// Copyright Oliver Kowalke 2014. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_CONTEXT_EXECUTION_CONTEXT_H #define BOOST_CONTEXT_EXECUTION_CONTEXT_H #include #if ! defined(BOOST_CONTEXT_NO_EXECUTION_CONTEXT) # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # ifdef BOOST_HAS_ABI_HEADERS # include BOOST_ABI_PREFIX # endif # if defined(BOOST_USE_SEGMENTED_STACKS) extern "C" { void __splitstack_getcontext( void * [BOOST_CONTEXT_SEGMENTS]); void __splitstack_setcontext( void * [BOOST_CONTEXT_SEGMENTS]); } # endif namespace boost { namespace context { struct preallocated { void * sp; std::size_t size; stack_context sctx; preallocated( void * sp_, std::size_t size_, stack_context sctx_) noexcept : sp( sp_), size( size_), sctx( sctx_) { } }; class BOOST_CONTEXT_DECL execution_context { private: struct activation_record { typedef boost::intrusive_ptr< activation_record > ptr_t; enum flag_t { flag_main_ctx = 1 << 1, flag_preserve_fpu = 1 << 2, flag_segmented_stack = 1 << 3 }; thread_local static activation_record toplevel_rec; thread_local static ptr_t current_rec; std::size_t use_count; fcontext_t fctx; stack_context sctx; int flags; // used for toplevel-context // (e.g. main context, thread-entry context) activation_record() noexcept : use_count( 1), fctx( nullptr), sctx(), flags( flag_main_ctx) { } activation_record( fcontext_t fctx_, stack_context sctx_, bool use_segmented_stack) noexcept : use_count( 0), fctx( fctx_), sctx( sctx_), flags( use_segmented_stack ? flag_segmented_stack : 0) { } virtual ~activation_record() noexcept = default; void resume( bool fpu = false) noexcept { // store current activation record in local variable activation_record * from = current_rec.get(); // store `this` in static, thread local pointer // `this` will become the active (running) context // returned by execution_context::current() current_rec = this; // set FPU flag if (fpu) { from->flags |= flag_preserve_fpu; this->flags |= flag_preserve_fpu; } else { from->flags &= ~flag_preserve_fpu; this->flags &= ~flag_preserve_fpu; } # if defined(BOOST_USE_SEGMENTED_STACKS) if ( 0 != (flags & flag_segmented_stack) ) { // adjust segmented stack properties __splitstack_getcontext( from->sctx.segments_ctx); __splitstack_setcontext( sctx.segments_ctx); // context switch from parent context to `this`-context jump_fcontext( & from->fctx, fctx, reinterpret_cast< intptr_t >( this), fpu); // parent context resumed // adjust segmented stack properties __splitstack_setcontext( from->sctx.segments_ctx); } else { // context switch from parent context to `this`-context jump_fcontext( & from->fctx, fctx, reinterpret_cast< intptr_t >( this), fpu); // parent context resumed } # else // context switch from parent context to `this`-context jump_fcontext( & from->fctx, fctx, reinterpret_cast< intptr_t >( this), fpu); // parent context resumed # endif } virtual void deallocate() {} friend void intrusive_ptr_add_ref( activation_record * ar) { ++ar->use_count; } friend void intrusive_ptr_release( activation_record * ar) { BOOST_ASSERT( nullptr != ar); if ( 0 == --ar->use_count) { ar->deallocate(); } } }; template< typename Fn, typename StackAlloc > class capture_record : public activation_record { private: StackAlloc salloc_; Fn fn_; static void destroy( capture_record * p) { StackAlloc salloc( p->salloc_); stack_context sctx( p->sctx); // deallocate activation record p->~capture_record(); // destroy stack with stack allocator salloc.deallocate( sctx); } public: explicit capture_record( stack_context sctx, StackAlloc const& salloc, fcontext_t fctx, Fn && fn, bool use_segmented_stack) noexcept : activation_record( fctx, sctx, use_segmented_stack), salloc_( salloc), fn_( std::forward< Fn >( fn) ) { } void deallocate() override final { destroy( this); } void run() noexcept { try { fn_(); } catch (...) { std::terminate(); } BOOST_ASSERT( 0 == (flags & flag_main_ctx) ); } }; // tampoline function // entered if the execution context // is resumed for the first time template< typename AR > static void entry_func( intptr_t p) noexcept { BOOST_ASSERT( 0 != p); AR * ar( reinterpret_cast< AR * >( p) ); BOOST_ASSERT( nullptr != ar); // start execution of toplevel context-function ar->run(); } typedef boost::intrusive_ptr< activation_record > ptr_t; ptr_t ptr_; template< typename StackAlloc, typename Fn > static activation_record * create_context( StackAlloc salloc, Fn && fn, bool use_segmented_stack) { typedef capture_record< Fn, StackAlloc > capture_t; stack_context sctx( salloc.allocate() ); // reserve space for control structure #if defined(BOOST_NO_CXX14_CONSTEXPR) || defined(BOOST_NO_CXX11_STD_ALIGN) std::size_t size = sctx.size - sizeof( capture_t); void * sp = static_cast< char * >( sctx.sp) - sizeof( capture_t); #else constexpr std::size_t func_alignment = 64; // alignof( capture_t); constexpr std::size_t func_size = sizeof( capture_t); // reserve space on stack void * sp = static_cast< char * >( sctx.sp) - func_size - func_alignment; // align sp pointer std::size_t space = func_size + func_alignment; sp = std::align( func_alignment, func_size, sp, space); BOOST_ASSERT( nullptr != sp); // calculate remaining size std::size_t size = sctx.size - ( static_cast< char * >( sctx.sp) - static_cast< char * >( sp) ); #endif // create fast-context fcontext_t fctx = make_fcontext( sp, size, & execution_context::entry_func< capture_t >); BOOST_ASSERT( nullptr != fctx); // placment new for control structure on fast-context stack return new ( sp) capture_t( sctx, salloc, fctx, std::forward< Fn >( fn), use_segmented_stack); } template< typename StackAlloc, typename Fn > static activation_record * create_context( preallocated palloc, StackAlloc salloc, Fn && fn, bool use_segmented_stack) { typedef capture_record< Fn, StackAlloc > capture_t; // reserve space for control structure #if defined(BOOST_NO_CXX14_CONSTEXPR) || defined(BOOST_NO_CXX11_STD_ALIGN) std::size_t size = palloc.size - sizeof( capture_t); void * sp = static_cast< char * >( palloc.sp) - sizeof( capture_t); #else constexpr std::size_t func_alignment = 64; // alignof( capture_t); constexpr std::size_t func_size = sizeof( capture_t); // reserve space on stack void * sp = static_cast< char * >( palloc.sp) - func_size - func_alignment; // align sp pointer std::size_t space = func_size + func_alignment; sp = std::align( func_alignment, func_size, sp, space); BOOST_ASSERT( nullptr != sp); // calculate remaining size std::size_t size = palloc.size - ( static_cast< char * >( palloc.sp) - static_cast< char * >( sp) ); #endif // create fast-context fcontext_t fctx = make_fcontext( sp, size, & execution_context::entry_func< capture_t >); BOOST_ASSERT( nullptr != fctx); // placment new for control structure on fast-context stack return new ( sp) capture_t( palloc.sctx, salloc, fctx, std::forward< Fn >( fn), use_segmented_stack); } template< typename StackAlloc, typename Fn, typename Tpl, std::size_t ... I > static activation_record * create_capture_record( StackAlloc salloc, Fn && fn_, Tpl && tpl_, std::index_sequence< I ... >, bool use_segmented_stack) { return create_context( salloc, // lambda, executed in new execution context [fn=std::forward< Fn >( fn_),tpl=std::forward< Tpl >( tpl_)] () mutable -> decltype( auto) { detail::invoke( fn, // non-type template parameter pack used to extract the // parameters (arguments) from the tuple and pass them to fn // via parameter pack expansion // std::tuple_element<> does not perfect forwarding std::forward< decltype( std::get< I >( std::declval< Tpl >() ) ) >( std::get< I >( std::forward< Tpl >( tpl) ) ) ... ); }, use_segmented_stack); } template< typename StackAlloc, typename Fn, typename Tpl, std::size_t ... I > static activation_record * create_capture_record( preallocated palloc, StackAlloc salloc, Fn && fn_, Tpl && tpl_, std::index_sequence< I ... >, bool use_segmented_stack) { return create_context( palloc, salloc, // lambda, executed in new execution context [fn=std::forward< Fn >( fn_),tpl=std::forward< Tpl >( tpl_)] () mutable -> decltype( auto) { detail::invoke( fn, // non-type template parameter pack used to extract the // parameters (arguments) from the tuple and pass them to fn // via parameter pack expansion // std::tuple_element<> does not perfect forwarding std::forward< decltype( std::get< I >( std::declval< Tpl >() ) ) >( std::get< I >( std::forward< Tpl >( tpl) ) ) ... ); }, use_segmented_stack); } execution_context() : // default constructed with current activation_record ptr_( activation_record::current_rec) { } public: static execution_context current() noexcept { return execution_context(); } # if defined(BOOST_USE_SEGMENTED_STACKS) template< typename Fn, typename ... Args > explicit execution_context( segmented_stack salloc, Fn && fn, Args && ... args) : // deferred execution of fn and its arguments // arguments are stored in std::tuple<> // non-type template parameter pack via std::index_sequence_for<> // preserves the number of arguments // used to extract the function arguments from std::tuple<> ptr_( create_capture_record( salloc, std::forward< Fn >( fn), std::make_tuple( std::forward< Args >( args) ... ), std::index_sequence_for< Args ... >(), true) ) { } template< typename Fn, typename ... Args > explicit execution_context( preallocated palloc, segmented_stack salloc, Fn && fn, Args && ... args) : // deferred execution of fn and its arguments // arguments are stored in std::tuple<> // non-type template parameter pack via std::index_sequence_for<> // preserves the number of arguments // used to extract the function arguments from std::tuple<> ptr_( create_capture_record( palloc, salloc, std::forward< Fn >( fn), std::make_tuple( std::forward< Args >( args) ... ), std::index_sequence_for< Args ... >(), true) ) { } # endif template< typename StackAlloc, typename Fn, typename ... Args > explicit execution_context( StackAlloc salloc, Fn && fn, Args && ... args) : // deferred execution of fn and its arguments // arguments are stored in std::tuple<> // non-type template parameter pack via std::index_sequence_for<> // preserves the number of arguments // used to extract the function arguments from std::tuple<> ptr_( create_capture_record( salloc, std::forward< Fn >( fn), std::make_tuple( std::forward< Args >( args) ... ), std::index_sequence_for< Args ... >(), false) ) { } template< typename StackAlloc, typename Fn, typename ... Args > explicit execution_context( preallocated palloc, StackAlloc salloc, Fn && fn, Args && ... args) : // deferred execution of fn and its arguments // arguments are stored in std::tuple<> // non-type template parameter pack via std::index_sequence_for<> // preserves the number of arguments // used to extract the function arguments from std::tuple<> ptr_( create_capture_record( palloc, salloc, std::forward< Fn >( fn), std::make_tuple( std::forward< Args >( args) ... ), std::index_sequence_for< Args ... >(), false) ) { } void operator()( bool preserve_fpu = false) noexcept { ptr_->resume( preserve_fpu); } }; }} # ifdef BOOST_HAS_ABI_HEADERS # include BOOST_ABI_SUFFIX # endif #endif #endif // BOOST_CONTEXT_EXECUTION_CONTEXT_H