The Boost Statechart Libra- Referenc Pagel of 4C

The Boost Statechart

bOOSt Library

&
-
C + L1 8 rRARIES

Reference

Contents

Concepts
Scheduler

FifoWorker

ExceptionTranslator

StateBase

SimpleState

State

Event
state_machine.hpp

Class templatst at e nachi ne
asynchronous_state _machine.hpp

Class templatasynchr onous st at e _machi ne
event_processor.hpp

Class templatevent processor
fifo_scheduler.hpp

Class templatéi f o_schedul er
exception_translator.hpp

Class templatexcepti on transl at or
null_exception_translator.hpp

Classnul | _exception transl at or

simple_state.hpp

Enumhi st ory node

Class templatei npl e _st ate
state.hpp

Class templatst at e
shallow_history.hpp

Class templatehal | ow hi st ory
deep_history.hpp

Class templatdeep hi story

event_base.hpp
Classevent base

event.hpp
Class templatevent

transition.hpp
Class templatér ansi ti on

in_state_reaction.hpp

Class template in_state _reaction
termination.hpp

Class templateer m nati on

deferral.hp

2006/12/0:

The Boost Statechart Libra- Referenc Page2 of 4C

Class templatdef err al

custom_reaction.hpp

Class templateust om r eacti on

result.hpp

Classr esul t

Concepts

Scheduler concept

A Scheduler type defines the following:

What is passed to the constructorgweént pr ocessor <> subtypes and how the lifetime of
such objects is managed

Whether or not multiplevent _pr ocessor <> subtype objects can share the same queue and
scheduler thread

How events are added to the schedulers' queue

Whether and how to wait for new events when thedaglers' queue runs empty

Whether and what type of locking is used to enthmead-safety

Whether it is possible to queue events for no loegestingevent _pr ocessor <> subtype
objects and what happens when such an event isgsed

What happens when one of the serviegént _pr ocessor <> subtype objects propagates an
exception

For a Scheduler typ® and an objeatpc of typeconst S:: processor _cont ext the following
expressions must be well-formed and have the iteticeesults:

|Expron ||Type ||Resu|t |

|cpc.

my_scheduler() |s & |A reference to the scheduler |

cpc.

The handle identifying thevent _processor <>

handl e S: :processor handl e .
- O P - subtype object

To protect against abuse, all memberS:.of pr ocessor _cont ext should be declared private. A:
result,event _pr ocessor <> must be a friend d. : pr ocessor _cont ext .

Fifoworker concept

A FifoWorker type defines the following:

Whether and how to wait for new work items whenittternal work queue runs empty
Whether and what type of locking is used to enthmead-safety

For a FifoWorker typé&, an object of that type, @&onst objectcf of that type, a parameterless
function objectw of arbitrary type and amnsi gned | ong valuen the following
expressions/statements must be well-formed and theviedicated results:

|Expron/Statement ||Type ||Effects/ResuIt |

||boost c:functi on0<|| |

2006/12/0:

The Boost Statechart Libra- Referenc Page3 of 40

F::work item || void > " |

Constructs aon-blocking (see below) objec
of the FifoWorker type. In single-threaded
builds the second expression is not well-
formed

F() OrF(false) F

Constructs dlocking (see below) object of
F(true) F the FifoWorker type. Not well-formed in
single-threaded builds

Constructs and queues an object of type

f.queue_work_ite w); .
a - Jten(w) F: : wor k_i t em passingv as the only argumefgt

Creates and queues an object of type

F: - wor k_i t emthat, when later executed in
f.term nate(); operator () (), leads to a modification of
internal state so thatr ni nat ed() henceforth
returnst r ue

true if term nat e() has been called and thg
resulting work item has been executed in
of . terninat ed(): bool operat or () () . Returng al se otherwise
Must only be called from the thread that
also callsoperat or () ()

Enters a loop that, with each cycle, dequeules
and callsoper at or () () on the oldest work
item in the queue.

The loop is left and the number of executed|
work items returned if one or more of the
following conditions are met:

e f.termnated() == true

e The application is single-threaded an(
the internal queue is empty

e The application is multi-threaded and

f(n); unsi gned | ong the internal queue is empty and the
worker was created as non-blocking

e n != 0 and the number of work items
that have been processed since
operator () () was called equals

If the queue is empty and none of the abov§
conditions are met then the thread calling
operator () () is putinto a wait state until
f.queue_work_i tem() is called from anothef]
thread.

Must only be called from exactly one thread

Has exactly the same semantics @) ;

f(); unsi gned | on .
0 J J with n == 0 (see above)

ExceptionTranslator concept

2006/12/0:

The Boost Statechart Libra- Referenc Page4 of 4C

An ExceptionTranslator type defines how C++ exaastioccurring during state machine operatior
translated to exception events.

For an ExceptionTranslator objest, a parameterless function objecof arbitrary type returning
resul t and a function objeah of arbitrary type taking aonst event base & parameter and
returningr esul t the following expression must be well-formed aaaéthe indicated results:

Expression ||Type ||Effects/ResuIt

1. Attempts to executest urn a();

2. Ifa() propagates an exception, the exception is caught

et(a eh); resul t 3. Inside the catch block cabs, passing a suitable stack-
allocated model of thEventconcept

4. Returns the result returned &y

StateBase concept

A StateBase type is the common base of all stdtagiven state machine type.
stat e_nmachi ne<>:: st at e_base_t ype is a model of the StateBase concept.

For a StateBase tyf#and aconst objectcs of that type the following expressions must belwel
formed and have the indicated results:

Expression ||Type ||Resu|t |
. ||0if cs is anoutermost statea pointer to the direct
cs.outer_state_ptr() const S ;
outer state ofs otherwise

A value unambiguously identifying the mad#rive
type ofcs. S: ;i d_t ype values are comparable witl
oper at or ==() andoper at or! =() . An unspecified
collating order can be established withi: : | ess<
S::id_type >.In contrasttaypeid(cs), this
function is available even on platforms that do nog
support C++ RTTI (or have been configured to nft
support it)

cs. dynam c_type() S::id_type

A pointer to the custom type identifier @rlf ! = 0,
Type must match the type of the previously set
pointer. This function is only available if
BOOST_STATECHART_USE_NATIVE_RTTis
not defined

cs. custom dynam c_type_ptr<{iconst Type
Type >() *

SimpleState concept
A SimpleState type defines one state of a partigite machine.

For a SimpleState typ®and a pointepS pointing to an object of typ® allocated withew the
following expressions/statements must be well-fatmed have the indicated effects/results:

|Expron/Statement |Type ||Effects/ResuIt/Notes |

sinple_state< S, C, |, h >mustbe
an unambiguous public basefSee

sinmpl e _state< H

2006/12/0:

The Boost Statechart Libra- Referenc

S, C I, h>* pB-=
pS;

Page5 of 4

si npl e_st at e<> documentation for the
requirements and semanticsaf andh

C

new S() S *

not be called frons: : S() , see
si npl e_st at e<> documentation for mo
information

Enters the state. Certain functions mus

il

pS->exit();

Exits the stats (first stage). The
definition of anexi t member function

defines the following public member:
void exit() {}.exit() isnotcalled

is pending, see
sinple state<>::termnate() for
more information

when a state is exited while an exceptif

within models of the SimpleState concgpt
is optional sincei npl e_st at e<> already

del ete pS; ||

|Exits the stats (second stage)

Annpl ::list<>thatis
either empty or contains
instantiations of the
custom reaction,

in state reaction,

S:.:reactions

deferral ,term nation Or

npl::list<>

transi tion class template
If there is only a single
reaction then it can also be|{mp! : : I'i st<> reacti ons;
t ypedef ed directly, without
wrapping it into an

The declaration of eeacti ons member
t ypedef within models of the
SimpleState concept is optional since
si npl e_st at e<> already defines the
following public membert ypedef

State concept

A State is aefinement of SimpleStatgthat is, except for the default constructor a&eStgpe must also
satisfy SimpleState requirements). For a State $/@epointepS of typeS * pointing to an object of

type S allocated witmew, and an objeatt of typestate< S, C, I, h >::ny_context the
following expressions/statements must be well-fame
|Expron/Statement ||Type ||Effects/ResuIt/Notes
state< S, C, |, h >mustbe an
state<'S, C, I, h > * unambiguous public base &fSee
pB = pS; st at e<> documentation for the
requirements and semanticsaf andh
Enters the state. No restrictions exist
regarding the functions that can be callgd
new S(nt) S * froms:: s() (in contrast to the .
constructors of models of the SimpleStgte
concept)nc must be forwarded to
state< S, C |, h > :state()

Event concept

2006/12/0:

The Boost Statechart Libra- Referenc Page6 of 40

A Event type defines an event for which state maehican define reactio

For a Event typ& and a pointepCE of typeconst E * pointing to an object of type allocated
with new the following expressions/statements must be feetited and have the indicated
effects/results:

|Expron/Statement ||Type ||Effects/ResuIt/Notes |
const event< E > * pCB event < E > must be an unambiguous
= pCE public base oE

[new E(*pcE) [E - [Makes a copy ofe |

Header <boost/statechart/state_machine.npp>

Classtemplate st at e_nmachi ne
This is the base class template of all synchrostate machines.

Classtemplate st at e_nmachi ne parameters

|Temp|ate parameter ||Requirements ||Semantics ||Defau|t
The most-derived

Most Deri ved subtype of this class
template

A model of the
SimpleStateor State
concepts. The

Cont ext argument

passed to the The state that is

sinpl e state<>0r |lentered when
Initial State st at e<> base of st at e_machi ne<>

Initial State must |[::initiate() is

beMost Deri ved. That|called
iS,Initial State
must be amutermost
stateof this state
machine

A model of the
Al | ocat or standard Allocator std::allocator< void >
concept

A model of the see
Excepti onTr ansl at or ExceptiOnTranslator ExceptionTranslatqinul | _excepti on_transl at or
concept concept

Classtemplate st at e_nachi ne synopsis

nanmespace boost

{

nanespace statechart

2006/12/0:

The Boost Statechart Libra- Referenc Page7 of 4C

{
t enpl at e<
cl ass Most Deri ved,
class Initial State,
class Allocator = std::allocator< void >,
cl ass ExceptionTranslator = null _exception_translator >
cl ass state_nachi ne : noncopyabl e
{ |
publ i c:
t ypedef MbostDerived outernopst_context type;
void initiate();
void term nate();
bool term nated() const;
voi d process _event(const event base &);
tenpl ate< cl ass Target >
Target state cast() const;
tenpl ate< cl ass Target >
Target state _downcast() const;
/1l a nodel of the StateBase concept
typedef inplenentation-defined state_base_type;
/'l a nodel of the standard Forward Iterator concept
t ypedef inplenentation-defined state_iterator;
state iterator state begin() const;
state iterator state end() const;
voi d unconsuned event (const event base &) {}
pr ot ect ed:
state nachi ne();
~state machi ne();
voi d post event (
const intrusive_ptr< const event base > &);
voi d post event(const event base &);
1
}
}

Classtemplate st at e_nachi ne constructor and destructor
state_machi ne();

Effects. Constructs a non-running state machine
~st at e_nmachi ne();

Effects. Destructs the currently active outermost stateahits direct and indirect inner states.
Innermost states are destructed first. Other statedestructed as soon as all their direct andeictd
inner states have been destructed. The inner sthésch state are destructed according to the eumb
of their orthogonal region. The state in the orthrog) region with the highest number is alw

2006/12/0:

The Boost Statechart Libra- Referenc Page8 of 40

destructed first, then the state in the region Withsecon-highest number and so
Note: Does not attempt to call aexi t member functions

Classtemplate st at e_nmachi ne modifier functions
void initiate();
Effects:

1. Callst er m nat e()
2. Constructs a function objeatt i on with a parameter-lesgper at or () () returningr esul t
that
a. enters (constructs) the state specified witH thiet i al St at e template parameter
b. enters the tree formed by the direct and indirewr initial states dfni ti al St at e
depth first. The inner states of each state arreditaccording to the number of their
orthogonal region. The state in orthogonal regias &lways entered first, then the state in
region 1 and so on
3. Constructs a function objeekcept i onEvent Handl er with anoper at or () () returning
resul t and accepting an exception event parameter tbaepses the passed exception event,
with the following differences to the processingiofmal events:

« From the moment when the exception has been thunwhright after the execution of the
exception event reaction, states that need to ibedexre only destructed but eai t
member functions are called

« Reactionsearch always starts with the outermosdtable state

¢ As for normal events, reaction search moves outwéueh the current state cannot handle
the event. However, if there is no outer stateof@ermost statbas been reached) the
reaction search is considered unsuccessful. Thexception events will never be
dispatched to orthogonal regions other than thetlwatecaused the exception event

¢ Should an exception be thrown during exception exeaction search or reaction
execution then the exception is propagated othexdxcept i onEvent Handl er
function object (that igxcept i onTr ansl at or isnot used to translate exceptions
thrown while processing an exception event)

« If no reaction could be found for the exceptionréwa if the state machine is not stable
after processing the exception event, the origgmakeption is rethrown. Otherwise, a
resul t object is returned equal to the one returned by
simpl e_state<>::di scard_event ()

4. Passeacti on andexcepti onEvent Handl er to
ExceptionTransl ator::operator()().If Excepti onTransl at or: : oper at or
() () throws an exception, the exception is propagaiele caller. If the caller catches the
exception, the currently active outermost statealhids direct and indirect inner states are
destructed. Innermost states are destructed@tker states are destructed as soon as all their
direct and indirect inner states have been destiudthe inner states of each state are destructed
according to the number of their orthogonal regildme state in the orthogonal region with the
highest number is always destructed first, therstate in the region with the second-highest
number and so on. Continues with step 5 othervieeréturn value is discarded)

5. Processes all posted events (seecess_event ()). Returns to the caller if there are no more
posted events

Throws: Any exceptions propagated frdBxcept i onTransl at or: : operator () ().
Exceptions never originate in the library itselt lbaly in code supplied through template parameters

e Operator new() (used to allocate states)

e All ocator::allocate()
« State constructol

2006/12/0:

The Boost Statechart Libra- Referenc Page9 of 40

e react member function
e exi t member functions
e transition-actions

void termnate();
Effects:

1. Constructs a function objeatt i on with a parameter-lesgper at or () () returningr esul t
thatterminateghe currently active outermost state, discardeeatiaining events and clears all
history information

2. Constructs a function objeekcept i onEvent Handl er with anoper at or () () returning
resul t and accepting an exception event parameter tbaepses the passed exception event,
with the following differences to the processinghofmal events:

« From the moment when the exception has been thunwhright after the execution of the
exception event reaction, states that need to ibedesre only destructed but Bai t
member functions are called

o Reactionsearch always starts with the outermosttable state

¢ As for normal events, reaction search moves outwéueh the current state cannot handle
the event. However, if there is no outer stateof@ermost statbas been reached) the
reaction search is considered unsuccessful. Thexception events will never be
dispatched to orthogonal regions other than thetlvatecaused the exception event

o Should an exception be thrown during exception exeaction search or reaction
execution then the exception is propagated othexdxcept i onEvent Handl er
function object (that igexcept i onTr ansl at or isnot used to translate exceptions
thrown while processing an exception event)

« If no reaction could be found for the exceptionréwa if the state machine is not stable
after processing the exception event, the origémakption is rethrown. Otherwise, a
resul t object is returned equal to the one returned by
sinpl e_state<>::discard_event ()

3. Passeacti on andexcepti onEvent Handl er to
ExceptionTransl ator::operator()().If ExceptionTransl at or:: operator
() () throws an exception, the exception is propagaiele caller. If the caller catches the
exception, the currently active outermost stateahids direct and indirect inner states are
destructed. Innermost states are destructed@tker states are destructed as soon as all their
direct and indirect inner states have been destiudthe inner states of each state are destructed
according to the number of their orthogonal regildme state in the orthogonal region with the
highest number is always destructed first, therstate in the region with the second-highest
number and so on. Otherwise, returns to the caller

Throws: Any exceptions propagated frdaxcept i onTr ansl at or : : oper at or () . Exceptions
never originate in the library itself but only inde supplied through template parameters:

oper at or new() (used to allocate states)
Al l ocator::allocate()

state constructors

r eact member functions

exi t member functions

transition-actions

voi d process_event(const event base &);

Effects:

2006/12/0:

The Boost Statechart Libra- Referenc PagelC of 40

=

wnN

6.

10.

Selects the passed event as the current eventefoethcreferred to acur r ent Event)
Starts a neweactionsearch
Selects an arbitrary but in this reaction seamttyet visited state from all the currently active
innermost statedf no such state exists then continues with §@p
Constructs a function objeatt i on with a parameter-lessper at or () () returningr esul t
that does the following:
a. Searches a reaction suitabledar r ent Event , starting with the current innermost state
and moving outward until a state defining a reacta the event is found. Returns
simpl e_state<>:: forward_event () if no reaction has been found
b. Executes the found reaction. If the reactionltesequal to the return value of
sinpl e_state<>::forward_event () then resumes the reaction search (step a).
Returns the reaction result otherwise
Constructs a function objeekcept i onEvent Handl er returningr esul t and accepting an
exception event parameter that processes the passeption event, with the following
differences to the processing of normal events:

« From the moment when the exception has been thunwhright after the execution of the
exception event reaction, states that need to ibedesre only destructed but Bai t
member functions are called

o If the state machine is stable when the exceptiemtes processed then exception event
reaction search starts with the innermost statexha last visited during the last normal
event reaction search (the exception event waggieueas a result of this normal reaction
search)

« If the state machine isnstablewhen the exception event is processed then exceptient
reaction search starts with the outermosdtable state

¢ As for normal events, reaction search moves outwéueh the current state cannot handle
the event. However, if there is no outer stateof@ermost statbas been reached) the
reaction search is considered unsuccessful. Thexégption events will never be
dispatched to orthogonal regions other than thetlwatecaused the exception event

e Should an exception be thrown during exception ekearction search or reaction
execution then the exception is propagated othexdxcept i onEvent Handl er
function object (that igexcept i onTr ansl at or isnot used to translate exceptions
thrown while processing an exception event)

« If no reaction could be found for the exceptionréva if the state machine is not stable
after processing the exception event, the origgmakeption is rethrown. Otherwise, a
resul t object is returned equal to the one returned by
sinmpl e_state<>::discard_event ()

Passeact i on andexcept i onEvent Handl er to

ExceptionTransl ator::operator()().If Excepti onTransl at or: : oper at or

() () throws an exception, the exception is propagaiehe caller. If the caller catches the
exception, the currently active outermost stateahits direct and indirect inner states are
destructed. Innermost states are destructed@tker states are destructed as soon as all their
direct and indirect inner states have been destudthe inner states of each state are destructed
according to the number of their orthogonal regiime state in the orthogonal region with the
highest number is always destructed first, therstate in the region with the second-highest
number and so on. Otherwise continues with step 7

If the return value dExcepti onTransl at or: : operator () () is equal to the one of
simpl e_state<>:: forward_event () then continues with step 3

If the return value dExcept i onTransl at or: : operator () () is equal to the one of

si mpl e_st at e<>: : def er _event () then the return value of

current Event.intrusive fromthis() isstoredin a state-specific queue. Continues
with step 11

If the return value dExcept i onTransl at or: : operator () () is equal to the one of

si mpl e_st at e<>:: di scard_event () then continues with step 11

Callsstati c_cast< MostDerived * >(this)->unconsunmed_event

(currentEvent).Ifunconsumed_event () throws an exception, the exception is

2006/12/0:

The Boost Statechart Libra- Referenc Pagell of 40

propagated to the caller. Such an exception neaelislto the destruction of any states (in cor
to exceptions propagated frdBxcept i onTransl ator: : operator()())

11. If the posted events queue is non-empty theoeless the first event, selects it as
cur rent Event and continues with step 2. Returns to the catleeravise

Throws: Any exceptions propagated frdvbst Der i ved: : unconsuned_event () or
ExceptionTransl at or: : oper at or () . Exceptions never originate in the library itdalit only
in code supplied through template parameters:

oper at or new() (used to allocate states)
Al'l ocator::allocate()

state constructors

react member functions

exi t member functions

¢ transition-actions

e Most Deri ved: : unconsumned_event ()

voi d post _event (
const intrusive_ptr< const event base > &);

Effects. Pushes the passed event into the posted evesiie qu
Throws: Any exceptions propagated frodh| ocat or: : al | ocat e()

voi d post_event (const event base & evt);

Effects. post _event (evt.intrusive fromthis());
Throws: Any exceptions propagated frodh| ocat or: : al | ocat e()

voi d unconsuned_event (const event base & evt);

Effects. None

Note: This function (or, if present, the equally nangedived class member function) is called by
process_eve() whenever a dispatched event did not triggelaatien, se@rocess_eve(jteffects,
point 10 for more informatio

Classtemplate st at e_nachi ne observer functions

bool term nated() const;

Returns: t r ue, if the machine is terminated. Retufred se otherwise
Note: Is equivalent tet at e_begi n() == state_end()

tenpl ate< cl ass Target >
Target state _cast() const;

Returns. Depending on the form dfar get either a reference or a pointerctonst if at least one of
the currently active states can successfullgyoeani c_cast to Tar get . Returng) for pointer
targets and throwst d: : bad_cast for reference targets otherwigear get can take either of the
following forms:const O ass * orconst Cl ass &

Throws: st d: : bad_cast if Tar get is a reference type and none of the active staede
dynani c_cast to Target

Note: The search sequence is the same asrfocess_event ()

2006/12/0:

The Boost Statechart Libra- Referenc Pagel?2 of 40

tenpl ate< cl ass Target >
Target state_downcast() const;

Requires. For reference targets the compiler must suppattgd specialization of class templates,
otherwise a compile-time error will result. The éyglenoted byar get must be a model of the
SimpleStateor Stateconcepts

Returns: Depending on the form dfar get either a reference or a pointerctonst if Tar get is
equal to the most-derived type of a currently acstate. Return@ for pointer targets and throws
st d: : bad_cast for reference targets otherwigar get can take either of the following forms:
const Class * orconst Class &

Throws: st d: : bad_cast if Tar get is a reference type and none of the active stete® most
derived type equal thar get

Note: The search sequence is the same asrfocess_event ()

state_iterator state_begin() const;
state iterator state_end() const;

Return: Iterator objects, the rangst[at e_begi n(), st at e_end()) refers to all currently active
innermost stateg-or an object of typestate_iterator,*i returns a&onst

state _base type &andi.operator->() returns a&onst state base type *

Note: The position of a given innermost state in thegeais arbitrary. It may change with each call to a
modifier function. Moreover, all iterators are itidated whenever a modifier function is called

Header <boost/statechart/
asynchronous_state_machine.hpp>

Classtemplateasynchr onous_st at e_machi ne
This is the base class template of all asynchrostais machines.

Classtemplateasynchr onous_st at e_nachi ne parameters

|Temp|ate parameter ||Requirements ||Semantics ||Defau|t
The most-derived

Mbst Deri ved subtype of this class
template

A model of the
SimpleStateor State
concepts. The

Cont ext argument

passed to the The state that is
sinple state<>or |entered when the
Initial State st at e<> base of state machine is

Initial State must (|initiated through th
beMost Deri ved. That||Schedul er object
iS,Initial State
must be amutermost

stateof this state
machine

2006/12/0:

The Boost Statechart Libra- Referenc Pagel3 of 40

Schedul er A model of the seeScheduler fifo_schedul er <>
Scheduler concept |[concept
A model of the

Al | ocat or standard Allocator std::allocator< void >
concept
A model of the see

Excepti onTransl at or ExceptionTranslator ExceptionTranslatgnul | _excepti on_transl at or
concept concept (ﬂ

Classtemplateasynchr onous_st at e_nachi ne synopsis

nanespace boost

{

nanespace statechart
{
t enpl at e<
cl ass Most Deri ved,
class Initial State,
cl ass Schedul er = fifo_schedul er <>,
class Allocator = std::allocator< void >,
cl ass ExceptionTranslator = null _exception_translator >
ass asynchronous_state _nachi ne :
publ i c state_nachi ne<
Most Derived, Initial State, Allocator, ExceptionTranslator >,
public event processor< Schedul er >

c

pr ot ect ed:
t ypedef asynchronous_state _nmachi ne ny_base;

asynchronous_state_machi ne(
typenanme event processor< Schedul er >::ny_context ctx);
~asynchronous_st ate_machi ne();
1
}
}

Classtemplateasynchr onous_st at e_nachi ne constructor and
destructor

asynchronous_state_machi ne(
t ypenane event processor< Schedul er >::ny _context ctx);

Effects. Constructs a non-running asynchronous state meachi
Note: Users cannot creatsynchr onous_st at e_machi ne<> subtype objects directly. This can
only be done through an object of thehedul er class
~asynchronous_state_machi ne();
Effects: Destructs the state machine

Note: Users cannot destruasynchr onous_st at e_nmachi ne<> subtype objects directly. This
can only be done through an object of 8zdedul er class

2006/12/0:

The Boost Statechart Libra- Referenc Pagel4 of 40

Header <boost/statechart/event_processor.hpp>

Classtemplateevent processor

This is the base class template of all types thatgss events.
asynchronous_st at e_machi ne<> is just one possible event processor implememtatio

Classtemplateevent processor parameters

Template

parameter Requirements Semantics Default

seeScheduler

Schedul
chedul er A model of the Scheduler concept concept

Classtemplateevent processor synopss

nanespace boost

{

namespace statechart
{
t enpl at e< cl ass Schedul er >
cl ass event _processor
{
public:
virtual ~event processor();

Schedul er & ny_schedul er() const;

t ypedef typenane Schedul er:: processor handl e
processor _handl e;
processor _handl e ny handl e() const;

void initiate();
voi d process _event(const event_base & evt);
void term nate();

pr ot ect ed:
t ypedef const typenane Schedul er:: processor_context &
ny_cont ext;
event processor(my_context ctx);

private:
virtual void initiate_inpl ()
virtual void process_event i
const event _base & evt) =
virtual void term nate_inpl (

= 0;
npl (
0;
) =0
H
}
}

Classtemplateevent pr ocessor constructor and destructor

2006/12/0:

The Boost Statechart Libra- Referenc Pagelt of 40

event _processor(my_context ctx);
Effects. Constructs an event processor object and stopssof the reference returned by
myCont ext . ny_schedul er () and the object returned by Cont ext . ny_handl e()
Note: Users cannot creat’ent _pr ocessor <> subtype objects directly. This can only be done
through an object of thBchedul er class
virtual ~event processor();
Effects. Destructs an event processor object

Note: Users cannot destruevent _pr ocessor <> subtype objects directly. This can only be done
through an object of thBchedul er class

Classtemplateevent pr ocessor modifier functions
void initiate();

Effects;initiate_i npl ();
Throws: Any exceptions propagated from the implementadibinni ti ate_i npl ()

voi d process_event(const event _base & evt);

Effects. process_event _inpl (evt);
Throws: Any exceptions propagated from the implementatipr ocess_event _i npl ()

void termnate();

Effects.t erm nate_i npl () ;
Throws: Any exceptions propagated from the implementatitiner ni nat e_i npl ()

Classtemplateevent pr ocessor observer functions
Schedul er & ny_schedul er() const;

Returns: TheSchedul er reference obtained in the constructor
processor _handl e nmy_handl e() const;

Returns: Thepr ocessor _handl e object obtained in the constructor

Header <boost/statechart/fifo_scheduler.hpp>

Classtemplatefi f o_schedul er

This class template is a model of eheduleiconcept.

Classtemplatefi f o_schedul er parameters

Template
par ameter
I Il Il Il I

Requirements Semantics Default

2006/12/0:

The Boost Statechart Libra- Referenc Pagel€ of 40

. A model of the FifoWorkef . .
Fi f oVOr ker fifo worker<>
concept seeFifoWorker concept _
Al | ocat or A model of the standard std::allocator< void >
Allocator concept

Classtemplatefi f o_schedul er synopsis

nanespace boost

{
namespace statechart
{
t enpl at e<
class Fifowrker = fifo_worker<>,
class Allocator = std::allocator< void > >
class fifo_schedul er : noncopyabl e
{
public:

fifo schedul er(bool waitOnEnmptyQueue = false);

t ypedef inplenmentation-defined processor _handl e;

cl ass processor_context : noncopyabl e
{
processor _cont ext (
fifo_schedul er & schedul er,
const processor_handl e & theHandl e);

fifo_schedul er & ny_schedul er() const;
const processor _handl e & ny_handl e() const;

friend class fifo_schedul er;
friend class event _processor< fifo_schedul er >;

s

tenpl at e< cl ass Processor >

processor _handl e create processor();

tenpl at e< cl ass Processor, typenane Paranml >
processor _handl e create processor(Paraml paraml);

/'l More create_processor overl oads

voi d destroy processor(processor_handl e processor);

void initiate processor(processor_handl e processor);
void term nate processor(processor_handl e processor);

typedef intrusive_ptr< const event_base > event _ptr_type;

voi d queue_event (
const processor _handl e & processor,
const event _ptr_type & pEvent);

typedef typename FifoWdrker::work itemwork_ item

2006/12/0:

The Boost Statechart Libra- Referenc Pagel7 of 40

void queue work item(const work item& item);

void term nate();
bool term nated() const;

unsi gned | ong operator () (

unsi gned | ong maxEvent Count = 0);

}
}

Classtemplatefi f o_schedul er constructor
fifo_schedul er(bool waitOnEnptyQueue = fal se);

Effects: Constructs &i f o_schedul er <> object. In multi-threaded buildgai t OnEnpt yQueue

is forwarded to the constructor of a data membeyméFi f oWbr ker . In single-threaded builds, the

Fi f oWor ker data member is default-constructed

Note: In single-threaded builds ttie f o_schedul er <> constructor does not accept any parameters
andoper at or () () thus always returns to the caller when the evaeatiq is empty

Classtemplatefi f o_schedul er modifier functions

tenpl at e< cl ass Processor >
processor handl e create_processor();

Requires. ThePr ocessor type must be a direct or indirect subtype oféalent pr ocessor
class template

Effects. Creates and passeshiof oWbr ker : : queue_wor k_i t em() an object of type

Fi f oWor ker : : wor k_i t emthat, when later executedfin f oWor ker : : operator () (), leads
to a call to the constructor 8f ocessor , passing an approprigbe ocessor _cont ext object as
the only argument

Returns: A processor _handl e object that henceforth identifies the created epencessor object
Throws: Any exceptions propagated frdenf oWbr ker : : work_i ten() and

Fi f oWor ker: : queue_work _item()

Caution: The current implementation of this function makeg(indirect) call to globalper at or
new() . Unless globabper at or new() is replaced, care must be taken when to calftimistion in
applications with hard real-time requirements

tenpl at e< cl ass Processor, typenane Paraml >
processor _handl e create_processor(Paranl paranml);

Requires: ThePr ocessor type must be a direct or indirect subtype ofdhent pr ocessor

class template

Effects: Creates and passeshiof oWor ker : : queue_wor k_i t en{) an object of type

Fi f oWwor ker: : wor k_i t emthat, when later executedfin f oWbr ker : : operator () (), leads
to a call to the constructor Bf ocessor , passing an approprigbe ocessor _cont ext object and
par aml as arguments

Returns: A processor _handl e object that henceforth identifies the created epencessor object
Throws: Any exceptions propagated fradm f oWor ker: : work_it en() and

Fi f owor ker: : queue_work_iten()

Note: boost : : ref () andboost: : cref () can be used to pass arguments by reference thtre

2006/12/0:

The Boost Statechart Libra- Referenc Pagel8 of 40

by copy.fi f o_schedul er <> has 5 additionecr eat e_pr ocessor <> overloads, allowing t:
pass up to 6 custom arguments to the construct@ent processc

Caution: The current implementation of this and all otbeerloads make (indirect) calls to global
operat or new() . Unless globabper at or new() is replaced, care must be taken when to call
these overloads in applications with hard real-tieguirements

voi d destroy_processor(processor_handl e processor);

Requires. pr ocessor was obtained from a call to one of ttyeeat e_pr ocessor <>() overloads
on the saméi f o_schedul er <> object

Effects: Creates and passeshiof oWor ker : : queue_wor k_i t en{) an object of type

Fi f oWor ker: : wor k_i t emthat, when later executedfin f oWbr ker : : operator () (), leads
to a call to the destructor of the event proceebgect associated withr ocessor . The object is
silently discarded if the event processor objestlieen destructed before

Throws: Any exceptions propagated frdenf oWbr ker : : work_i ten() and

Fi f oWor ker: : queue_work _item()

Caution: The current implementation of this function leéalsin (indirect) call to globalper at or

del et e() (the call is made when the lgstocessor _handl e object associated with the event
processor object is destructed). Unless gloper at or del et e() is replaced, care must be taken
when to call this function in applications with Haeal-time requirements

void initiate_processor(processor_handl e processor);

Requires. pr ocessor was obtained from a call to one of ttreeat e_pr ocessor () overloads on
the samd i f o_schedul er <> object

Effects: Creates and passeshiof oWor ker : : queue_wor k_i t en{) an object of type

Fi f oWor ker: : wor k_i t emthat, when later executedkin f oWbr ker : : operator () (), leads
toacallto niti at e() on the event processor object associatedpvittcessor . The object is
silently discarded if the event processor objestlieen destructed before

Throws: Any exceptions propagated fradm f oWor ker: : work_it en() and

Fi f owor ker: : queue_work_iten()

voi d term nate_processor(processor_handl e processor);

Requires. pr ocessor was obtained from a call to one of threeat e_pr ocessor <>() overloads
on the saméi f o_schedul er <> object

Effects. Creates and passeshiof oWbr ker : : queue_wor k_i t em() an object of type

Fi f oWor ker : : wor k_i t emthat, when later executedfin f oWor ker : : operator () (), leads
to a call tot er m nat e() on the event processor object associated pvittcessor . The object is
silently discarded if the event processor objestlheen destructed before

Throws: Any exceptions propagated frdenf oWbr ker : : work_i ten() and

Fi f oWor ker: : queue_work _item()

voi d queue_event (
const processor_handl e & processor,
const event ptr_type & pEvent);

Requires: pEvent . get () ! = 0 andpr ocessor was obtained from a call to one of the

creat e_processor <>() overloads on the sanmieé f o_schedul er <> object

Effects: Creates and passeshiof oWor ker : : queue_wor k_i t en{) an object of type

Fi f oWor ker: : wor k_i t emthat, when later executedfin f oWbr ker : : operator () (), leads

to a call topr ocess_event (*pEvent) on the event processor object associated with

pr ocessor . The object is silently discarded if the eventgessor object has been destructed before

2006/12/0:

The Boost Statechart Libra- Referenc PagelS of 40
Throws: Any exceptions propagated frcFi f oWor ker: :work_iten() and
Fi f oWor ker: : queue_work _item()

voi d queue_work_itenm(const work item& item);

Effects: Fi f oWwor ker: : queue_work_item item);
Throws: Any exceptions propagated from the above call

void termnate();

Effects. Fi f oWorker::term nate()
Throws: Any exceptions propagated from the above call

unsi gned | ong operator()(unsigned | ong maxEvent Count = 0);
Requires: Must only be called from exactly one thread
Effects. Fi f oWor ker: : operator () (maxEvent Count)

Returns: The return value of the above call
Throws. Any exceptions propagated from the above call

Classtemplatefi f o_schedul er observer functions
bool term nated() const;

Requires: Must only be called from the thread that alsdsagper at or () ()
Returns: Fi f oWor ker: :term nated();

Header
<boost/statechart/exception_transator.hpp>

Classtemplateexcepti on_transl at or

This class template is a model of theceptionTranslatoconcept.

Classtemplateexcepti on_transl at or parameters

Template

parameter Requirements Semantics Default

The type of event that is
dispatched when an exceptioéscepti on_t hr own
propagated into the framework

A model of theEvent
concept

Excepti onEvent

Classtemplateexcepti on_transl at or synopsis& semantics

nanespace boost

{

nanespace st at echart

{

cl ass exception_thrown : public event< exception_thrown > {};

2006/12/0:

The Boost Statechart Libra- Referenc Page2C of 40

t enpl at e< cl ass Excepti onEvent = exception_thrown >
cl ass exception_transl ator

{
publ i c:

tenpl ate< cl ass Action, class ExceptionEvent Handl er >

result operator()(
Action acti on,
Excepti onEvent Handl er event Handl er)

{
try
{

return action();

}
catch(...)

{

return event Handl er (ExceptionEvent ());

Header <boost/statechart/
null_exception_translator.hpp>

Classnul | _exception_transl ator

This class is a model of tiexceptionTranslatoconcept.
Classnul | _excepti on_transl at or synopsis& semantics

nanmespace boost

{
nanmespace statechart
{
class null _exception_transl ator
{
public:
tenpl ate< cl ass Action, class ExceptionEvent Handl er >
result operator()(
Action action, ExceptionEventHandl er)
{
return action();
}
1
}
}

Header <boost/statechart/ssimple state.hpp>

2006/12/0:

The Boost Statechart Libra- Referenc Page21 of 40

Enum hi st ory_node

Defines the history type of a state.

nanmespace boost

{

nanespace statechart

{

enum hi st ory _node
{
has_no_hi story,
has_shal | ow_hi story,
has_deep_hi story,
has full _history // shallow & deep
1
}
}

Classtemplatesi npl e_state

This is the base class template for all model®@SimpleStateconcept. Such models must not call
of the followingsi npl e_st at e<> member functions from their constructors:

voi d post_event (
const intrusive_ptr< const event_base > &);
voi d post_event (const event_base &);

t enpl at e<
cl ass Hi st oryCont ext,
i npl enent at i on- defi ned- unsi gned-i nt eger-type
ort hogonal Position >
voi d cl ear_shal |l ow _history();
t enpl at e<
cl ass Hi st oryCont ext,
i npl enent at i on- defi ned- unsi gned-i nt eger-type
ort hogonal Position >
voi d cl ear _deep_history();

out er nost _cont ext _type & outernost_context();
const outernopst_context_type & outernost_context() const;

tenpl ate< class O her Context >

O her Cont ext & context();

tenpl ate< class O her Context >

const O herContext & context() const;

tenpl ate< cl ass Target >
Target state_cast() const;
tenpl at e< cl ass Target >
Target state_downcast() const;

state iterator state_begin() const;
state iterator state_end() const;

2006/12/0:

The Boost Statechart Libra- Referenc Page22 of 40

States that need to call any of these member fumcfrom their constructors must derive from
st at e class template.

Classtemplate si npl e_st at e parameters

Template

par ameter Requirements Semantics Default

Most Deri ved ||The most-derived subtype of this class templzﬂte ||

A most-derived direct or indirect subtype of the
st ate_nmachi ne Or
asynchronous_st at e_nachi ne class templateg
Cont ext or a model of th&impleStateor Stateconcepts
or an instantiation of the

si npl e_st at e<>: : ort hogonal class template.
Must be a complete type

Defines the
states' position|
in the state
hierarchy

An npl : : 1i st <> containing models of the
SimpleStateor Stateconcepts or instantiations pf
theshal | ow hi st ory Ordeep_hi story class
templates. If there is only a single inner initial Defi h
state that is not a template instantiation then if. efines the
can also be passed directly, without wrapping pner initial
into annpl : : | i st <>. TheCont ext argument state for each
Innerlnitial [[passed to thei npl e_st at e<> Or st at e<> base orthogogal

of each state in the list must correspond to th =re?¢'0r;£ Y tat
orthogonal region it belongs to. That is, the fir sggeasunb?hsasee
state in the list must pass inner states
Most Deri ved: : ort hogonal < 0 >, the second

Most Deri ved: : ort hogonal < 1 > and so forth.
Most Deri ved: : ort hogonal < 0 > and

Most Der i ved are synonymous

unspeci fied

Defines
whether the

One of the values defined in thiest ory node state saves

hi st or yMbde i shallow, deep |has_no_hi story
enumeration or both
histories upon
exit
Classtemplate si npl e_st at e synopsis
nanespace boost
{
nanespace statechart
{
t enpl at e<
cl ass Most Deri ved,
cl ass Cont ext,
class Innerlnitial = unspecified,
hi story _node hi storyMode = has_no_history >
class sinple_state : inplenentation-defined
{ |
publ i c:

2006/12/0:

The Boost Statechart Libra- Referenc Page23 of 40

/'l by default, a state has no reactions
typedef npl::list<> reactions;

/'l see tenplate paraneters

tenpl at e< i npl enent ati on-defi ned- unsi gned-i nt eger-type
i nner Ot hogonal Position >

struct orthogonal

/1 inplenmentation-defined

b

t ypedef typenane Context::outernost_context _type
out er nost _cont ext _t ype;

out er nost _cont ext _type & outernost context();
const outernopst_context_type & outernost context() const;

tenpl ate< cl ass O her Context >

O her Cont ext & context ();

tenpl ate< cl ass O her Cont ext >

const O her Context & context() const;

tenpl ate< cl ass Target >
Target state cast() const;
tenpl ate< cl ass Target >
Target state downcast() const;

/1 a nodel of the StateBase concept

t ypedef inplenmentation-defined state_base_type;

/'l a nodel of the standard Forward Iterator concept
t ypedef inplenmentation-defined state_iterator;

state iterator state begin() const;
state iterator state end() const;

voi d post_event (
const intrusive_ptr< const event base > &);

voi d post event(const event base &);

result discard event();
result forward event();
result defer _event();
tenpl ate< cl ass DestinationState >
result transit();
t enpl at e<
cl ass DestinationState,
cl ass Transiti onCont ext,
cl ass Event >
result transit(
void (TransitionContext::*)(const Event &),
const Event &);
result term nate();

t enpl at e<
cl ass Hi st oryCont ext,

2006/12/0:

The Boost Statechart Libra- Referenc Page24 of 40

i mpl ement at i on- def i ned- unsi gned-i nt eger-type
ort hogonal Position >
void clear_shall ow history();
tenpl at e<
cl ass Hi st oryCont ext,
i npl enent at i on- def i ned- unsi gned-i nt eger-type
ort hogonal Posi tion >
voi d cl ear deep history();

static id type static type();

tenpl ate< class Custonld >
static const Customid * customstatic type ptr();

tenpl ate< class Custom d >
static void customstatic type ptr(const Customd *);

/'l see transit() or termnate() effects
void exit() {}

pr ot ect ed:
sinple state();
~sinple_state();

}
}
}

Classtemplate si npl e_st at e constructor and destructor
sinple_state();

Requires: The constructors of all direct and indirect sylety must be exception-neutral

Effects: Constructs a state object

Throws: Any exceptions propagated frofh| ocat or: : al | ocat e() (the template parameter
passed to the base clascout er nost _cont ext _t ype)

~sinpl e_state();
Effects. Pushes all events deferred by the state intpdlseed events queue
Classtemplate si npl e_st at e modifier functions

voi d post_event (
const intrusive_ptr< const event base > & pEvt);

Requires: If called from a constructor of a direct or iretit subtype then the most-derived type must
directly or indirectly derive from thet at e class templateAll direct and indirect callers must be
exception-neutral

Effects: out er nost _cont ext () . post _event (pEvt);

Throws: Whatever the above call throws

voi d post_event (const event base & evt);

Requires: If called from a constructor of a direct or iretit subtype then the m-derived type mus

2006/12/0:

The Boost Statechart Libra- Referenc Page2t of 40

directly or indirectly derive from thst at e class templa. All direct and indirect callers must |
exception-neutral

Effects: out er nost _cont ext (). post _event (evt);

Throws: Whatever the above call throws

result discard _event();

Requires. Must only be called from withineact member functions, which are called by

cust om r eact i on<> instantiations. All direct and indirect callers shbbe exception-neutral
Effects. Instructs the state machine to discard the cueeent and to continue with the processing of
the remaining events (seéat e_nachi ne<>: : process_event () for details)

Returns: Ar esul t object. The user-supplieceact member function must return this object to its
caller

result forward event();

Requires: Must only be called from withineact member functions, which are called by

cust om r eact i on<> instantiations. All direct and indirect callers shbbe exception-neutral
Effects. Instructs the state machine to forward the curegent to the next state (see

state nachi ne<>::process_event () for details)

Returns: Ar esul t object. The user-supplieceact member function must return this object to its
caller

result defer_event();

Requires: Must only be called from withineact member functions, which are called by

cust om r eact i on<> instantiations. All direct and indirect callers shbbe exception-neutral

Effects: Instructs the state machine to defer the cueeaht and to continue with the processing of the
remaining events (sed at e_nmachi ne<>: : process_event () for details)

Returns: Ar esul t object. The user-supplieceact member function must return this object to its
caller

Throws: Any exceptions propagated frofh| ocat or: : al | ocat e() (the template parameter
passed to the base classout er nbst _cont ext _t ype)

tenpl at e< cl ass DestinationState >
result transit();

Requires. Must only be called from withineact member functions, which are called by
cust om r eact i on<> instantiations. All direct and indirect callers shbbe exception-neutral
Effects:

1. Exits all currently active direct and indirecher states of the innermost common context of this
state andest i nati onSt at e. Innermost states are exited first. Other stategxrited as soon
as all their direct and indirect inner states Hasen exited. The inner states of each state are
exited according to the number of their orthogaoegion. The state in the orthogonal region with
the highest number is always exited first, thenstiage in the region with the second-highest
number and so on.

The process of exiting a state consists of thevatlg steps:
1. If there is an exception pending that has nobgen handled successfully then only step 5
is executed
2. Calls theexi t member function (seg/nopsi} of the most-derived state objecteli t
() throws then steps 3 and 4 are not executed
3. If the state has shallow history then shallowdnisinformation is saved
4. If the state is an innermost state then deep Kigtbormation is saved for all direct a

2006/12/0:

The Boost Statechart Libra- Referenc Page2€ of 40

indirect outer states that have deep his

5. The state object is destructed
2. Enters (constructs) the state that is both atdin@er state of the innermost common context and

either theDest i nat i onSt at e itself or a direct or indirect outer state of
Destinati onSt ate

3. Enters (constructs) the tree formed by the diredtiadirect inner states of the previously entt
state down to thBest i nat i onSt at e and beyond depth first. The inner states of etate s
are entered according to the number of their odhagregion. The state in orthogonal region
always entered first, then the state in regiond. ss;on

4. Instructs the state machine to discard the cueeent and to continue with the processing of the
remaining events (sed at e_machi ne<>: : process_event () for details)

Returns: Ar esul t object. The user-supplieceact member function must return this object to its

caller
Throws: Any exceptions propagated from:

e operat or new() (used to allocate states)

e Allocator::allocate() (the template parameter passed to the base ¢lass o
out er nost _cont ext _type)

« state constructors

e exit member functions

Caution: Inevitably destructs this state before returrimghe callingr eact member function, which
must therefore not attempt to access anything éxtapk objects before returning to its caller

t enpl at e<
cl ass DestinationState,
cl ass TransitionContext,
cl ass Event >
result transit(
void (TransitionContext::*)(const Event &),
const Event &);

Requires: Must only be called from withineact member functions, which are called by
cust om r eact i on<> instantiations. All direct and indirect callers shbbe exception-neutral

Effects:

1. Exits all currently active direct and indirecher states of the innermost common context of this
state anddest i nat i onSt at e. Innermost states are exited first. Other state®xrited as soon
as all their direct and indirect inner states hasen exited. The inner states of each state are
exited according to the number of their orthogargion. The state in the orthogonal region with
the highest number is always exited first, thenstiaée in the region with the second-highest
number and so on.

The process of exiting a state consists of thevatlg steps:

1. If there is an exception pending that has nobgen handled successfully then only step 5
is executed

2. Calls theexi t member function (segynopsi} of the most-derived state objecteli t
() throws then steps 3 and 4 are not executed

3. If the state has shallow history then shallowdnisinformation is saved

4. If the state is an innermost state then deepryigtformation is saved for all direct and
indirect outer states that have deep history

5. The state object is destructed

2. Executes the passed transition action, forwarttiegpassed event

3. Enters (constructs) the state that is both atin@er state of the innermost common context and
either theDest i nat i onSt at e itself or a direct or indirect outer state of

2006/12/0:

The Boost Statechart Libra- Referenc Page27 of 40

Destinati onSt ate

4. Enters (constructs) the tree formed by the diredtiadirect inner states of the previously entt
state down to thBest i nat i onSt at e and beyond depth first. The inner states of etatle s
are entered according to the number of their odhagregion. The state in orthogonal region
always entered first, then the state in regiond. ss;on

5. Instructs the state machine to discard the cueneent and to continue with the processing of the
remaining events (sed at e_nmachi ne<>: : process_event () for details)

Returns: Ar esul t object. The user-supplieceact member function must return this object to its
caller
Throws: Any exceptions propagated from:

e operat or new() (used to allocate states)

e Allocator::all ocate() (the template parameter passed to the base ¢lass o
out er nost _cont ext _type)

« State constructors

e exi t member functions

o the transition action

Caution: Inevitably destructs this state before returnmthe callingr eact member function, which
must therefore not attempt to access anything éxtapk objects before returning to its caller

result termnate();

Requires: Must only be called from withineact member functions, which are called by

cust om r eact i on<> instantiations. All direct and indirect callers shbbe exception-neutral
Effects: Exits this state and all its direct and indiriecter states. Innermost states are exited firgtef
states are exited as soon as all their directrudlidect inner states have been exited. The inag¢esof
each state are exited according to the numbereaf dtithogonal region. The state in the orthogonal
region with the highest number is always exitest fithen the state in the region with the second-
highest number and so on.

The process of exiting a state consists of thewotlg steps:

1. If there is an exception pending that has nobgen handled successfully then only step 5 is
executed

2. Calls theexi t member function (seg/nopsi$ of the most-derived state objecteli t ()
throws then steps 3 and 4 are not executed

3. If the state has shallow history then shallowdnisinformation is saved

4. If the state is an innermost state then deeprgigiformation is saved for all direct and indirec
outer states that have deep history

5. The state object is destructed

Also instructs the state machine to discard theeotievent and to continue with the processindgnef t
remaining events (sed at e_nmachi ne<>: : process_event () for details)

Returns: Aresul t object. The user-supplieceact member function must return this object to its
caller

Throws: Any exceptions propagated from:

e Allocator::allocate() (the template parameter passed to the base ¢lass o
out er nost _cont ext _t ype, used to allocate space to save history)
e exit member functions

Note: If this state is the only currently active inrs¢ate of its direct outer state then the direcéout
state is terminated also. The same applies realydior all indirect outer stat

2006/12/0:

The Boost Statechart Libra- Referenc Page28 of 40

Caution: Inevitably destructs this state before returnimghe callingr eact member function, whic
must therefore not attempt to access anything éxtapk objects before returning to its caller

t enpl at e<
cl ass Hi storyCont ext,
i mpl ement at i on- def i ned- unsi gned- i nt eger-type
ort hogonal Position >
void clear_shall ow_history();

Requires: If called from a constructor of a direct or irgtit subtype then the most-derived type must
directly or indirectly derive from thet at e class template. Th@ st or yMbde argument passed to
thesi npl e st at e<> orst at e<> base oHi st or yCont ext must be equal to

has_shal |l ow _hi story orhas _full _history

Effects. Clears the shallow history of the orthogonal oagspecified byr t hogonal Posi ti on of
the state specified by st or yCont ext

Throws: Any exceptions propagated frofh| ocat or: : al | ocat e() (the template parameter
passed to the base clascout er nost _cont ext _t ype)

t enpl at e<
cl ass Hi storyCont ext,
i mpl ement ati on- def i ned- unsi gned- i nt eger-type
ort hogonal Position >
voi d cl ear _deep_history();

Requires: If called from a constructor of a direct or iretit subtype then the most-derived type must
directly or indirectly derive from thet at e class template. Th@ st or yMbde argument passed to
thesi npl e_st at e<> orst at e<> base oH st or yCont ext must be equal to

has_deep_hi story orhas_full _history

Effects. Clears the deep history of the orthogonal regisecified byor t hogonal Posi ti on of the
state specified biii st or yCont ext

Throws: Any exceptions propagated frofh| ocat or: : al | ocat e() (the template parameter
passed to the base classout er nost _cont ext _t ype)

Classtemplate si npl e_st at e observer functions
out er nost _cont ext _type & outernost_context();

Requires: If called from a constructor of a direct or iretit subtype then the most-derived type must
directly or indirectly derive from thet at e class template
Returns: A reference to the outermost context, which vgagis the state machine this state belongs to

const outernost_context_type & outernost_context() const;

Requires: If called from a constructor of a direct or iretit subtype then the most-derived type must
directly or indirectly derive from thet at e class template

Returns: A reference to the const outermost context, wisalways the state machine this state
belongs to

tenpl ate< cl ass O her Context >
O her Cont ext & context();

Requires: If called from a constructor of a direct or iretit subtype then the most-derived type must
directly or indirectly derive from thet at e class template
Returns: A reference to a direct or indirect con

2006/12/0:

The Boost Statechart Libra- Referenc Page2S of 40

tenpl ate< cl ass O her Context >
const Ot herContext & context() const;

Requires: If called from a constructor of a direct or irgtit subtype then the most-derived type must
directly or indirectly derive from thet at e class template
Returns: A reference to a const direct or indirect context

tenpl ate< cl ass Target >
Target state_cast() const;

Requires: If called from a constructor of a direct or iretit subtype then the most-derived type must
directly or indirectly derive from thet at e class template

Returns: Has exactly the same semanticsbat e_nmachi ne<>: : st ate cast <>()

Throws: Has exactly the same semanticsfiat e_nachi ne<>: : st ate_cast <>()

Note: The result isinspecified if this function is called when the machinaiisstable

tenpl ate< cl ass Target >
Target state_downcast() const;

Requires: If called from a constructor of a direct or iretit subtype then the most-derived type must
directly or indirectly derive from thet at e class template. Moreover,

stat e _nachi ne<>:: state downcast <>() requirements also apply

Returns: Has exactly the same semanticsfat e_nmachi ne<>: : st at e_downcast <>()
Throws: Has exactly the same semanticsfat e _nmachi ne<>: : st at e_downcast <>()

Note: The result isinspecified if this function is called when the machinaiisstable

state_iterator state_begin() const;
state iterator state_end() const;

Require: If called from a constructor of a direct or iretit subtype then the most-derived type must
directly or indirectly derive from thet at e class template

Return: Have exactly the same semanticstaat e _nmachi ne<>: : st at e _begi n() and

state nachi ne<>::state end()

Note: The result isinspecified if these functions are called when the machinengable

Classtemplate si npl e_st at e static functions
static id _type static_type();

Returns: A value unambiguously identifying the typeMist Der i ved
Note: i d_t ype values are comparable wibiper at or ==() andoper at or ! =() . An unspecified
collating order can be established wsthd: : | ess< id_type >

tenpl ate< class Custom d >
static const Customid * customstatic_type ptr();

Requires: If a custom type identifier has been set t@ast onl d must match the type of the
previously set point

Returns: The pointer to the custom type identifier fyst Der i ved or0

Note: This function is not available BOOST STATECHART USE NATI VE RTTI is defined

tenpl ate< class Custom d >

2006/12/0:

The Boost Statechart Libra- Referenc Page3C of 40

static void customstatic_type_ptr(const Customd *);

Effects. Sets the pointer to the custom type identifierMost Der i ved
Note: This function is not available BOOST STATECHART USE NATI VE RTTI is defined

Header <boost/statechart/state.npp>

Classtemplatest at e

This is the base class template for all modelsi@Etateconcept. Such models typically need to call at
least one of the followingi npl e st at e<> member functions from their constructors:

voi d post_event (
const intrusive_ptr< const event_base > &);
voi d post_event(const event_base &);

t enpl at e<
cl ass Hi storyCont ext,
i npl enent at i on- defi ned- unsi gned-i nt eger-type
ort hogonal Position >
voi d cl ear_shal |l ow _history();
t enpl at e<
cl ass Hi st oryCont ext,
i npl enent at i on- defi ned- unsi gned-i nt eger-type
ort hogonal Position >
voi d cl ear_deep_history();

out er nost _cont ext _type & outernost_context();
const outernost_context _type & outernost_context() const;

tenpl ate< cl ass O her Context >

O her Cont ext & context();

tenpl ate< cl ass O her Context >

const O herContext & context() const;

tenpl ate< cl ass Target >
Target state_cast() const;
tenpl ate< cl ass Target >
Target state_downcast() const;

state iterator state_begin() const;
state iterator state_end() const;

States that do not need to call any of these mefahetions from their constructors should rather
derive from thesi npl e_st at e class template, what saves the implementatioheofdrwarding
constructor.

Classtemplate st at e synopsis

nanespace boost

{

nanespace st at echart

{

2006/12/0:

The Boost Statechart Libra- Referenc Page31 of 40

t enpl at e<
cl ass Most Deri ved,
cl ass Cont ext,
class Innerlnitial = unspecified,
hi story _node hi storyMode = has_no_history >
class state : public sinple_state<
Most Derived, Context, Innerlnitial, historyMde >

{
pr ot ect ed:
struct ny_cont ext
/1 inplenmentation-defined
1
typedef state mny_base;
state(nmy_context ctx);
~state();
1
}
}

Direct and indirect subtypes sf at e<> must provide a constructor with the same signadarthe
st at e<> constructor, forwarding the context parameter.

Header <boost/statechart/shallow_history.hpp>

Classtemplateshal | ow _hi story

This class template is used to specify a shall®tohy transition target or a shallow history inivetial
state.

Classtemplateshal | ow_hi st ory parameters

Template

par ameter Requirements Semantics

A model of theSimpleStateor Stateconcepts. The
type passed a®nt ext argument to the

si npl e state<> Orst at e<> base obefaul t State
must itself passas_shal | ow_hi story oOr

has_ful | _hi st ory ashi st or yMode argument to its
si npl e_st at e<> Or st at e<> base

The state that is entered if
shallow history is not
available

Defaul t State

Classtemplateshal | ow_hi st ory synopsis

nanespace boost

{

nanespace st at echart

{

tenpl ate< cl ass DefaultState >
cl ass shal |l ow_history

2006/12/0:

The Boost Statechart Libra- Referenc Page32 of 40

{
/1 inplenmentation-defined

b
}
}

Header <boost/statechart/deep_history.hpp>

Classtemplatedeep hi story

This class template is used to specify a deeprigistansition target or a deep history inner inigitate.
The current deep history implementation has stiméations

Classtemplatedeep _hi st ory parameters

Template , .
parameter Requirements Semantics

A model of theSimpleStateor Stateconcepts. The

type passed ant ext argument to the
si npl e_st at e<> Or st at e<> base obef aul t St at e || The state that is entered if

Def aul t St ate . . - .

must itself passas_deep_hi st ory or deep history is not availale
has_ful | _hi story ashi st or yMode argument to its
si npl e st at e<> Or st at e<> base

Classtemplate deep_hi st ory synopsis

nanmespace boost

{

nanespace statechart

{

tenpl ate< class DefaultState >
cl ass deep_history

/1 inplenmentation-defined

b
}
}

Header <boost/statechart/event_basehpp>

Classevent base
This is the common base of all events.

Classevent base synopsis

nanespace boost

{

nanespace st at echart

2006/12/0:

The Boost Statechart Libra- Referenc Page33 of 40

{

cl ass event base
{ |
publ i c:
i ntrusive_ptr< const event_base >
intrusive fromthis() const;

typedef inplenentation-defined id type;

id_type dynam c_type() const;

tenpl at e< typenane Custonld >
const Custom d * custom dynam c type ptr() const;

pr ot ect ed:
event base(unspecified-paraneter);
virtual ~event base();

¥
}
}

Classevent base constructor and destructor
event base(unspecified-paraneter);
Effects: Constructs the common base portion of an event

virtual -~event base();

Effects. Destructs the common base portion of an event

Classevent base observer functions
intrusive_ptr< const event_base > intrusive_fromthis() const;

Returns: Anotheri ntrusi ve_ptr< const event_base >referencing hi sifthi s is
already referenced by amt r usi ve_pt r <>. Otherwise, returns dmt r usi ve_ptr < const
event _base > referencing a newly created copy of the most-@eriobject

id type dynam c_type() const;

Returns: A value unambiguously identifying the most-dedugpe

Note: i d_t ype values are comparable witiper at or ==() andoper at or ! =() . An unspecified
collating order can be established wsthd: : | ess< i d_type >.Incontrasttd ypei d(cs),
this function is available even on platforms thatndt support C++ RTTI (or have been configured to
not support it)

tenpl at e< typenane Custom d >
const Customd * customdynam c_type_ptr() const;

Requires: If a custom type identifier has been set tBast oml d must match the type of the
previously set point

Returns: A pointer to the custom type identifier @r

Note: This function is not available BOOST STATECHART USE NATI VE RTTI is defined

2006/12/0:

The Boost Statechart Libra- Referenc Page34 of 40

Header <boost/statechart/event.hpp>

Classtemplate event

This is the base class template of all events.
Classtemplate event synopsis

nanmespace boost

{
nanmespace statechart
{
t enpl at e< cl ass Most Derived >
cl ass event : inplenentation-defined
{ |
public:
static id_type static type();
tenpl ate< class Custom d >
static const Customid * customstatic type ptr();
tenpl ate< class Custonld >
static void customstatic type ptr(const Customd *);
pr ot ect ed:
event () ;
virtual ~event();
1
}
}

Classtemplate event constructor and destructor
event () ;

Effects: Constructs an event
virtual ~event();

Effects: Destructs an event
Classtemplate event static functions
static id _type static_type();
Returns: A value unambiguously identifying the typeMist Der i ved
Note: i d_t ype values are comparable wibiper at or ==() andoper at or ! =() . An unspecified

collating order can be established wsthd: : | ess< id_type >

tenpl ate< class Custom d >
static const Customid * customstatic_type ptr();

2006/12/0:

The Boost Statechart Libra- Referenc Page3t of 40

Requires: If a custom type identifier has been set tCust onl d must match the type of ti
previously set point

Returns: The pointer to the custom type identifier fdyst Deri ved or0

Note: This function is not available BOOST STATECHART USE NATI VE RTTI is defined

tenpl ate< class Custonld >
static void customstatic _type ptr(const Customd *);

Effects: Sets the pointer to the custom type identifieMost Der i ved
Note: This function is not available BOOST STATECHART USE NATI VE RTTI is defined

Header <boost/statechart/transition.npp>

Classtemplatet ransi ti on

This class template is used to specify a transigaction. Instantiations of this template can apjre
ther eact i ons membett ypedef in models of th&impleStateandStateconcepts.

Classtemplatet r ansi ti on parameters

Template , .
par ameter Requirements Semantics Default
The event triggerin
the transition. If
event base IS
Event A model of theEventconcept or the clagspecified, the
event base transition is
triggered by all
models of thé&event
concept
A model of theSimpleStateor State
concepts or an instantiation of the
shal | ow hi story Ordeep history The destination std
Destination class templates. The source state (the||to make a transitior]

state for which this transition is defined)to
andDest i nat i on must have a common
direct or indirect context

The state of which
Tr ansi ti onCont ext A common context of the source and the transition actioflunspeci i ed

Desti nati on State .
is a member

The transition actig

A pointer to a member function of that is executed

oTransi ti onActi on Transi tionCont ext. The member durlng_the unspeci i ed
function must accept@nst Event & ([transition. By
parameter and retukmi d default no transition

action is executed

Classtemplatet r ansi t i on synopsis

nanespace boost

2006/12/0:

The Boost Statechart Libra- Referenc Page3€ of 40

{
nanespace statechart
{
tenpl at e<
cl ass Event,
cl ass Destinati on,
class TransitionContext = unspecified,
void (TransitionContext::*pTransitionAction)(
const Event &) = unspecified >
class transition
/1 inplenentation-defined
1
}
}

Classtemplatet r ansi t i on semantics

When executed, one of the following calls to a menibnction of the state for which the reaction was
defined is made:

e transit< Destination >(), if no transition action was specified
e transit< Destination >(pTransitionAction, currentEvent),ifa
transition action was specified

Header
<boost/statechart/in_state reaction.hpp>

Classtemplatei n_state_reaction

This class template is used to specify an in-st&detion. Instantiations of this template can appea
ther eact i ons membett ypedef in models of th&impleStateandStateconcepts.

Classtemplatei n_st at e _reacti on parameters

Template

parameter Requirements Semantics

The event triggering the if}-
state reaction. If

A model of theEventconcept or the class event base is specified,
event base the in-state reaction is
triggered by all models of
the Eventconcept

Event

Either the state defining the in-state reactioelfitsr || The state of which the

React i onCont ext L L. B ;i
one of it direct or indirect contexts action is a member

A pointer to a member function of
pActi on React i onCont ext . The member function must
accept aonst Event & parameter and retumi d

The action that is executef
during the in-state reactig

=

2006/12/0:

The Boost Statechart Libra- Referenc

Classtemplatei n_stat e_reacti on synopsis

nanmespace boost

{

nanespace statechart

{

tenpl at e<
cl ass Event,
cl ass Reacti onCont ext,
void (ReactionContext::*pAction)(const Event &) >
class in_state reaction

b
}
}

Classtemplatei n_st at e_r eact i on semantics

/1 inplenmentation-defined

Page37 of 40

When executedAct i on is called, passing the triggering event as thg argument. Afterwards, a
call is made to thdi scard_event member function of the state for which the reacti@s defined.

Header <boost/statechart/termination.npp>

Classtemplatet erm nati on

This class template is used to specify a terminat@action. Instantiations of this template caneapr
ther eact i ons membett ypedef in models of th&SimpleStateandStateconcepts.

Classtemplatet er m nat i on parameters

-pl)_:rrgmggr Requirements Semantics
The event triggering the
termination. Ifevent base
Event ,:\vg]?dﬁggfethiventconcept or the class is specified, the terminatigf
T is triggered by all models
the Eventconcept

Classtemplatet er m nat i on synopsis

nanespace boost

{

nanespace statechart

{

tenpl at e< cl ass Event >
cl ass term nation

b
}

/1 inplenentation-defined

2006/12/0:

The Boost Statechart Libra- Referenc Page38 of 40

}
Classtemplatet er m nat i on semantics

When executed, a call is made to tlexr mi nat e member function of the state for which the rearctio
was defined.

Header <boost/statechart/deferral.hpp>

Classtemplatedef err al

This class template is used to specify a defegattion. Instantiations of this template can appetre
react i ons membett ypedef in models of th&SimpleStateandStateconcepts.

Classtemplate def err al parameters

;mggr Requirements Semantics
The event triggering the
deferral. Ifevent base is
Event ,:\vgct)diggfethaEventconcept or the class specified, the deferral is
— triggered by all models of
the Eventconcept

Classtemplate def err al synopsis

nanmespace boost

{

nanespace statechart

{

tenpl at e< cl ass Event >
cl ass deferral

/1 inplenmentation-defined

b
}
}

Classtemplate def er r al semantics

When executed, a call is made to tlef er event member function of the state for which the
reaction was defined.

Header <boost/statechart/custom_reaction.hpp>

Classtemplatecust om reacti on

This class template is used to specify a custowticer Instantiations of this template can appeahe
react i ons membett ypedef in models of th&impleStateandStateconcepts.

2006/12/0:

The Boost Statechart Libra- Referenc

Classtemplate cust om r eact i on parameters

Page3¢ of 40

Template

par ameter Requirements

Semantics

Event A model of theEventconcept or the clagsent base

The event

custom reaction. If
event base iS
specified, the custom

reaction is
all models
concept

triggering th

triggered by
of th&event

Classtemplatecust om r eact i on synopsis

nanespace boost

{

nanespace st at echart

{

tenpl at e< cl ass Event >
cl ass customreaction

/1 inplenentation-defined

b
}
}

Classtemplate cust om r eact i on semantics

When executed, a call is made to the user-suppkeadtt member function of the state for which the
reaction was defined. Thieeact member function must have the following signature:

result react(const Event &);

and must call exactly one of the following reactionctions and return the obtainedsul t object:

result discard event();
result forward event();
result defer _event();
tenpl ate< class DestinationState >
result transit();
t enpl at e<
cl ass DestinationState,
cl ass Transiti onContext,
cl ass Event >
result transit(

void (TransitionContext::*)(const Event &),

const Event &);
result term nate();

Header <boost/statechart/result.hpp>

2006/12/0:

The Boost Statechart Libra- Referenc Page4C of 40

Classresul t

Defines the nature of the reaction taken in a saepliedr eact member function (called when a
cust om reacti on is executed). Objects of this type are alwaysiobthby calling one of the
reaction functions and must be returned fromrtéact member function immediately.

nanespace boost

{

nanespace st at echart

{

class result

{
public:
result(const result & other);
~result();

private:

/'l Result objects are not assignable
result & operator=(const result & other);
1
}
}

Classr esul t constructor and destructor
result(const result & other);
Requires: ot her isnot consumed

Effects. Copy-constructs a nemesul t object and market her as consumed. That isesul t has
destructive copy semantics

~resul t();

Requires: t hi s is marked as consumed
Effects. Destructs the result object

™~ HTML
- 4,01 j
Revised 03 December, 2006

Copyright © 2003-200&\ndreas Huber Donni

Distributed under the Boost Software License, \éerdi.0. (See accompanying ILICENSE_1_0.txor
copy athttp://www.boost.org/LICENSE 1 0)

2006/12/0:

