raster data display, the feature-count approach does not work and
so, the commonly adopted approach is to use the image resolution as the filtering
key leading to a sub-sampled and smoothened image, usually known as Image
Pyramids(Anderson et al. 1984). While in some other cases, based on the model
of data storage like BIL(ESRI 1999) an interleaved image can be progressively
displayed as the data is read from the memory. This may or may not be tied to the
zoom level related to the display extent.
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(a) River network at time, T1 (b) River network at time, T2

(c) River network at time, T3

Figure 1: Feature-count rendering of river network dataset (DCW 2013) at different
instances

With the change towards more and more use of web-based geo-applications and
services, visualization of the geospatial data within a browser has gained impor-
tance. But, most of the initial and current developments in within-browser display,
irrespective of the data model- vector or raster, are based on generating raster im-
ages in the form of png, jpg, etc.(Shekhar et al. 2006), at the server-side and posting
them in the browser using Web Map Serives (WMS) (OGC 2001) and WMTS pro-
tocols (OGC 2010). These map-servers internally use a pre-defined logic of tying
the data to be displayed with the requested zoom-level and are similar in approach
to the feature-count method. For example, in WebGIS applications such as Open-
StreetMap (Haklay & Weber 2008), the Slippy Map technique is used which stores
generated image tiles based on a hierarchical model tied to the zoom level and res-
olution (Haklay & Weber 2008). Even though the OGC defined WFS offers direct
fine-grained access to geographic information at the feature and feature property
level (OGC 2005), the implementation has no control over the level of detail being
rendered. Though WFS provides extent based clipping but if the user request is a
global extent the data may be too crowded and visual inspection and interpretation
can be very difficult. A work-around that can be implemented is by pre-processing
the data to create singe category attribute based thematic layers and call the ap-
propriate layer while displaying at a given zoom level, a similar approach was ad-
vocated by (Bertolotto & Egenhofer 1999). For example in the above stated river
thematic layer, based on each river types attribute, it can be separated into four dif-
ferent layers such as major rivers, perennial streams, non perennial streams and
drainage channels and say at the coarser zoom levels, only the major rivers geom-
etry with its attributes is called for display. This work-around may not be suitable
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Figure 2: Values of bandwidth vs Time taken to deliver a 300,00 response payload
(Source: http://opengeo.org, May, 2013)

for varied reasons ranging from increased data redundancy to making the data un-
suitable for geospatial analysis.

OGC Web Feature Service allows a client to retrieve and update geospatial
data encoded in Geography Markup Language (GML) from multiple Web Feature
Servers. The minimal requirements of a Web Feature Service is that the interface
must be defined in XML and features must be expressed in GML(OGC 2002).
When the size of the dataset increases most of WFS implementations will not be
able to handle it perfectly. This is because HTTP request returns timed out if the
response data size is large, inspite of having a reasonable network bandwidth, and
this is an issue while handling large volumes of data rendering. Most commonly
used workarounds are: Limit response size, Optimize request response, Allocate
network bandwidth(GeoServer 2013). Limiting response size is done by putting a
maximum number on the features being retrieved in a single HTTP request. Fea-
tures pulled from a WFS server in this scenario maybe fully irrelevant to what user
is looking for in the data. This is because limiting factor doesn’t consider hierar-
chy/rank of attributes. Optimizing the request response can help in such situations
where large data is handled. When the request response becomes heavier, WFS
server write the response to a GIS format (eg: GML, GeoJSON etc.) and returns
the path to dataset. The dataset will also be compressed before being written to
disk if the selected format supports compression(eg: zipped shapefiles). Higher
bandwidth networks can transmit more features than lower bandwidth in a single
request. Figure 2 shows various values of bandwidth and the time taken to de-
liver a 300,000 response payload. (This is a typical screen-sized WMS image, or
8,000 WFS features in GZIP-compressed format.) (GeoServer 2013). It should
be noted that no one solution can be applied to every case and it depends on the
availability of resources. Allocating higher bandwidth may not be possible for

4



many projects if the dataset grows daily on an exponential basis such as in crowd-
sourcing projects. The rendering of data is not of importance nor considered in any
of these workarounds used by current WFS Implementation. So there us a need to
improve the WFS mechanism that not only has a control on the data relevance per
request but also accounts for the visual quality of the data rendered.

On the other hand, cartographic generalization techniques (McMaster & Shea
1992, Worboys & Duckham 2004) have been used for improving the quality of the
map display by processing the map geometry data. The choice of the generaliza-
tion techniques like simplification, aggregation, exaggeration, etc.(Longley et al.
2005), is largely based on the cartographic or thematic needs of the user and/or
based on the map scale/resolution. These methods are still largely based on human
intervention and are not suited to the evolving WebGIS needs for an on-the-fly
rendering of the user-appropriate geo-content based on not just the geometric in-
formation but also the categorical attributes present. Though the Encoded Polyline
Algorithm (Google 2013) of Google Maps is a simplification method where the
location or geometry is tied to the zoom level, the related attributes that are dis-
played do not seem to be logical, hierarchical or preferential. With increased move
towards GIS-on-the-web, there is a need to generate automatic or semi-automatic
generalization techniques that can provide better geospatial data visualization and
rendering experience to the user.

With the advent of new web technologies such as HTML5 (W3C 2010), ren-
dering within a browser can now be a client-side processing activity rather than a
server-side image generation and posting to the browser. The client-side rendering
is possible using the technologies like Canvas, SVG and VML, which can draw
the vector features within a browser. While HTML5Canvas (W3C 2012) follows
a pixel based approach and is suited for raster rendering, SVG allows to draw ge-
ometries (point/line/polygon) without converting them to pixels and maintain the
Document Object Model (DOM) elements representing the geometry and associ-
ated styling information (Rashad & Rajan 2012). This allows the browser client to
interact with the vector features without making a request to server. These capabil-
ities make it possible to incorporate the data generalization techniques to develop
on-the-fly multi-scale vector rendering algorithm without disturbing the primary or
original data.

1.1 Objective

This paper presents Vector pyramids algorithm that aims to improve vector data
rendering performance by selecting appropriate features to display based on its cat-
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Figure 3: Flowchart - Attribute Ranking

egorical attributes rather than depending on a random feature count. The algorithm
mines the attributes of the spatial data itself to automatically rank the features and
links them to the rendering pipeline. The subset or part of the spatial data, though
will load less features, shall show data based on a hierarchical flow of data detail,
relevant to the user. It is expected that this will also lower the computational costs
of rendering as the size of data to be displayed is tied to the display extent with
less features than the total feature count. This automatic generalization of vector
data will also improve the visual representation of the features at every scale by
controlling the level of detail being rendered.

2 Vector Pyramids

Vector pyramids algorithm consists of two stages: Attribute Ranking as a pre-
processing stage and Spatial filtering during rendering run-time. The overall flowchart
of the pre-processing pipeline is shown in Figure 3. The respective stages are de-
scribed in the following sections.

2.1 Attribute Ranking

2.1.1 Attribute Field Identification

First step in attribute ranking is to collect all the attribute field information. Given
the Layer’s schema definition as input, it is scanned using the GDAL/OGR (GDAL.org
2013) library to check for relevant attribute field which can be used to group the
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features. The relevant attribute fields are those with either nominal or ordinal val-
ues.

2.1.2 Attribute Value Set

Attribute value set is a set of features having the same value for a selected attribute
field and is a subset of the original master dataset. This is based on attribute value
matching from the stored list created in the previous step. Each set contains infor-
mation about the feature geometries that belongs to it. This process is repeated for
all the unique attribute values. Post this, based on the number of features contained
in each set, the sets are ranked to form a hierarchical chain. For instance, Table 1
shows a rank hierarchy for a sample river network, where major rivers having the
least feature count has the highest rank. This ranking is later used to associate the
display zoom levels with pyramid blocks. These sets can be either stored in primary
or secondary memory depending on the choice of the pre-processor configuration.

Table 1: Rank Hierarchy

River Type Rank
Major Rivers 4

Perennial Streams 3
Non-Perennial Streams 2

Drainage Channels 1

2.1.3 Aggregation

Each Attribute value set generated above is passed into the aggregator which merges
the geometries of all those features that belongs to it. Union operation available
through OGR API (GDAL.org 2013) is used for this step. An updated attribute ta-
ble is generated for the respective sets with its value, an index attribute and feature
ID’s of the merged geometries. This provides access to the features in the original
master dataset for querying purposes later.

2.1.4 Mapping Pyramids

Aggregator produces a set of geospatial vector datasets, along with its rank hierar-
chy. The datasets corresponding to the respective ranks are mapped automatically
to one or more zoom levels depending on the total number of zoom levels config-
ured. The set with the highest rank is mapped to the zeroth zoom level. These
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ranked datasets can be further stored in the secondary memory to speed up render-
ing in GIS packages or toolkits that can read OGR supported formats.

2.2 Spatial Filter

Spatial Filter is primarily a display extent clip operator that removes any excess
features which does not fit in the current display extent. This further reduces the
size of the feature set to be rendered and on each zoom/pan the spatial bounds of
the display extent are recalculated appropriately. SetSpatialFilterRect(GDAL.org
2013) method provided by GDAL/OGR is used in this step. At very high zoom
levels even though the feature count of the subset is almost equal to the total feature
count due to the spatial filter, only a small portion of the dataset is taken into
account for rendering.

Vector pyramids algorithm has been implemented in C++ and uses GDAL/OGR
library for some of the processing tasks.

3 Data description

Two different sized datasets where chosen to evaluate the proposed Vector pyra-
mids algorithm and its performance.

3.1 Dataset #1

This dataset consist of Administrative Boundary level 2 information of India. The
data was available in ESRI Shapefile (ESRI 1998) format and contains 599 polygon
features. It contains country, state and districts attribute fields. The spatial extent of
dataset is (68.1628E, 6.74714N, 97.4033E, 37.097N) and spatial reference system
used is EPSG:4326. Table 2 gives the layer schema and the dataset has a total size
of 2.4 Megabytes. Figure 4 shows a full rendered view of this dataset.

3.2 Dataset #2

Global Administrative Areas(GADM) Version 2 (GADM.org 2013) dataset is used
as another test data in this work. It consist of World Administrative Boundary with
country, state and district boundaries. Dataset also contains sub-administrative
details for some areas wherever available. The data is available in ESRI Shape-
file format and contains 2,18,238 polygon features. Dataset has spatial extent of
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Figure 4: Dataset #1 (count = 599)

Figure 5: Dataset #2 (count = 2,18,238)

(-180E, -90N, 180E, 90N) and spatial reference system used is EPSG:4326. A rel-
evant snapshot of layer definition is given in Table 3. Total size of the dataset is
1.50 Gigabytes and Figure 5 shows a full rendered view of this dataset.

4 Results

The proposed Vector pyramids has been tested on the two datasets, mentioned in
the earlier section. Attribute Ranking on dataset #1(India) generates three subsets
of the dataset. At first level only the country’s National administrative boundary,
the highest level, is available. This level consists of a single large polygon as shown
in Figure 6b and if rendered without Vector pyramids all features are rendered as
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Table 2: Layer Schema of dataset #1

Id Name Type Length
1 NAME2 String 25
2 COUNT Real 11
3 STATE String 70
4 DISTRICTS String 21
5 COUNTRY String 16
6 AREA Real 16
7 PERIMETER Real 16
8 HECTARES Real 16

Table 3: Layer Schema of dataset #2

Id Name Type Length
1 ID 0 Integer 9
2 ISO String 3
3 NAME 0 String 75
4 ID 1 Integer 9
5 NAME 1 String 75
6 VARNAME 1 String 150
7 NL NAME 1 String 50
8 HASC 1 String 15
9 CC 1 String 15

shown in Figure 6a. As can be seen from the figures, the feature details cannot
be differentiated between the state and district boundaries even though boundaries
are drawn. But user is able to identify country’s administrative boundary in the
first zoom level in both the cases. Using ranking information created by Vector
pyramids algorithm, the output layer is able to skip those features that can cloud
the feature set information and create a uncluttered view. When we move onto next
level state boundaries are visible because the ranking of the features are updated
and rendered as seen in Figure 6d, which otherwise would have shown all the
features like the earlier level without any difference (See Figure 6c). In addition, it
can be seen that the number of features selected at second level is 34 and is lesser
than the total feature count. Similar output has been obtained for dataset#2 and is
shown in Figure 7. Figure 7a 7c and 7e shows Normal rendering without spatial
filter and Figure 7b, 7d and 7f shows rendering of the data by the proposed Vector
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pyramids algorithm.

When we zoom in further, number of features in the subset increases and at
some point it will be equal to features in the original dataset. But since spatial
filter is running during zoom/pan operation, it eliminates excess features which
does not fall within the display extent. This is because ranking of features are
rearranged within the dataset when zoom value changes. For every change in zoom
value display extent becomes smaller. This is done by re-calculating display extent
based on zoom value and view port size. There are cases where total number of
levels generated in pre-processing is very less compared to the zoom level. For
instance, during testing with dataset #1 we had 15 zoom levels and 3 pyramid
blocks(sub-dataset) in the pyramid. One method that can be used is to map every
sub-dataset with multiple zoom levels. But that can lead to reading only from
the last pyramid block. For instance, if a user is focused on a specific district in
the whole country and reaches bottom-most pyramid block(N), spatial filter will
read only those districts and its immediate neighbors by setting filter extent from
the display extent. It has also been observed that when dataset changes as we
move on to a higher level there is a shift in number of features which then keep on
decreasing within the sub-dataset. Figure 8a, 8c and 8e shows normal rendering
output with spatial filter and Figure 8b, 8d and 8f shows Vector pyramids output at
the respective zoom levels. These figures have been further magnified and a part
of them is shown in the figures to highlight the difference in feature detail that is
rendered at these respective zoom levels.

Further analysis of the Vector pyramids was carried out to evaluate its perfor-
mance runtime and the reduction in feature count at different zoom levels, on
both these datasets. Attribute Ranking generates five blocks in the pyramid for the
dataset#2 and three blocks of pyramid for dataset#1. For the purpose of this eval-
uation, Normal vector data rendering has been carried out using the QGIS desktop
GIS application (Quantum GIS Development Team 2009). For dataset#2 normal
rendering takes 13590ms at startup and remains constant during every rendering
operation. When using Vector pyramids it takes 16530ms at first zoom level and
second level takes up only 6250ms. As we move to higher zoom level, the time
required to render features starts decreasing exponentially. For dataset#1 normal
rendering takes 318.435ms at startup and remains constant, while Vector pyramids
takes 77.917ms at first zoom level, 65.548ms at second and as we move to higher
zoom level say 7, the time required to render layer becomes 52.148ms and goes on
decreasing as we move further. The increase in time for dataset #2 at the first zoom
level can be due to very large sized polygons being rendered, while for dataset #1
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that is not observed. Figure 9a & 9b shows runtime comparison with Normal ren-
dering, Normal with Spatial filter and Vector pyramids for dataset#1 and dataset#2
respectively. The comparison of number of features accessed in Normal rendering,
Normal with Spatial Filter and Vector pyramids for both datasets and is shown in
Figure 10a & 10b.

(a) count = 599(Level 1) (b) count = 1(Level 1)

(c) count = 599(Level 2) (d) count = 34(Level 2)

Figure 6: Normal Rendering vs Attribute Ranking Output(Dataset #1). Red outline
box shows the successive levels of zoom applied on the data.
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5 Discussion & Conclusion

Current implementation of Vector pyramids has been as a plugin for QGIS desktop
application and LSIViewer, an online vector data rendering application (LSI 2013).
Vector pyramids have shown that the rendering speeds can improve by an order of 2
to 14 times in comparison with other existing approaches. Though the performance
reported is against the rendering in native QGIS desktop application, further work
is needed to evaluate the order of performance gain in web services implementa-
tions like WMS/WFS. The later was not reported as this requires modification of
the code to measure time performances at each user interaction. Vector pyramids
designed and developed here can be added to any desktop or web GIS packages
including WMS and WFS servers to improve their rendering performance. In case
of very large datasets the preprocessing step of Vector pyramids might be compu-
tationally demanding, but given the quality of the rendered data and its relevance to
the user, it can be a very useful tool in many applications like multi-level data visu-
alization and spatial data analysis platforms. In addition, along with improved data
visualization, the hierarchical model of managing the attribute values may provide
important clues to user-semantic based geodata management approaches and help
explore improved experience to the users.

Attribute Ranking is a pre-processing technique which can be configured to gen-
erate pyramids on-the-fly or as separate datasets depending on whether the data
handling will occur on the client-side or the server-side. Even though in this im-
plementation, ESRI Shapefiles are used for evaluation and testing of the algorithm,
the coupling with GDAL/OGR enables Vector pyramids to read-write any OGR
supported format. Increasingly, in the WebGIS environments with data-centric ap-
proaches the geo-formats such as GML, KML and GeoJSON are commonly used
to provide a better control on the data exchange. As Vector pyramids is also a
data-centric design, it is anticipated that its integration into these formats can be
achieved by suitably by adding additional elements to the specification. For exam-
ple, while generating GML datasets gml:pyramid can be introduced to represent a
Vector pyramid level as an inherent element of gml:FeatureCollection. This ele-
ment can include a reference to a file on disk or the complete feature information.
Though it is out of scope for this paper, future work will include developing and
testing such additional elements. Another area of extension for Vector pyramids
could be to provide it within the data-editing framework over the web, by incorpo-
rating it within WFS-T, to enable a richer and user controlled editing environment.
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(a) count = 218238(Level 1) (b) count = 28(Level 1)

(c) count = 218238(Level 2) (d) count = 102(Level 2)

(e) count = 218238(Last level) (f) count = 3277(Last level)

Figure 7: A magnified view of the dataset#2 rendered using Normal Render-
ing(without spatial filter) and Attribute Ranking is shown for better appreciation
of features.
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(a) count = 599(Level 1) (b) count = 1(Level 1)

(c) count = 448(Level 2) (d) count = 28(Level 2)

(e) count = 66(Level N) (f) count = 66(Level N)

Figure 8: Normal Rendering vs Vector Pyramids including spatial filter (Dataset
#1)
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(a) Dataset#1(milliseconds) (b) Dataset#2(milliseconds)

Figure 9: Runtime for (a) Dataset#1 and (b) Dataset#2 in milliseconds

(a) Dataset#1 (b) Dataset#2

Figure 10: Feature count comparison for (a) Dataset#1 and (b) Dataset#2
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