
Feature Data Objects (FDO)

Developer’s Guide

February 2006

Copyright© 2006 Autodesk, Inc.
All Rights Reserved
This publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose.
AUTODESK, INC., MAKES NO WARRANTY, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE
MATERIALS, AND MAKES SUCH MATERIALS AVAILABLE SOLELY ON AN "AS-IS" BASIS.
IN NO EVENT SHALL AUTODESK, INC., BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF PURCHASE OR USE OF THESE MATERIALS.
THE SOLE AND EXCLUSIVE LIABILITY TO AUTODESK, INC., REGARDLESS OF THE FORM OF ACTION, SHALL NOT
EXCEED THE PURCHASE PRICE OF THE MATERIALS DESCRIBED HEREIN.
Autodesk, Inc., reserves the right to revise and improve its products as it sees fit. This publication describes the state of the
product at the time of publication, and may not reflect the product at all times in the future.

Trademarks
Autodesk, Autodesk Map and Autodesk MapGuide are registered trademarks of Autodesk, Inc., in the USA and/or other
countries. DWF is a trademark of Autodesk, Inc., in the USA and/or other countries. All other brand names, product names or
trademarks belong to their respective holders.

FDO Third Party Software Program Credits
FDO contains certain technology licensed from third parties. The notices and/or other terms and conditions applicable to or
associated with such third party technology are set out below.
Xerces and Xalan are Copyright © 1999-2005, The Apache Software Foundation. Licensed under the Apache License, Version
2.0; you may not use this file except in compliance with the license. You may obtain a copy of the license at the following
web address: http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the license for the specific language governing permissions and limitations under the license.
Libcurl is Copyright © 1996 - 2006, Daniel Stenberg, <daniel@haxx.se>. All rights reserved. Permission to use, copy, modify,
and distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.
Boost is offered under the Boost Software License - Version 1.0, which provides as follows: Permission is hereby granted, free
of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this
license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative
works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following:
The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the
following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software,
unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language
processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE
LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
GDAL is Copyright © 2000, Frank Warmerdam. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitationthe rights to use, copy, modify, merge, publish, distribute, sublicense,and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall be included in all copies or substantial portions of the Software.

GOVERNMENT USE
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR 12.212 (Commercial
Computer Software-Restricted Rights) and DFAR 227.7202 (Rights in Technical Data and Computer Software), as applicable.
Published By: Autodesk, Inc.
111 McInnis Parkway
San Rafael, CA 94903, USA
Government Use

1 2 3 4 5 6 7 8 9 10

Contents

Chapter 1 About This Guide . 1
Audience and Purpose . 2
How This Guide Is Organized . 2
What’s New . 3

Chapter 2 Introduction . 7
What Is the FDO API? . 8

From the Perspective of the Client Application User 8
From the Perspective of the Client Application Engineer 8

Getting Started . 9
FDO Architecture and Providers . 9
What Is a Provider? . 11
Developing Applications . 13

Chapter 3 FDO Concepts . 15
Data Concepts . 16
Operational Concepts . 21

Chapter 4 Development Practices . 25
Memory Management . 26
Exception Handling . 26

iii

Managing GisPtr Behaviors . 28

Chapter 5 Establishing a Connection . 31
Connection Semantics . 32
Establishing a Connection . 34
Connection Example . 37

Chapter 6 Capabilities . 45
What Is the Capabilities API? . 46
Connection Capabilities . 47

Code . 47
Schema Capabilities . 48

Code . 48
Command Capabilities . 51

Code . 51
Expression Capabilities . 52

Code . 52
Filter Capabilities . 53

Code . 53
Geometry Capabilities . 54

Code . 54
Raster Capabilities . 55

Code . 55
Topology Capabilities . 56

Code . 56

Chapter 7 Schema Management . 59
Schema Package . 60
Schema Overrides . 61
Working with Schemas . 62
FDOFeatureClass . 63
FDOClass . 63
Non-Feature Class Issues . 64
Modifying Models . 67
Schema Element States . 68
Rollback Mechanism . 68
FDO XML Format . 69
Creating and Editing a GML Schema File 75
Schema Management Examples . 85

Chapter 8 Data Maintenance . 93
Data Maintenance Operations . 94

Inserting Values . 94
Updating Values . 99

iv | Contents

Deleting Values . 100
Related Class Topics . 101

Chapter 9 Performing Queries . 103
Creating a Query . 104
Query Example . 104

Chapter 10 Long Transaction Processing 111
What Is Long Transaction Processing? 112
Supported Interfaces . 112

Chapter 11 Filter and Expression Languages 115
Filters . 116
Expressions . 116
Filter and Expression Text . 117
Language Issues . 117

Provider-Specific Constraints on Filter and Expression Text . . . 118
Filter Grammar . 118
Expression Grammar . 120
Filter and Expression Keywords 121
Data Types . 121

Identifier . 121
Parameter . 121
String . 121
Integer . 122
Double . 122
DateTime . 122

Operators . 122
Special Character . 124
Geometry Value . 124

Chapter 12 The Geometry API . 129
Description of the Geometry API . 130
WKB and AGF . 130
Basic / Pure Geometry . 131
GisGeometryStreamFactory . 136
GisAgfGeometryFactory . 136
Geometry Types . 137
Mapping Between Geometry and Geometric Types 137
Spatial Context . 138
Inserting Geometry Values . 139

Appendix A Autodesk FDO Provider for Oracle 141

Contents | v

What Is FDO Provider for Oracle? . 142
FDO Provider for Oracle General Requirements 142
FDO Provider for Oracle Connection 142
FDO Provider for Oracle and Foreign Schemas 143

Foreign Schema Settings . 143
Settings on the FDO Schema Instance 144
Settings on the Foreign Schema Instance 144
Oracle Identity Property 144

Read-Write Privileges . 145
Foreign Schema Limitations . 145

Ensuring Valid Views When Applying a Feature Schema
Against a Foreign Schema 145

Table Name Restrictions When Working with a Foreign
Schema . 147

Schema Access on a Different Oracle Instance 148
FDO Provider for Oracle and Schema Overrides 148

Schema Override Set . 148
Class Table Overrides . 149
Data Property Overrides 149
Object Property Overrides 149
Geometric Property Overrides 150

Oracle-Specific Schema Creation Restrictions 150
FDOFeatureClass . 150
Classes . 151
Properties . 151

Data Properties . 151
Identity Properties . 151
String Properties . 151
Decimal Properties . 151
Geometric Properties . 152
Object Properties . 152

Oracle-Specific Schema Modification Restrictions 152
Schema Element Descriptions 152
Data Properties . 153

Oracle-Specific Deletion Restrictions 153
FDOClassDefinition . 153
FDOClass . 153
Property . 153

Oracle Reserved Words Used with Filter and Expression Text 153
Locking and Long Transactions . 154

OWM and FDO Lock Types . 154
Example: AllLongTransactionExclusiveLock 155

FDO Provider for Oracle Capabilities 157

Appendix B OSGeo FDO Provider for ArcSDE 171
What Is FDO Provider for ArcSDE? 172

vi | Contents

FDO Provider for ArcSDE Software Requirements 172
Installed Components . 172
External Dependencies . 172

FDO Provider for ArcSDE Limitations 173
ArcSDE Limitations . 173

Relative to ArcObjects API and ArcGIS Server API 173
Curved Segments . 174

Locking and Versioning . 174
Table Creation . 174
Identity Row ID Column and Enable Row Locking 175
Disable Row Locking and Enable Versioning 176

FDO Provider for ArcSDE Connection 176
Data Type Mappings . 177
Creating a Feature Schema . 178
FDO Provider for ArcSDE Capabilities 183

Appendix C OSGeo FDO Provider for MySQL 197
What Is FDO Provider for MySQL? 198
FDO Provider for MySQL Capabilities 199

Appendix D OSGeo FDO Provider for ODBC 211
What Is FDO Provider for ODBC? . 212
FDO Provider for ODBC Capabilities 213

Appendix E Autodesk FDO Provider for Raster 225
What Is FDO Provider for Raster? . 226
FDO Provider for Raster Capabilities 228

Appendix F OSGeo FDO Provider for SDF 241
What Is FDO Provider for SDF? . 242
FDO Provider for SDF Capabilities . 242

Appendix G OSGeo FDO Provider for SHP 255
What Is FDO Provider for SHP? . 256
FDO Provider for SHP Capabilities . 256

Appendix H Autodesk FDO Provider for SQL Server 269
What Is FDO Provider for SQL Server? 270
FDO Provider for SQL Server Capabilities 270

Appendix I OSGeo FDO Provider for WFS 283
What Is FDO Provider for WFS? . 284

Contents | vii

FDO Provider for WFS Capabilities 284

Appendix J OSGeo FDO Provider for WMS 297
What Is FDO Provider for WMS? . 298
FDO Provider for WMS Capabilities 298

Index . 311

viii | Contents

About This Guide

In this chapterThe FDO Developer’s Guide introduces the Feature Data Objects

(FDO) application programming interface (API) and explains

how to use its customization and development features.

■ Audience and Purpose

■ How This Guide Is Organized

■ What’s New

NOTE For detailed information about installing the FDO

SDK and getting started using the FDO API, see The Essential

FDO (FET_TheEssentialFDO.pdf).

1

1

Audience and Purpose
This guide is intended to be used by developers of FDO applications. It
introduces the FDO API, explains the role of a feature provider, and provides
detailed information and examples about how to code your application.

How This Guide Is Organized
This guide consists of the following chapters and appendixes:

■ Introduction (page 7), provides an overview of the FDO API and the
function of FDO feature providers.

■ FDO Concepts (page 15), describes the key data and operational concepts
upon which FDO is constructed.

■ Development Practices (page 25), discusses the best practices to follow
when using FDO for application development.

■ Establishing a Connection (page 31), describes how to establish a
connection to an FDO provider.

■ Capabilities (page 45), discusses the Capabilities API, which is used to
determine the capabilities of a particular provider.

■ Schema Management (page 59), describes how to create and work with
schemas and presents the issues related to schema management.

■ Data Maintenance (page 93), provides information about using the FDO
API to maintain the data.

■ Performing Queries (page 103), describes how to create and perform queries.

■ Long Transaction Processing (page 111), discusses long transactions (LT)
and how to implement LT processing in your application.

■ Filter and Expression Languages (page 115), discusses the use of filter
expressions to specify to an FDO provider how to identify a subset of the
objects of an FDO data store.

■ The Geometry API (page 129), discusses the various Geometry types and
formats and describes how to work with the Geometry API to develop
FDO-based applications.

2 | Chapter 1 About This Guide

■ Autodesk FDO Provider for Oracle (page 141), discusses development issues
that apply when using FDO Provider for Oracle.

■ OSGeo FDO Provider for ArcSDE (page 171), discusses development issues
that apply when using FDO Provider for ESRI® ArcSDE®.

■ OSGeo FDO Provider for MySQL (page 197), discusses development issues
that apply when using FDO Provider for MySQL.

■ OSGeo FDO Provider for ODBC (page 211), discusses development issues
that apply when using FDO Provider for ODBC.

■ Autodesk FDO Provider for Raster (page 225), discusses development issues
that apply when using FDO Provider for Raster.

■ OSGeo FDO Provider for SDF (page 241), discusses development issues that
apply when using FDO Provider for SDF.

■ OSGeo FDO Provider for SHP (page 255), discusses development issues that
apply when using FDO Provider for SHP (Shape).

■ Autodesk FDO Provider for SQL Server (page 269), discusses development
issues that apply when using FDO Provider for SQL Server.

■ OSGeo FDO Provider for WFS (page 283), discusses development issues that
apply when using FDO Provider for WFS.

■ OSGeo FDO Provider for WMS (page 297), discusses development issues
that apply when using FDO Provider for WMS.

What’s New
This section summarizes the changes and enhancements you will find in this
version of FDO.

Support for Additional FDO Providers

The following Autodesk and OSGeo providers are now supported:

■ Autodesk FDO Provider for Oracle

■ Autodesk FDO Provider for Raster

■ Autodesk FDO Provider for SQL Server

■ OSGeo FDO Provider for ArcSDE

What’s New | 3

■ OSGeo FDO Provider for MySQL

■ OSGeo FDO Provider for ODBC

■ OSGeo FDO Provider for SDF

■ OSGeo FDO Provider for SHP

■ OSGeo FDO Provider for WFS

■ OSGeo FDO Provider for WMS

NOTE For more information about the Open Source Geospatial Foundation
(OSGeo), see www.OSGeo.org.

Physical Schema Overrides and XML File Format

A large number of FDO interface changes are introduced for physical schema
overrides, or mappings, due to the new providers. The new providers also
require updates to the FDO Schema XML file format.

Non-Physical Mapping FDO Interface Changes

The non-physical mapping FDO interface changes are in the following areas:

■ Property Contraints. Constraints now affect the schema-related classes.

■ XML Serialization. Support FDO data in GML format, as opposed to only
the previously supported schema in GML format, using a number of
enhancements. Specifically, the Web Feature Service (WFS) capabilities for
the FDO Provider for WFS is now supported.

■ Long Transactions and Locking. Now supports the ability to return lock
conflicts from long transaction commit and rollback commands and also
supports class-level settings to determine whether the class is long
transaction version-enabled and persistent locking-enabled.

Bulk Copy

Use the Bulk Copy Utility API to copy data from one FDO data store to another
FDO data store. You can either copy a subset or the complete source data store.
The data to be copied can be filtered based on:

■ Schema (for example, Acad)

■ Class (for example, AcDbPolyline)

4 | Chapter 1 About This Guide

■ Property (for example, layer)

■ Filter (for example, layer = “road”)

The Bulk Copy API has the following characteristics:

■ A schema is automatically created, if it does not already exist in the target
data store.

■ Default values can also be set for a target property if the source property
does not exist.

■ Schema names, class names, and property names from the source data
store do not need to match the names in the target data store.

■ An XML mapping file is used to setup the mapping between the source
and target data store.

■ Methods to serialize and deserialize the mapping to an XML mapping file
are available.

RDBMS Provider Common Architecture

All API changes are internal. No FDO interface changes are required.

What’s New | 5

Introduction

In this chapterYou can use the APIs in the FDO API to manipulate, define,

and analyze geospatial information. ■ What Is the FDO API?

■ Getting Started
This chapter introduces application development with the

FDO API and explains the role of a feature provider.

■ FDO Architecture and Providers

■ What Is a Provider?

■ Developing Applications

2

7

What Is the FDO API?

From the Perspective of the Client Application User

The FDO API is a set of APIs used for creating, managing, and examining
information, enabling Autodesk GIS products to seamlessly share spatial and
non-spatial information, with minimal effort.

FDO is intended to provide consistent access to feature data, whether it comes
from a CAD-based data source, or from a relational data store that supports
rich classification. To achieve this, FDO supports a model that can readily
support the capabilities of each data source, allowing consumer applications
functionality to be tailored to match that of the data source. For example,
some data sources may support spatial queries, while others do not. Also, a
flexible metadata model is required in FDO, allowing clients to adapt to the
underlying feature schema exposed by each data source.

From the Perspective of the Client Application
Engineer

The FDO API provides a common, general purpose abstraction layer for
accessing geospatial data from a variety of data sources. The API is, in part, an
interface specification of the abstraction layer. A provider, such as Autodesk
FDO Provider for Oracle, is an implementation of the interface for a specific
type of data source (for example, for an Oracle relational database). The API
supports the standard data store manipulation operations, such as querying,
updating, versioning, locking, and others. It also supports analysis.

The API includes an extensive set of methods that return information about
the capabilities of the underlying data source. For example, one method
indicates whether the data source supports the creation of multiple schemas,
and another indicates whether the data source supports schema modification.

A core set of services for providers is also available in the API, such as provider
registration, schema management, filter and expression construction, and
XML serialization and deserialization.

The API uses an object-oriented model for the construction of feature schema.
A feature is a class, and its attributes, including its geometry, are a property
of the class. The instantiation of a feature class, a Feature Data Object (FDO),
can contain other FDOs.

8 | Chapter 2 Introduction

Getting Started
For detailed information to help you install and get started using Feature Data
Objects (FDO), see The Essential FDO. It provides details about connecting to
and configuring providers, data store management (create/delete), user IDs
(create, grant permissions), and spatial context.

FDO Architecture and Providers
The following diagram shows the high-level overview architecture of the FDO
API and included FDO providers. For clarity, only the underlying data source
details for the Autodesk FDO Provider for Oracle, OSGeo FDO Provider for
ArcSDE, and OSGeo FDO Provider for SDF are shown as examples. Similar data
store, schema, and data connection information is available for the other
providers.

Data Source data store ds<1>...ds<n>

Read/Write Feature Schema fs<1>...fs<n>
C<1>...C<n> Read/Write data conceptualized as classes

ds<1>

fs<1>

C<1>...C<n>

fs<n>

C<1>...C<n>

ds<n>

fs<1>

C<1>...C<n>

fs<n>

C<1>...C<n>

ArcSDE
 Server

ds<1>

fs<1>

C<1>...C<n>

fs<n>

C<1>...C<n>

Oracle ArcSDE

FDO API
Database-based Providers File-based Providers

ds<1>

fs<1>

C<1>...C<n>

SDFMySQL SQL Server Raster ODBC WFS WMSSHP

Oracle

SQL
Server

read-only read-onlyread-only

Getting Started | 9

FDO Architecture and Providers—Oracle, ArcSDE, and SDF Examples

FDO Packages

FDO is assembled in conceptual packages of similar functionality. This
conceptual packaging is reflected in the substructure of the FDO SDK “includes”
folder. For more information about the structure, see The Essential FDO.

FDO commands, provider-specific commands, and connections and capabilities
provide access to native data stores through each different FDO provider.
Schema management (through XML), client services, and filters and expressions
are provider-independent packages that tie into the FDO API. Each of these
are explained in more detail in subsequent sections.

The FDO API consists of classes grouped within the following packages:

■ Commands package. Contains a collection of classes that provide the
commands allowing the application to select and update features, define
new types of feature classes, lock features, and perform analysis on features.
Each Command object executes a specific type of command against the
underlying data store. In addition, FDO providers expose one or more
Command objects.

■ Connections/Capabilities. Contains a collection of classes that establish
and manage the connection to the underlying data store. Connection
objects implement the FdoIConnection interface. Capabilities API provides
the code for retrieving the various FDO provider capability categories, such
as connection or schema capabilities. You can use this this API to determine
the capabilities of a particular provider.

■ Filters and Expression package. Contains a collection of classes that define
filters and expression in FDO, which are used to identify a subset of objects
of an FDO data store.

■ Client Services package. Contains a collection of classes that define the
client services in FDO that, for example, enable support for dynamic
creation of connection objects given a provider name.

■ Schema package and FDO XML. Contains a collection of classes that
provides a logical mechanism for specifying how to represent geospatial
features. The FDO feature schema is based somewhat on a subset of the
OpenGIS and ISO feature models. FDO feature schemas can be written to
an XML file. The FdoFeatureSchema and FdoFeatureSchemaCollection
classes support the FdoXmlSerializable interface.

10 | Chapter 2 Introduction

In addition, FDO is integrated with the Geometry API, which includes the
classes that support specific Autodesk applications and APIs, including FDO.

For more information about each of the FDO packages, see FDO API Reference
Help (FDO_API.chm) and subsequent chapters is this guide.

Provider API(s) complete the FDO API configuration. Each provider has a
separate API reference Help (for example, SDF_Provider_API.chm).

What Is a Provider?
A provider is a specific implementation of the FDO API. It is the software
component that provides access to data in a particular data store.

For this release, the providers that are included are as follows:

NOTE Autodesk FDO Provider for Oracle and FDO Provider for ArcSDE are listed
first because they were included in previous releases. The remaining providers are
new to this release and are in alphabetical order. Providers referenced in this
document with “Autodesk” as part of their name are included only with Autodesk
software. Other providers are open source. For more information, see the Open
Source Geospatial Foundation website at www.OSGeo.org.

■ Autodesk FDO Provider for Oracle. Read/write access to feature data in an
Oracle-based data store. Supports spatial indexing, long transactions, and
persistent locking. A custom API can gather provider information, transmit
client services exceptions, list data stores, and create connection objects.

■ OsGeo FDO Provider for ArcSDE. Read/write access to feature data in an
ESRI ArcSDE-based data store (that is, with an underlying Oracle or SQL
Server database). Supports describing schema, and inserting, selecting,
updating, and deleting feature data in existing schemas; does not support
creating or deleting schemas.

■ OsGeo FDO Provider for MySQL. Read/write access to feature data in a
MySQL-based data store. Supports spatial data types and spatial query
operations. A custom API can gather information, transmit exceptions, list
data stores, and create connection objects. MySQL architecture supports
various storage engines, characteristics, and capabilities.

■ OsGeo FDO Provider for ODBC. Read/write access to feature data in an
ODBC-based data store. Supports XYZ feature objects and can define feature
classes for any relational database table with X, Y, and optionally Z

What Is a Provider? | 11

columns; does not support creating or deleting schema. Object locations
are stored in separate properties in the object definition.

■ Autodesk FDO Provider for Raster. Read-only access to feature data in
raster-based file format. Supports various image and GIS data formats (for
example, JPEG, PNG, MrSID, and others). Supports georeferenced file-based
raster images and file-based grid coverages. Pixel-based images, such as
satellite images, are useful underneath vector data.

■ OsGeo FDO Provider for SDF. Read-write access to feature data in an
SDF-based data store. Autodesk’s geospatial file format, SDF, supports
multiple features/attributes, provides high performance for large data sets
and interoperability with other Autodesk products, and spatial indexing.
The SDF provider a valid alternative to database storage. Note that this
release of the SDF provider supports version 3.0 of the SDF file format.

■ OsGeo FDO Provider for SHP. Read/write access to existing spatial and
attribute data in an ESRI SHP-based data store, which consists of separate
shape files for geometry, index, and attributes. Each SHP and its associated
DBF file is treated as a feature class with a single geometry property. This
is a valid alternative to database storage but does not support locking.

■ Autodesk FDO Provider for SQL Server. Read/write access to feature data
in a Microsoft SQL Server-based data store. A custom API supports schema
read/write access, and geospatial and non-geospatial data read/write access.

■ OsGeo FDO Provider for WFS. Read-only access to feature data in an OGC
WFS-based data store. Supports client/server environment and retrieves
geospatial data encoded in GML from one or more Web Feature Services
sites. Client/server communication is encoded in XML with the exception
of feature geometries, which are encoded in GML. Note that there is no
public API documentation for this provider; all functionality is accessible
via the base FDO API.

■ OsGeo FDO Provider for WMS. Read-only access to feature data in an OGC
WMS-based data store. Web Map Service (WMS) produces maps of spatially
referenced data dynamically from geographic information, which are
generally rendered in PNG, GIF, or JPEG, or as vector-based Scalable Vector
Graphics (SVG) or Web Computer Graphics Metafile (WebCGM) formats.

FDO supports retrieval and update of spatial and non-spatial GIS feature data
through a rich classification model that is based on OpenGIS and ISO
standards.

12 | Chapter 2 Introduction

An overview of the relationships between providers, data sources, data stores,
and schemas is presented in the FDO Architecture and Providers (page 9)
graphic.

For more detailed information about the providers, see the appropriate
appendix in this document. Data sources and data stores are discussed in the
Establishing a Connection (page 31) chapter. Schema concepts are discussed
in the Schema Management (page 59) chapter.

Developing Applications
You will need to perform several major tasks in using the FDO API to develop
a custom application. Each of these tasks breaks down into a number of more
detailed coding issues.

The major development tasks are:

■ Working with the Build Environment

■ Establishing a Connection

■ Schema Management

■ Data Maintenance

■ Creating Queries

■ Using Custom Commands (Provider-Specific)

These tasks are explored in detail in the chapters that follow.

Developing Applications | 13

FDO Concepts

In this chapterBefore you can work properly with the FDO API, you need to

have a good understanding of its basic, underlying concepts. ■ Data Concepts

■ Operational Concepts
This chapter defines the essential constructs and dynamics

that comprise the FDO API. The definitions of these constructs

and dynamics are grouped into two interdependent categories:

■ Data Concepts. Definitions of the data constructs that

comprise the FDO API

■ Operational Concepts. Definitions of the operations that

are used to manage and manipulate the data.

3

15

Data Concepts
All concepts that are defined in this section relate to the data that FDO is
designed to manage and manipulate.

What Is a Feature?

A feature is an abstraction of a natural or man-made real world object. It is
related directly or indirectly to geographic locations. A spatial feature has one
or more geometric properties. For example, a road feature might be represented
by a line, and a hydrant might be represented by a point. A non-spatial feature
does not have geometry, but can be related to a spatial feature which does.
For example, a road feature may contain a sidewalk feature that is defined as
not containing a geometry.

What Is a Schema?

A schema is a logical description of the data types used to model real-world
objects. A schema is not the actual data instances (that is, not a particular
road or land parcel), rather it is metadata. A schema is a model of the types
of data that would be found in a data store. For example, a schema which
models the layout of city streets has a class called Road, and this class has a
property called Name. The definition of Road and its associated classes
constitute the schema.

For information about foreign schemas, see FDO Provider for Oracle and
Foreign Schemas (page 143).

What Is a Schema Override?

A schema override comprises instructions to override the default schema
mappings. For example, an RDBMS-type FDO provider could map a feature
class to a table of the same name by default. A schema override might map
the class to a differently named table, for example, by mapping the "pole"
class to the "telco_pole" table.

What is a Schema Mapping

A Schema Mapping is a correspondence between a Schema Element and a
physical object in a data store. For example, FDO Provider for Oracle maps
each Feature Class onto a table in the Oracle database where the data store
resides. The physical structure of data stores for each FDO provider can vary
greatly, so the types of Schema Mappings can also vary between providers.

16 | Chapter 3 FDO Concepts

Each provider defines a set of default schema mappings. For example, FDO
Provider for Oracle maps a class to a table of the same name by default. These
defaults can be overridden by specifying Schema Overrides.

What Are Elements of a Schema?

A schema consists of a collection of schema elements. In the FDO API, schema
elements are related to one another by derivation and by aggregation. An
element of a schema defines a particular type of data, such as a feature class
or a property, or an association. For example, a feature class definition for a
road includes the class name (for example, Road), and the class properties (for
example, Name, NumberLanes, PavementType, and Geometry).

What Is a Class Type?

A class type is a specialization of the base FDO class definition
(FdoClassDefinition). It is used to represent the complex properties of spatial
and non-spatial features.

What is a Feature Class?

A feature class is a schema element that describes a type of real-world object.
It includes a class name and property definitions, including zero or more
geometric properties. It describes the type of data that would be included in
object instances of that type.

What Is a Property?

A property is a single attribute of a class and a class is defined by one or more
property definitions. For example, a Road feature class may have properties
called Name, NumberLanes, or Location. A property has a particular type,
which can be a simple type, such as a string or number, or a complex type
defined by a class, such as an Address type, which itself is defined by a set of
properties, such as StreetNumber, StreetName, or StreetType.

There are five kinds of properties: association properties, data properties,
geometric properties, object properties, and raster properties.

Individual properties are defined in the following sections.

What Is an Association Property?

The FdoAssociationPropertyDefinition class is used to model a peer-to-peer
relationship between two classes. This relationship is defined at schema

Data Concepts | 17

creation time and instantiated at object creation time. The association property
supports various cardinality settings, cascading locks, and differing delete
rules. An FDO filter can be based on association properties and
FdoIFeatureReader can handle associated objects through the GetObject()
method.

What Is a Data Property?

A data property is a non-spatial property. An instance of a data property
contains a value whose type is either boolean, byte, date/time, decimal, single,
double, Int16, Int32, Int64, string, binary large object, or character large object.

What Is Dimensionality?

Dimensionality, and the concept of dimension, has two different meanings
in the discussion of geometry and geometric property.

The first is called shape dimensionality, and it is defined by the
FdoGeometricType enumeration. The four shapes are point (0 dimensions),
curve (1 dimensions), surface (2 dimensions), and solid (3 dimensions).

The other is called ordinate dimensionality, and it is defined by the
GisDimensionality enumeration. There are four ordinate dimensions: XY,
XYZ, XYM, and XYZM. M stands for measure.

What Is a Geometric Property?

An instance of a geometric property contains an object that represents a
geometry value. The definition of the geometric property may restrict an
object to represent a geometry that always has the same shape, such as a point,
or it could allow different object instances to have different dimensions. For
example, one geometric property object could represent a point and another
could represent a line. Any combination of shapes is permissible in the
specification of the geometric types that a geometry property definition
permits. The default geometric property specifies that an object could represent
a geometry that is any one of the four shapes.

With respect to ordinate dimensionality, all instances of a geometric property
must have the same ordinate dimension. The default is XY.

Geometric property definitions have two attributes regarding ordinate
dimensionality: HasElevation for Z and HasMeasure for M.

18 | Chapter 3 FDO Concepts

What is a Geometry?

A geometry is represented using geometric constructs either defined as lists
of one or more XY or XYZ points or defined parametrically, for example, as
a circular arc. While geometry typically is two- or three-dimensional, it may
also contain the measurement dimension (M) to provide the basis for dynamic
segments.

The geometry types are denoted by the GisGeometryType enumeration and
describe the following:

■ Point

■ LineString (one or more connected line segments, defined by positions at
the vertices)

■ CurveString (a collection of connected circular arc segments and linear
segments)

■ Polygon (a surface bound by one outer ring and zero or more interior rings;
the rings are closed, connected line segments, defined by positions at the
vertices)

■ CurvePolygon (a surface bound by one outer ring and zero or more interior
rings; the rings are closed, connected curve segments)

■ MultiPoint (multiple points, which may be disjoint)

■ MultiLineString (multiple LineStrings, which may be disjoint)

■ MultiCurveString (multiple CurveStrings, which may be disjoint)

■ MultiPolygon (multiple Polygons, which may be disjoint)

■ MultiCurvePolygon (multiple CurvePolygons, which may be disjoint)

■ MultiGeometry (a heterogenous collection of geometries, which may be
disjoint)

Most geometry types are defined using either curve segments or a series of
connected line segments. Curve segments are used where non-linear curves
may appear. The following curve segment types are supported:

■ CircularArcSegment (circular arc defined by three positions on the arc)

■ LineStringSegment (a series of connected line segments, defined by
positions are the vertices)

Data Concepts | 19

There are currently no geometries of type “solid” (3D shape dimensionality)
supported.

The FdoIConnection::GetGeometryCapabilities() method can be used to query
which geometry types and ordinate dimensionalities are supported by a
particular provider.

What Is an Object Property?

An object property is a complex property type that can be used within a class,
and an object property, itself, is defined by a class definition. For example,
the Address type example described previously in the Property definition. An
object property may define a single instance for each class object instance (for
example, an address property of a land parcel), or may represent a list of
instances of that class type per instance of the owning class (for example,
inspection records as a complex property of an electrical device feature class).

What is a Raster Property?

A raster property defines the information needed to process a raster image,
for example, the number of bits of information per pixel, the size in pixels of
the X dimension, and the size in pixels of the Y dimension, needed to process
a raster image.

What Is a Spatial Context?

A spatial context describes the general metadata or parameters within which
geometry for a collection of features resides. In particular, the spatial context
includes the definition of the coordinate system, spheroid parameters, units,
spatial extents, and so on for a collection of geometries owned by features.

Spatial context can be described as the “coordinate system plus identity.” Any
geometries that are to be spatially related must be in a common spatial context.

The identity component is required in order to support separate workspaces,
such as schematic diagrams, which are non-georeferenced. Also, it supports
georeferenced cases. For example, two users might create drawings using some
default spatial parameters (for example, rectangular and 10,000x10,000),
although each drawing had nothing to do with the other. If the drawings were
put into a common database, the users could preserve not only the spatial
parameters, but also the container aspect of their data, using spatial context.

For more information about spatial context, see Spatial Context (page 138).

20 | Chapter 3 FDO Concepts

What is a Data Store?

A data store is a repository of an integrated set of objects. The objects in a data
store are modeled either by classes or feature classes defined within one or
more schemas. For example, a data store may contain data for both a LandUse
schema and a TelcoOutsidePlant schema. Some data stores can represent data
in only one schema, while other data stores can represent data in many
schemas (for example, RDBMS-based data stores, such as Oracle).

Operational Concepts
The concepts that are defined in this section relate to the FDO operations used
to manage and manipulate data.

What Is a Command?

In FDO, the application uses a command to select and update features, define
new types of feature classes, lock features, version features, and perform some
analysis of features. Each Command object executes a specific type of command
against the underlying data store. Interfaces define the semantics of each
command, allowing them to be well-defined and strongly typed. Because FDO
uses a standard set of commands, providers can extend existing commands
and add new commands, specific to that provider. Feature commands execute
against a particular connection and may execute within the scope of a
transaction.

An FDO command is a particular FDO interface that is used by the application
to invoke an operation against a data store. A command may retrieve data
from a data store (for example, a Select command), may update data in a data
store (for example, an Update or Delete command), may perform some analysis
(for example, an Activate Spatial Context command), or may cause some other
change in a data store or session (for example, a Begin Transaction command).

What Is an Expression?

An expression is a construct that an application can use to build up a filter.
An expression is a clause of a filter or larger expression. For example, “Lanes
>=4 and PavementType = 'Asphalt'” takes two expressions and combines them
to create a filter.

For more information about using expressions with FDO, see Filter and
Expression Languages (page 115).

Operational Concepts | 21

What Is a Filter?

A filter is a construct that an application specifies to an FDO provider to
identify a subset of objects of an FDO data store. For example, a filter may be
used to identify all Road type features that have 2 lanes and that are within
200 metres of a particular location. Many FDO commands use filter parameters
to specify the objects to which the command applies. For example, a Select
command uses a filter to identify the objects that the application wants to
retrieve. Similarly, a Delete command uses a filter to identify the objects that
the application wants to delete from the data store.

For more information about using filters with FDO, see Filter and Expression
Languages (page 115).

What Is Locking?

A user can use locking to gain update control of an object in the data store to
the exclusion of other users. There are two general types of locks—transaction
locks and persistent locks. Transaction locks are temporary and endure only
for the duration of the transaction (see What Is a Transaction? (page 22)).

Persistent locks applied to objects by a user remain with the object until either
that user removes those locks or the locks are removed by another user with
the appropriate authority.

What Is a Transaction?

A transaction changes the data store in some way. The way these changes
affect the data store is determined by the transaction’s properties. For example,
the Atomic property specifies that either all changes happen or non happen.
In transaction processing the data store treats a series of commands as a single
atomic unit of change to that data store. Either all changes generated by the
commands are successful or the whole set is cancelled. A transaction is a single
atomic unit of changes to a data store. The application terminates a transaction
with either a “commit,” which applies the set of changes, or a “rollback,”
which cancels the set of changes. Further, the data store may automatically
roll back a transaction if it detects a severe error in any of the commands
within the transaction. A transaction has the following properties:

■ Atomic. Either all changes generated by the commands within a transaction
happen or none happen.

■ Consistent. The transaction leaves the data store in a consistent state
regarding any constraints or other data integrity rules.

22 | Chapter 3 FDO Concepts

■ Isolated. Changes being made within a transaction by one user are not
visible to other users until after that transaction is committed.

■ Durable. After a transaction is completed successfully, the changes are
persistent in the data store on disk and cannot be lost if the program or
processor fails.

What Is a Long Transaction?

A long transaction (LT) is an administration unit used to group conditional
changes to objects. Depending on the situation, such a unit might contain
conditional changes to one or to many objects. Long transactions are used to
modify as-built data in the database without permanently changing the as-built
data. Long transactions can be used to apply revisions or alternates to an
object.

NOTE For this release, the providers that support long transaction processing are
Autodesk FDO Provider for Oracle and OSGeo FDO Provider for ArcSDE.

What Is a Root Long Transaction?

A root long transaction is a long transaction that represents permanent data.
Any long transaction has a root long transaction as an ancestor in its long
transaction dependency graph.

Operational Concepts | 23

Development Practices

In this chapterThis chapter explains several practices to follow when working

with the FDO API and provides examples of how to follow

these practices.

■ Memory Management

■ Exception Handling

■ Managing GisPtr Behaviors

4

25

Memory Management
Some FDO functions (for example, the Create methods) allocate memory
when they are called. This memory needs to be freed to prevent memory leaks.
All destructors on FDO classes are protected, so you must call a Release()
function to destroy them (thus freeing their allocated memory). Each class
inherits from the GisIDisposable class, which defines the AddRef() and Release()
functions.

In addition, these classes are reference counted, and the count is increased
when you retrieve them through a Get function. After finishing with the
object, you need to release it (just as with COM objects). The object is destroyed
only when the reference count hits 0. For example:

FdoFeatureClass* pBase = myClass->GetBaseClass();

...

// Must release reference added by GetBaseClass when done.

GIS_SAFE_RELEASE(pBase);

GIS_SAFE_RELEASE (*ptr)

If the “*ptr” argument is not null, GIS_SAFE_RELEASE calls the release() method
of the object pointed to by the “*ptr” argument.

GisPtr

A GisPtr smart pointer is provided to help manage memory. You wrap an FDO
object in a GisPtr. The object is then released automatically when the GisPtr
goes out of scope. The following code illustrates how to use GisPtr:

GisPtr<FdoFeatureClass> pBase = myClass->GetBaseClass();

...

// No need to release. Automatically happens when pBase

// is destroyed.

Exception Handling
In the FDO API, FdoCommandException class is the exception type thrown
from classes in the Commands package, and FdoConnectionException class
is the exception type thrown from classes in the Connections package. Both
of these exception types derive from a language-level exception class that is
environment-specific.

26 | Chapter 4 Development Practices

All exceptions are derived from the GisException class. To catch and process
specific exception types, nest catch statements as in the following example:

try {

... code

}

catch (FdoCommandException *ex){

.. process message

}

catch (GisException *ex){

.. process message

}

In some cases, underneath an FDO command, the GIS level throws a
GisException. The FDO command then traps the GisException and wraps it
in an FdoCommandException (or FdoSchemaException for a schema
command). In this case, several messages are returned by one exception. The
following example shows how to process multiple messages from one
exception:

catch (FdoSchemaException* ex) {

// Loop through all the schema messages

GisException* currE = ex;

while (currE) {

CW2A msg(currE->GetExceptionMessage());

acutPrintf ("FdoConnectionException: %s\n", msg);

currE = currE->GetCause();

An application function may need to catch and then re-throw exceptions in
order to clean up memory. However, the need to do this can be eliminated
by using GisPtr. The following example cleans up memory on error:

FdoFeatureClass* pBase = NULL;

try {

pBase = myClass->GetBaseClass();

...

}

catch (...) {

GIS_SAFE_RELEASE(pBase);

throw;

}

// Must release reference added by GetBaseClass when done.

GIS_SAFE_RELEASE(pBase);

The catch and rethrow is unnecessary when GisPtr is used:

Exception Handling | 27

GisPtr<FdoFeatureClass> pBase = myClass->GetBaseClass();

...

Managing GisPtr Behaviors
The topics in this section describe several ways that you can manager GisPtr
behavior. For more information about managing GisPtr behavior, see the
related topics “GisPtr <T> Class Template Reference” and “GisIDisposable
Class Reference” in the FDO Reference Help and The Essential FDO.

Chain Calls

Do not chain calls. If you do, returned pointers will not be released. For
example, given an FdoClassDefinition* pclassDef:

psz = pclassDef ->GetProperties()->GetItem(0)->GetName())

The above code would result in two memory leaks. Instead use:

FdoPropertyDefinitionCollection* pprops = pclassDef -> GetProper

ties();

FdoPropertyDefinition* ppropDef = pprops->GetItem(0);

psz = propDef->GetName();

ppropDef->Release();

pprops->Release();

or (with FdoPtr):

FdoPtr<FdoPropertyDefinitionCollection> pprops = pclassDef-> Get

Properties();

FdoPtr<FdoPropertyDefinition> ppropDef = pprops-> GetItem(0);

psz = propDef->GetName();

or (also with FdoPtr):

psz = FdoPtr <FdoPropertyDefinition> (FdoPtr <FdoPropertyDefini

tionCollection>(pclassDef->GetProperties())-> GetItem(0))->Get

Name();

Assigning Return Pointer of an FDO Function Call to a Non-Smart
Pointer

If you are assigning the return pointer of an FDO function call to a non-smart
pointer, then you should assign that pointer to a GisPtr. For example:

28 | Chapter 4 Development Practices

GisLineString* P = gf.CreateLineString(...);

GisPtr <GisLineString> p2 = GIS_SAFE_ADDREF(p);

Managing GisPtr Behaviors | 29

Establishing a Connection

In this chapterThis chapter explains how to establish a connection to an FDO

provider and provides a connection example. ■ Connection Semantics

■ Establishing a Connection

■ Connection Example

5

31

Connection Semantics
Data Sources and Data Stores

The FDO API uses connection semantics to implement access to feature schema
data. The term data store is used to refer to a collection of zero or more objects,
which instantiate class definitions belonging to one or more FDO feature
schema. The connection is to a data store because that is where data objects
are stored. The underlying data source technologies used to hold data stores
can be relational databases, such as, an Oracle database, or a file-based solution,
such as an SDF file.

The mapping of a data store to data source technology can be one-to-one or
many-to-one.

■ One-to-one when the connection is made by way of FDO Provider for
ArcSDE and the ArcSDE server is using an Oracle database.

■ Many-to-one when the data source is an Oracle database and the
connection is made by way of FDO Provider for Oracle (in this case, the
data store is like a container within a container).

When many-to-one mapping is possible, a connection can be made in one or
two steps. For more information, see Establishing a Connection (page 34) and
The Essential FDO.

The underlying data source technologies differ in the connection parameters
used for connecting to a particular provider. The values for these parameters
are generated during the installation and configuration of the container
technologies. For more information about these values and the process of
installing and configuring the associated data source technologies, see the
appropriate appendix in this document and The Essential FDO.

Providers

You connect to a data store by way of a provider. The FDO SDK includes the
following providers:

Database-based

■ FDO Provider for Oracle

■ FDO Provider for ArcSDE

■ FDO Provider for SQL Server

32 | Chapter 5 Establishing a Connection

■ FDO Provider for MySQL

File-based

■ FDO Provider for ODBC

■ FDO Provider for Raster

■ FDO Provider for SDF

■ FDO Provider for SHP

■ FDO Provider for WFS

■ FDO Provider for WMS

The FDO API contains a registry interface that you can use to register or
deregister a provider. Sample code for registering and deregistering a provider
is located in Connection Example (page 37).

The providers are registered during the initialization of the FDO SDK. In order
to connect to a provider, you will need the name of the provider in a particular
format: <Company/Foundation/Originator>.<Provider>.<Version>. The
<Company/Foundation/Originator> and <Provider> values are invariable. For
specific values, see The Essential FDO.

In order to connect, you will need the full name including the <Version>
value. You can retrieve the full name from the registry and display the set of
provider names in a connection menu list. If, for whatever reason, you
deregister a provider, save the registry information for that provider in case
you want to reregister it again. The provider object returned by the registry
has a Set() method to allow you to change values. However, the only value
you can safely change is the display name. Sample code for retrieving the
provider registry information is located in Connection Example (page 37).

The registry contains the following information about a provider:

■ Name. The unique name of the feature provider. This name should be of
the form <Company/Foundation/Originator>.<Provider>.<Version>, for
example, Autodesk.Oracle.3.0 or OSGeo.MySQL.3.0.

■ DisplayName. A user-friendly display name of the feature provider. The
initial values of this property for the pre-registered providers are “Autodesk
FDO Provider for Oracle”, “OSGeo FDO Provider for SDF”, etc., or the
equivalent in the language of the country where the application is being
used.

Connection Semantics | 33

■ Description. A brief description of the feature provider. For example, the
the OsGeo FDO Provider for SDF description is “Read/write access to
Autodesk's spatial database format, a file-based personal geodatabase that
supports multiple features/attributes, spatial indexing, and file-locking.”

■ Version. The version of the feature provider. The version number string
has the form <VersionMajor>.<VersionMinor>.<BuildMajor>.<BuildMinor>,
for example, 3.0.0.0.

■ FDOVersion. The version of the feature data objects specification to which
the feature provider conforms. The version number string has the form
<VersionMajor>.<VersionMinor>.<BuildMajor>.<BuildMinor>, for example,
3.0.1.0.

■ libraryPath. The FULL library path including the library name of the
provider, for example, <FDO SDK Install Location>/bin/FdoRdbms.dll.

■ isManaged. A flag indicating whether the provider is a managed or
unmanaged .NET provider.

Establishing a Connection
As mentioned in a previous section, Connection Semantics (page 32), the FDO
API uses a provider to connect to a data store and its underlying data source
technology. These data source technologies must be installed and configured.
Certain values generated during data source installation and configuration
are used as arguments during the connection process. Because the FDO API
does not provide any methods to automate the collection and presentation
of these configuration values, either the application developer must request
the user to input these configuration values during the connection process,
or the application developer can provide an application configuration interface,
which would populate the application with the container configuration values
and thus allow the user to choose them from lists.

NOTE For more information about connecting, see The Essential FDO.

A connection can be made in either one or two steps:

■ One-step connection. If the user sets the required connection properties
and calls the connection object’s Open() method once, the returned state
is FdoConnectionState_Open, no additional information is needed.

34 | Chapter 5 Establishing a Connection

■ Two-step connection. If the user sets the required connection properties
and calls the connection object’s Open() method, the returned state is
FdoConnectionState_Pending, additional information is needed to complete
the connection. In this case, the first call to Open() has resulted in the
retrieval of a list of values for a property that becomes a required property
for the second call to the Open() method. After the user has selected one
of the values in the list, the second call to Open() should result in
FdoConnectionState_Open.

Connecting to a data store by way of the Oracle or the ArcSDE provider, for
example, can be done in either one or two steps. In the first step, the data
store parameter is not required. If the user does not give the data store
parameter a value, the FDO will retrieve the list of data store values from the
data source so that the user can choose from them during the second step.
Otherwise the user can give the data store a value in the first step, and
assuming that the value is valid, the connection will be completed in one
step.

The following steps are preliminary to establishing a connection:

1 Get the display names for all of the providers in the registry.

2 Use the display names to create a menu list, which the user will select
from when making a connection.

After the user initiates a connection attempt, do the following:

1 Loop through the providers in the registry until you match the display
name selected by the user from the connection menu with a provider
display name in the registry and retrieve the internal name for that
provider.

2 Get an instance of the connection manager.

3 Call the manager’s CreateConnection() method using the provider internal
name as an argument to obtain a connection object.

4 Obtain a connection info object by calling the connection object’s
GetConnectionInfo() method.

5 Obtain a connection property dictionary object by calling the connection
info object’s GetConnection Properties() method and use this dictionary
to construct a dialog box requesting connection information from the
user.

Establishing a Connection | 35

6 Get a list of connection property names by calling the dictionary’s
GetPropertyNames() method and loop through the list constructing a
data entry line in the dialog box for each name in the list.

7 Use the GetLocalizedName method to obtain the label for the data entry
line in the dialog.

8 Use the IsPropertyRequired method to determine whether to mark the
line as either required or optional; the dialog box handler should not
permit the user to click OK in the dialog box unless a required field has
a value.

9 Use the IsPropertyProtected method to determine whether the dialog
box handler should process the field value as protected data.

10 Use the IsPropertyEnumerable method to determine whether to call the
EnumeratePropertyValues method to get a list of valid values. Then,

If IsPropertyEnumerable returns True and EnumeratePropertyValues sets the
updates count parameter to 0, then grey (make unavailable) this line in the
dialog;

If the count is 1, set the line value to the value in the returned list;

If the count is greater than 1, then set up a spin box for this line containing
the list of values and then call the GetProperty method;

If this method returns a value that is in the list, set the exposed spin-box value
in the dialog box line to this value;

If this method returns the empty string, call the GetPropertyDefault method
and if this returns a value that is in the list, and set the exposed spin-box value
in the dialog box line to this value;

Otherwise, set the exposed spin-box value to some value in the returned list.

1 If the property is not enumerable, call the GetProperty method to
determine whether you get a non-empty return value, set the value for
that line in the dialog box to the return value.

2 If the property is not enumerable and does not yet have a value, call the
GetPropertyDefault method and set the value for that line in the dialog
box to the return value.

3 After processing each property in the dictionary, expose the dialog.

4 After the user has okayed the connection dialog box and the dialog box
handler has determined that all of the required information has been

36 | Chapter 5 Establishing a Connection

filled in, the dialog box handler uses the dictionary’s SetProperty() method
to update the dictionary with the values specified by the user.

5 Call the connection object’s Open() method and check the returned
connection state value; if the value is FdoConnectionState_Pending, then
reconstruct the connection dialog box and present it to the user for further
input.

6 If the return value is FdoConnectionState_Open, the connection process
is complete.

Connection Example
The following example demonstrates how to establish a connection. The
connection is contained within one class, which has the following four public
methods:

■ void PopulateConnectionMenu(Menu * connectMenu);

■ GisString * MapProviderMenuNameToInternalName(GisString *
menuName);

■ int GetConnectionPropertyValues(FdoIConnectionPropertyDictionary
*dictionary, Dialog * connectDialog);

■ int ConnectToProvider(GisString * providerMenuName);

This class also has the following three private data members:

■ GisPtr<IProviderRegistry> registry;

■ GisPtr<IConnectionManager> connectionManager;

■ GisPtr<FdoIConnection> connection;

The registry and connectionManager variables are initialized during object
creation. The connection variable is given a value by the connection operation.

Connection Example | 37

//get the display names for all of the providers in the registry

//and build a connection menu

void

ExerciseFdoUtilities::PopulateConnectionMenu(Menu * connectMenu)

{

 const FdoProviderCollection * providers;

 GisPtr<FdoProvider> provider;

 try {

 providers = registry->GetProviders ();

 GisInt32 providerCount = providers->GetCount();

 GisString * providerDisplayName = NULL;

 for (int i = 0; i < providerCount; i++) {

 provider = providers->GetItem (i);

 providerDisplayName = provider->GetDisplayName();

 // add providerDisplayName to menu

 connectMenu->Add(providerDisplayName);

 }

 }

 catch (GisException* ex) {

 // exception handling

 ex->Release();

 }

}

// user selects a provider from the connection menu

// loop through the registry to match the provider name selected

// by the user with the display names in the registry

// once you get a match, get the provider internal name

GisString *

ExerciseFdoUtilities::MapProviderMenuNameToInternalName(

 GisString * menuName) {

 try {

 const FdoProviderCollection * providers =

registry->GetProviders();

 GisPtr<FdoProvider> provider;

 GisString * providerInternalName = NULL;

 GisInt32 providerCount = providers->GetCount();

 for(int i = 0; i < providerCount; i++) {

 provider = providers->GetItem(i);

 if (wcsicmp(menuName,

 provider->GetDisplayName()) == 0) {

 providerInternalName = provider->GetName();

 break;

 }

38 | Chapter 5 Establishing a Connection

}

if (providerInternalName == NULL) {

// error handling

return NULL;

} else {

return providerInternalName;

}

}

catch (GisException* ex) {

// exception handling

ex->Release();

return NULL;

}

}

// map the provider menu name to an internal name

// use the connection manager to make a connection object using

// the provider internal name

// get the connection property dictionary from the connection

// object use the dictionary to construct a dialog, which asks

// the user to input values for connection properties specific

// to the provider (see the comments in the

// GetConnectionProperties method)

// use the values given by the user to set the properties in the

// dictionary

// open the connection

// if the connection state returned by the open operation is

// pending, then ask the user for additional connection property

// values and call open again

int

ExerciseFdoUtilities::ConnectToProvider(GisString * providerMe

nuName) {

GisString * providerInternalName = MapProviderMenuNameToInternal

Name(providerMenuName);

if (providerInternalName == NULL) {

return 1;

}

GisPtr<FdoIConnectionInfo> connectionInfo;

GisPtr<FdoIConnectionPropertyDictionary> connectionPropertyDic

tionary;

Dialog * connectDialog = new Dialog();

FdoConnectionState connectState;

int retval = 0;

try {

Connection Example | 39

connection = connectionManager->CreateConnection(providerInter

nalName);

connectionInfo = connection->GetConnectionInfo();

connectionPropertyDictionary = connectionInfo->GetConnection

Properties();

retval = GetConnectionPropertyValues(connectionPropertyDic

tionary, connectDialog);

if (retval == 0) {

connectState = connection->Open();

switch (connectState) {

case FdoConnectionState_Busy: break;

case FdoConnectionState_Closed: break;

case FdoConnectionState_Open : break;

case FdoConnectionState_Pending :

retval = GetConnectionPropertyValues(connectionProperty

Dictionary, connectDialog);

if (retval == 0) {

connectState = connection->Open();

}

break;

default :

GisException * ex = GisException::Create(L"connection-

>Open() returned unknown connection state");

throw ex;

}

}

}

catch (GisException * ex){

// error handling

ex->Release();

if (connection) {

connection->Close();

}

return 1;

}

if (connectState != FdoConnectionState_Open) {

// error handling

return 1;

}

return 0;

}

// this method constructs the dialog the user fills in with

// values for the connection properties

40 | Chapter 5 Establishing a Connection

// if the user fills in all the required fields and does not

// cancel, the method sets the property values in the property

// dictionary once that is done, the connection can be opened

int

ExerciseFdoUtilities::GetConnectionPropertyValues(

FdoIConnectionPropertyDictionary

*dictionary, Dialog * dialog) {

int retval = 0;

// get the list of property names in the dictionary

GisString ** propertyNames = NULL;

GisInt32 nameCount = 0;

propertyNames = dictionary->GetPropertyNames(nameCount);

GisString * propertyName = NULL;

// loop through the property names adding each property to the

// dialog

for(int i = 0; i < nameCount; i++) {

// get the property name

propertyName = propertyNames[i];

// get the label to be used for the property input line

// in the dialog

GisString * propertyLabel = dictionary->

GetLocalizedName(propertyName);

// determine whether to make the entry line required

// or optional

bool IsRequired = dictionary->

IsPropertyRequired(propertyName);

// determine whether the user input has to be handled in a

// secure way

bool IsProtected = dictionary->

IsPropertyProtected(propertyName);

// get the actual and default values for the property

// these could be the empty string, that is, (GisString *)””

GisString * actualValue = dictionary->

GetProperty(propertyName);

GisString * defaultValue = dictionary->

GetPropertyDefault(propertyName);

// determine whether the property values are enumerable

bool IsEnumerable = dictionary->

IsPropertyEnumerable(propertyName);

GisString ** EnumeratedValues = NULL;

GisInt32 numValues = 0;

if (IsEnumerable) {

// get the list of valid values

Connection Example | 41

EnumeratedValues = dictionary->EnumeratePropertyValues

(propertyName, numValues);

}

// the dictionary entry for this property could possibly be

// populatetd by a subsequent call to the Open() method

bool greyOut = false;

if (IsEnumerable && numValues == 0) {

greyOut = true;

}

// the values are enumerable and there is only one

else if (IsEnumerable && numValues == 1) {

// add the line to the dialog,

// setting the spin box value to EnumeratedValues[0]

}

// the values are enumerable and there is more than one

else if (IsEnumerable && numValues > 1) {

// add the line to the dialog,

// setting the spin box value to the actualValue if

// not empty, or setting it to the defaultValue if

// valid and not empty, or setting it to one of the

// enumerated values

}

// set the field to the actual value if not empty

else if (wcscmp(actualValue, L"") != 0) {

// add line to dialog

}

// set the field to whatever is the default value

else {

// add line to dialog

}

}

// blocks until user clicks ok or cancel in dialog

// returns 0 if user clicks ok and all required input is

// there and valid if user doesn't fill in required fields,

// dialog persists until user does so or presses cancel

// returns positive if user cancels

retval = dialog->expose();

if (retval == 0) {

GisString * value = NULL;

for(int i = 0; i < nameCount; i++) {

// get the property name

propertyName = propertyNames[i];

42 | Chapter 5 Establishing a Connection

// get the value input by the user for this property

value = dialog->GetValue(propertyName);

dictionary->SetProperty(propertyName, value);

}

}

return retval;

}

Connection Example | 43

Capabilities

In this chapterThis chapter explains the Capabilities API and provides the

code for retrieving the various FDO provider capability ■ What Is the Capabilities API?

■ Connection Capabilities
categories, such as connection or schema capabilities. You can

■ Schema Capabilities
use this this API to determine the capabilities of a particular

provider.

■ Command Capabilities

■ Expression Capabilities

■ Filter Capabilities

■ Geometry Capabilities

■ Raster Capabilities

■ Topology Capabilities

6

45

What Is the Capabilities API?
You can use this API and its various capability categories to determine the
capabilities of a particular provider, for example, FDO Provider for Oracle. The
capabilities methods can be used to execute code conditionally, depending
on which provider is being used and which capability is being exercised.

The capabilities of an FDO provider are grouped in the following categories:

■ Connection

■ Schema

■ Command

■ Expression

■ Filter

■ Geometry

■ Raster

■ Topology

NOTE Topology-related samples are provided for informational use only. There
is no interface or support provided. Autodesk reserves the right to change the
software related to the content herein.

The capabilities are retrieved by using methods belonging to an
FdoIConnection object. First, you connect to the provider. Then, you query
its capabilities.

The sections in this chapter describe how to retrieve the capabilities for each
of the categories. In each section, the code fragment assumes that you have
connected to the provider and declared the following connection object:

#include <fdo.h>

FdoIConnection * connection;

46 | Chapter 6 Capabilities

Connection Capabilities

Code

Declarations

The object and variable declarations are the following:

FdoIConnectionCapabilities * connectionCapabilities;

// FdoThreadCapability is an enumerated type
FdoThreadCapability threadCapability;

// FdoSpatialContextExtentType is an enumerated type
FdoSpatialContextExtentType * spatialContextExtentTypes;

GisInt32 numSpatialContexts;

// FdoLockType is an enumerated type
FdoLockType * lockTypes;

GisInt32 numLockTypes;

bool supportsLocking;

bool supportsTimeout;

bool supportsTransactions;

bool supportsLongTransactions;

bool supportsSQL;

bool supportsConfiguration;

Method calls

The method calls are the following:

Connection Capabilities | 47

connectionCapabilities = connection->GetConnectionCapabilities();

// GetThreadCapability() returns a single value
threadCapability = connectionCapabilities->GetThreadCapability();

// GetSpatialContextTypes() returns a list
spatialContextExtentTypes = connectionCapabilities->

 GetSpatialContextTypes(numSpatialContexts);

// loop through the spatialContextExtentTypes
supportsLocking = connectionCapabilities->SupportsLocking();

// GetLockTypes() returns a list
lockTypes = connectionCapabilities->GetLockTypes(numLockTypes);

// loop through the lockTypes
supportsTimeout = connectionCapabilities->SupportsTimeout();

supportsTransactions = connectionCapabilities->

 SupportsTransactions();

supportsLongTransactions = connectionCapabilities->

SupportsLongTransactions();

supportsSQL = connectionCapabilities->SupportsSQL();

supportsConfiguration = connectionCapabilities->

SupportsConfiguration();

Reference

For more information, see these FDO API Reference Help topics:

■ class FdoIConnectionCapabilities

■ enum FdoLockType

■ enum FdoSpatialContextExtentType

■ enum FdoThreadCapability

Schema Capabilities

Code

Declarations

The object and variable declarations are the following:

48 | Chapter 6 Capabilities

FdoISchemaCapabilities * schemaCapabilities;

// FdoClassType is an enumerated type
FdoClassType * classTypes;

// FdoDataType is an enumerated type
FdoDataType * dataTypes;

bool supportsInheritance;

bool supportsMultipleSchemas;

bool supportsObjectProperties;

bool supportsAssociationProperties;

bool supportsSchemaOverrides;

bool supportsNetworkModel;

bool supportsAutoIdGeneration;

bool supportsDataStoreScopeUniqueIdGeneration;

FdoDataType * autoGeneratedTypes;

bool supportsSchemaModification;

Method Calls

The method calls are the following:

Code | 49

schemaCapabilities = connection->GetSchemaCapabilities();

// this returns a list of FdoClassType
classTypes = schemaCapabilities->GetClassTypes();

// loop through the classTypes// this returns a list of
FdoDataType
dataTypes = schemaCapabilities->GetDataTypes();

// loop through the dataTypes
supportsInheritance = schemaCapabilities->SupportsInheritance();

supportsMultipleSchemas = schemaCapabilities->

 SupportsMultipleSchemas();

supportsObjectProperties = schemaCapabilities->

 SupportsObjectProperties();

supportsAssociationProperties = schemaCapabilities->

 SupportsAssociationProperties();

supportsSchemaOverrides = schemaCapabilities->

 SupportsSchemaOverrides();

supportsNetworkModel = schemaCapabilities->SupportsNetworkModel();

supportsAutoIdGeneration = schemaCapabilities->

 SupportsAutoIdGeneration();

supportsDataStoreScopeUniqueIdGeneration = schemaCapabilities->

 SupportsDataStoreScopeUniqueIdGeneration();

// this returns a list of FdoDataType
autoGeneratedTypes = schemaCapabilities->

 GetSupportedAutoGeneratedTypes();

supportsSchemaModification = schemaCapabilities->

SupportsSchemaModification();

References

For more information, see these FDO API Reference Help topics:

■ class FdoISchemaCapabilities

■ enum FdoClassType

■ enum FdoDataType

50 | Chapter 6 Capabilities

Command Capabilities

Code

Declarations

The object and variable declarations are the following:

FdoICommandCapabilities * commandCapabilities;

// this will contain values of type FdoCommandType and//
possibly values of type FdoRdbmsCommandType, which are//
provider-specific commands
GisInt32 * commandTypes;

bool supportsParameters;

bool supportsTimeout;

bool supportsSelectExpressions;

bool supportsSelectFunctions;

bool supportsSelectDistinct;

bool supportsSelectOrdering;

bool supportsSelectGrouping;

Method Calls

The method calls are the following:

commandCapabilities = connection->GetCommandCapabilities();

// this returns a list of command types
commandTypes = commandCapabilities->GetCommands();

// loop through the commandTypes
supportsParameters = commandCapabilities->SupportsParameters();

supportsTimeout = commandCapabilities->SupportsTimeout();

supportsSelectExpressions = commandCapabilities->

SupportsSelectExpressions();

supportsSelectFunctions = commandCapabilities->

SupportsSelectFunctions();

supportsSelectDistinct = commandCapabilities->

SupportsSelectDistinct();

supportsSelectOrdering = commandCapabilities->

SupportsSelectOrdering();

supportsSelectGrouping = commandCapabilities->

SupportsSelectGrouping();

Command Capabilities | 51

References

For more information, see these FDO API Reference Help topics:

■ class FdoICommandCapabilities

■ enum FdoCommandType

■ enum FdoRdbmsCommandType

Expression Capabilities

Code

Declarations

The object and variable declarations are the following:

FdoIExpressionCapabilities * expressionCapabilities;

GisInt32 numExpressionTypes = 0;

// this is an enumerated type
FdoExpressionType * expressionTypes;

GisInt32 numFunctionDefinitions = 0;

FdoFunctionDefinitionCollection * functions;

FdoFunctionDefinition * functionDefinition;

GisString * functionName;

GisString * functionDescription;

GisInt32 numArgumentDefinitions = 0;

FdoReadOnlyArgumentDefinitionCollection * arguments;

FdoArgumentDefinition * argumentDefinition;

GisString * argumentName;

GisString * argumentDescription;

FdoDataType argumentType;

Method Calls

The method calls are the following:

52 | Chapter 6 Capabilities

expressionCapabilities = connection->GetExpressionCapabilities();

// this returns a list of expression types
expressionTypes = expressionCapabilities->GetExpressionTypes();

// loop through the expression Types
functions = expressionCapabilities->GetFunctions();

numFunctionDefinitions = functions->GetCount();

for (int i = 0; i < numFunctionDefinitions; i++) {

functionDefinition = functions->GetItem(i);

functionName = functionDefinition->GetName();

functionDescription = functionDefinition->GetDescription();

arguments = functionDefinition->GetArguments();

numArgumentDefinitions = arguments->GetCount();

for (int j = 0; j < numArgumentDefinitions; j++) {

argumentDefinition = arguments->GetItem(j);

argumentName = argumentDefinition->GetName();

argumentDescription = argumentDefinition->GetDescription();

argumentType = argumentDefinition->GetDataType();

}

}

Filter Capabilities

Code

Declarations

The object and variable declarations are the following:

FdoIFilterCapabilities * filterCapabilities;

GisInt32 numConditionTypes = 0;

FdoConditionType * conditionTypes;

GisInt32 numSpatialOperations = 0;

FdoSpatialOperations * spatialOperations;

GisInt32 numDistanceOperations = 0;

FdoDistanceOperations * distanceOperations;

bool supportsGeodesicDistance;

bool supportsNonLiteralGeometricOperations;

Method Calls

The method calls are the following:

Filter Capabilities | 53

filterCapabilities = connection->GetFilterCapabilities();

conditionTypes = filterCapabilities->

GetConditionTypes(numConditionTypes);

// loop through conditionTypes
spatialOperations = filterCapabilities->

GetSpatialOperations(numSpatialOperations);

// loop through spatialOperations
distanceOperations = filterCapabilities->

GetDistanceOperations(numSpatialOperations);

// loop through distanceOperations
supportsGeodesicDistance = filterCapabilities->

SupportsGeodesicDistance();

supportsNonLiteralGeometricOperations = filterCapabilities->

SupportsNonLiteralGeometricOperations();

Geometry Capabilities

Code

Declarations

The object and variable declarations are the following:

FdoIGeometryCapabilities * geometryCapabilities;

GisInt32 numGeometryTypes = 0;

GisGeometryType * geometryTypes;

GisInt32 numGeometryComponnentTypes = 0;

GisGeometryComponentType * geometryComponentTypes;

GisInt32 dimensionalities = 0;

Method calls

The method calls are the following:

54 | Chapter 6 Capabilities

geometryCapabilities = connection->GetGeometryCapabilities();

geometryTypes = geometryCapabilities->

 GetGeometryTypes(numGeometryTypes);

// loop through geometryTypes
geometryComponentTypes = geometryCapabilities->

 GetGeometryComponentTypes(numGeometryComponentTypes);

// loop through geometryComponentTypes
dimensionalities = geometryCapabilities->GetDimensionalities();

// GisDimensinality_XY is 0 and so is always a given
if (dimensionalities & GisDimensionality_Z) {

// do whatever
}

if (dimensionalities & GisDimensionality_M) {

// do whatever
}

Raster Capabilities

Code

Declarations

The object and variable declarations are the following:

FdoIRasterCapabilities * rasterCapabilities;

bool supportsRaster;

bool supportsStitching;

bool supportsSubsampling;

bool supportsDataModel;

FdoRasterDataModel * rgbRasterDataModel;

Method calls

The method calls are the following:

Raster Capabilities | 55

rasterCapabilities = connection->GetRasterCapabilities();

supportsRaster = rasterCapabilities->SupportsRaster();

if (supportsRaster) {

 supportsStitching = rasterCapabilities->SupportsStitching();

 supportsSubsampling = rasterCapabilities->SupportsSubsampling();

 rgbRasterDataModel = FdoRasterDataModel::Create();

rgbRasterDataModel->

SetDataModelType(FdoRasterDataModelType_RGB);

rgbRasterDataModel->SetBitsPerPixel(64);

rgbRasterDataModel->

SetOrganization(FdoRasterDataOrganization_Image);

rgbRasterDataModel->SetTileSizeX(64);

rgbRasterDataModel->SetTileSizeY(128);

supportsDataModel = rasterCapabilities->

SupportsDataModel(rgbRasterDataModel);

}

Topology Capabilities

Code

Declarations

The object and variable declarations are the following:

FdoITopologyCapabilities * topologyCapabilities;

bool supportsTopology;

bool supportsToplogicalHierarchy;

bool breakCurveCrossingsAutomatically;

bool activatesTopologyByArea;

bool constrainsFeatureMovements;

Method Calls

The method calls are the following:

56 | Chapter 6 Capabilities

topologyCapabilities = connection->GetTopologyCapabilities();

supportsTopology = topologyCapabilities->SupportsTopology();

if (supportsTopology) {

 supportsTopologyicalHierarchy = topologyCapabilities->

 SupportsTopologicalHierarchy();

breaksCurveCrossingsAutomatically = topologyCapabilities->

BreaksCurveCrossingsAutomatically();

activatesTopologyByArea = topologyCapabilities->

ActivatesTopologyByArea();

constrainsFeatureMovements = topologyCapabilities->

ConstrainsFeatureMovements();

}

NOTE Topology-related samples are provided for informational use only. There
is no interface or support provided. Autodesk reserves the right to change the
software related to the content herein.

Code | 57

Schema Management

In this chapterThis chapter describes how to create and work with schemas

and explains some issues related to schema management. For ■ Schema Package

■ Schema Overrides
example, you can use the FDO feature schema to specify how

to represent geospatial features.
■ Working with Schemas

■ FDOFeatureClass

■ FDOClass

■ Non-Feature Class Issues

■ Modifying Models

■ Schema Element States

■ Rollback Mechanism

■ FDO XML Format

■ Creating and Editing a GML
Schema File

■ Schema Management Examples

7

59

Schema Package
The FDO feature schema provides a logical mechanism for specifying how to
represent geospatial features. FDO providers are responsible for mapping the
feature schema to some underlying physical data store. The FDO feature
schema is based somewhat on a subset of the OpenGIS and ISO feature models.
It supports both non-spatial features and spatial features.

The Schema package contains a collection of classes that define the logical
feature schema. These classes can be used to set up a feature schema and to
interrogate the metadata from a provider using an object-oriented structure.
The logical feature schema provides a logical view of geospatial feature data
that is fully independent from the underlying storage schema. All data
operations in FDO are performed against the classes and relationships defined
by the logical feature schema. For example, different class types in the feature
schema are used to describe different types of geospatial objects and spatial
features.

Base Properties

All classes in the feature schema support the concept of base properties, which
are properties that are pre-defined either by the FDO API or by a specific FDO
feature provider. For example, all classes in the schema have two base
properties: ClassName and SchemaName. These properties can be used to
query across an inheritance hierarchy or to process the results of heterogeneous
queries. FDO feature providers can also predefine base properties. The following
base properties are predefined by the FDO API:

DescriptionRequiredProperty Name

Name of the schema to which objects of the class
belong; read-only string.

YSchemaName

Name of the class that defines the object; read-only
string.

YClassName

Revision number of the object; read-only 64-bit in-
teger.

NRevisionNumber

NOTE Some providers may use this property to
support optimistic locking.

60 | Chapter 7 Schema Management

Cross-Schema References

Some FDO feature providers may support multiple schemas. For these providers,
the feature schema supports the concept of cross-schema references for classes.
This means that a class in one schema may derive from a class in another
schema, relate to a class in another schema, or contain an object property
definition that is based on a class in another schema.

Parenting in the Schema Classes

The feature schema object model defined in the FDO API supports full
navigation through parenting. That is, once a schema element is added to an
FdoFeatureSchema class, it can navigate the object hierarchy upward to the
root FdoFeatureSchema and, from there, to any other element in the feature
schema. This parenting support is fully defined in the FdoSchemaElement
abstract base class.

When inserting features that have object collections, the parent object instance
must be identified when inserting the child objects (for example, a parent
class “Road” has an object property called “sidewalks” of type “Sidewalk”).
For more information, see Data Maintenance (page 93).

Physical Mappings

Each feature provider maps the logical feature schema to an underlying
physical data store. Some feature providers may provide some level of control
over how the logical schema gets mapped to the underlying physical storage.
For example, an RDBMS-based feature provider may allow table and column
names to be specified for classes and properties. Since this is entirely
provider-dependent, the FDO API simply provides abstract classes for passing
physical schema and class mappings to the provider
(FdoPhysicalSchemaMapping, FdoPhysicalClassMapping,
FdoPhysicalPropertyMapping, and FdoPhysicalElementMapping, respectively).
The implementation of these abstract classes is up to each feature provider.

Schema Overrides
Using schema overrides, FDO applications can customize the mappings
between Feature (logical) Schemas and the Physical Schema of the provider
data store.

Schema overrides are provider-specific because different FDO providers support
FDO data stores with widely different physical formats. Therefore, the types

Schema Overrides | 61

of schema mappings in these overrides also vary between providers. For
example, an RDBMS-type provider might provide a mapping to index a set of
columns in a class table. However, other providers would not necessarily be
able to work with the concept of an index. For information about schema
overrides support by a specific provider, see the appropriate appendix in this
document and The Essential FDO.

NOTE Some providers support only default schema mappings.

Working with Schemas
There are three primary operations involved with schema management:

■ Creating a schema

■ Describing a schema

■ Modifying a schema

Creating a Schema

The following basic steps are required to create a schema (some steps are
optional; some may be done in an alternate order to achieve the same result):

■ Use the FdoFeatureSchema::Create(“SchemaName”, “FeatureSchema
Description”) method to create a schema.

■ Use the FdoFeatureSchema::GetClasses() method to return a class collection.

■ Use the FdoClass::Create(“className”, “classDescription”) or
FdoFeatureClass::Create(“className”, “classDescription”) method to create
FdoClass or FdoFeatureClass type objects.

■ Use the FdoClassCollection::Add(class) method to add FdoClass or
FdoFeatureClass objects to the class collection.

■ Use the FdoGeometricPropertyDefinition::Create(“name”, “Description”)
method to create FdoGeometryProperty.

■ Use the FdoDataPropertyDefinition::Create(“name”, “Description”) method
to create FdoDataProperty.

■ Use the FdoObjectPropertyDefinition::Create(“name”, “Description”)
method to create FdoObjectProperty.

62 | Chapter 7 Schema Management

■ Use the FdoClassDefinition::GetProperties() and Add(property) methods
to add property to class definition.

■ Use the FdoIApplySchemaCommand::SetFeatureSchema(feature schema)
method to set the schema object for the IFdoApplySchemaCommand.

■ Use the FdoAssociationPropertydefinition class to represent the association
between two classes. The class of the associated class must already be
defined in the feature schema and cannot be abstract.

■ Use the FdoIApplySchemaCommand::Execute() method to execute changes
to the feature schema.

For an example of schema creation, see Example: Creating a Feature Schema
(page 85).

Use the FdoClassDefinition::GetIdentityProperties() and Add(Property Object)
methods to set the property as FdoClass or FdoFeatureClass Identifier. FDO
allows multiple Identifiers for both types of classes, although Identifiers have
slight differences in both cases.

FDOFeatureClass
FdoFeatureClass is a class that defines features. In the case of GIS, they would
often be spatial features, having some sort of geometry associated with them.
In most providers, FdoFeatureClass requires a unique identifier to distinguish
the features.

However, there are identifiers only if no base class exists. If the base class has
an identifier, the child class does not have one. You cannot set an identifier
to the child class. Any class definition that has a base class cannot also have
any identity properties because it inherits from the base class.

Therefore, you cannot send an identifier when a feature class is a child since
it always inherits the identifier from the base class.

FDOClass
This class is used for non-spatial data. It can act as a stand-alone class, where
it would have no association with any other class, or if the FdoClass is being
used as an ObjectProperty, it can be used to define properties of some other
FdoClass or FdoFeatureClass.

FDOFeatureClass | 63

ObjectProperty Types

ObjectProperties have the following types:

■ Value

■ Collection

■ OrderedCollection

The Value ObjectProperty type has a relationship of one-to-one, providing a
single value for each property.

The Collection and OrderedCollection ObjectProperty types have a
one-to-many relationship, where many ObjectProperties may be associated
with one property. Ordered Collections can be stored in an ascending or
descending order

At least one Identifier will be required if the FdoClass is to be used as a
stand-alone Class.

■ All Identifiers for FdoDataType_Int64 must not be Read-Only, since none
of these will be an auto-generated property value.

■ If creating multiple Identifiers, all Identifiers must be set to NOT NULL.

Non-Feature Class Issues
A non-feature class in FDO can be created as a stand-alone class, a contained
class, or both. As a contained class, it defines a property of another class or
feature class (see FdoFeatureClass and FdoClassType Global Enum). How this
non-feature class is created affects the way the data is inserted, queried, and
updated.

Stand-alone Class

This type of class stores non-feature data (for example, manufacturers). The
FdoClassType_Class must be created with one or more identity properties (see
FdoObjectPropertyDefinition), which is required in order that the class has a
physical container (that is, a table in the RDBMS) associated with it. If the
class is created without specifying an IdentityProperty, only the definition is
stored in the metadata, which prevents any direct data inserts.

64 | Chapter 7 Schema Management

Contained Class

This type of class stores non-feature data that defines a property of another
class or feature class (for example, Sidewalk could be a property of a Road
feature class; the Sidewalk class defines the Road.Sidewalk property). In this
case, the FdoClassType_Class does not need to be created with one or more
identity properties, although it can be.

Class With IdentityProperty Used as ObjectProperty

This type of class reacts like a stand-alone class; however, with this type, it is
possible to do direct data inserts. It can also be populated through a container
class (for example, Road.Sidewalk) since it defines an object property (see
FdoObjectPropertyDefinition). If this class is queried directly, only the data
inserted into the class as a stand-alone is returned. The data associated with
the ObjectProperty can only be queried through the container class (for
example, Road.Sidewalk).

Class Without a Defined IdentityProperty Used as ObjectProperty

Because this class has no defined IdentityProperty, it can only be populated
through the container class (for example, Road.Sidewalk) since it defines
ObjectProperty. This class cannot be queried directly. The data associated with
the object property can only be queried through the container class (for
example, Road.Sidewalk). As an object property, it is defined as one of the
following:

■ Value type property. Does not need any identifier since it has a one-to-one
relationship with the container class.

■ Collection type property. Requires a local identifier, which is an identifier
defined when creating the ObjectProperty object.

■ Ordered Collection type property. Requires a local identifier, which is an
identifier defined when creating the ObjectProperty object.

When defining either a Collection or Ordered Collection type ObjectProperty,
you must set an IdentityProperty attribute for that object property. This
ObjectClass.IdentityProperty acts only as a local identifier compared to the
IdentityProperty set at the class level. As a local identifier, it acts to uniquely
identify each item within each collection (for example, if the local identifier
for Road.Sidewalk is Side, there can be multiple sidewalks with Side=”Left”
but only one per Road).

Non-Feature Class Issues | 65

Describing a Schema

Use the FdoIDescribeSchema::Execute function to retrieve an
FdoFeatureSchemaCollection in order to obtain any information about existing
schema(s). The FdoFeatureSchemaCollection consists of all FdoFeatureSchemas
in the data store and can be used to obtain information about any schema
object, including FdoFeatureSchema, FdoClass, FdoFeatureClass, and their
respective properties. The following functions return the main collections
required to obtain information about all schema objects:

■ FdoFeatureSchema::GetClasses method obtains FdoClass and
FdoFeatureClasses.

■ FdoClassDefinition::GetProperties method obtains a
FdoPropertyDefinitionCollection.

■ FdoClassDefinition::GetBaseProperties method obtains a
FdoPropertyDefinitionCollection of the properties inherited from the base
classes.

NOTE Even if your schema has no base classes (inheritance), all classes will inherit
some properties from system classes.

Use these functions throughout the application to obtain any information
about schema objects. For example, in order to insert data into a class, you
must use these functions to determine what data type is required. Description
of the data is separate from actions.

The example in the following link is a simple function that shows how to use
FdoIDescribeSchema and loop through the schema and class containers to
search for duplicate class names. It searches all schemas to ensure that the
class name does not exist in any schema in the data store. Class names must
be unique across the entire FDO database.

For a schema description example, see Example: Describing a Schema and
Writing It to an XML File (page 88).

66 | Chapter 7 Schema Management

FdoXmlSerializable

FdoPropertyDefinition

FdoSchemaElement

FdoFeatureSchema

FdoClassDefinition

FdoFeatureClass FdoClass

FdoGeometricPropertyDef inition

FdoDataPropertyDefinition FdoObjectPropertyDefinition FdoRasterPropertyDefinition

FdoAssociationPropertyDefinition

* *

FDO Schema Element Class Diagram

Modifying Models
Add schema elements to a model by inserting them into the appropriate
collection.

Elements are removed from the model by using either of the following
methods:

■ Call the FdoSchemaElement::Delete() method. This flags the element for
deletion when the changes are accepted (generally through
FdoIApplySchema), but the element remains a member of all collections
until that time.

■ Remove the element from the appropriate collection via the
FdoSchemaCollection::Remove() or FdoSchemaCollection::RemoveAt()
methods. This immediately disassociates the element from the collection.

Modifying Models | 67

Schema Element States
All elements within the model maintain a state flag. This flag can be retrieved
by calling FdoSchemaElement::GetElementState(), but it cannot be directly
set. Instead, its state changes in reaction to the changes made to the model:

■ Unchanged. When a schema model is retrieved via FdoIDescribeSchema,
all elements are initially marked Unchanged.

■ Detached. Removing an element from an owning collection sets its state
to Detached.

■ Deleted. Calling the Delete() method on an element sets its state to Deleted.

■ Added. Placing an element within a collection marks the element as Added.

■ Modified. When adding or removing a sub-element, such as a property
element from a class, the class element state will be changed to Modified.

Additionally, when an element that is contained by another element is changed
in any way, the containing element is also marked as Modified. So, for example,
if a new value is added to the SchemaAttributeDictionary of the “Class3”
element in our model, both the “Class3” FdoClass object and the
FdoFeatureSchema object would be marked as Modified.

The state flags are maintained until the changes are accepted, that is, when
IApplySchema is executed. At that time, all elements marked Deleted are
released and all other elements are set to Unchanged.

NOTE When you remove an element from an owning collection, its state is marked
as Detached. All collections currently in FDO are owning collections, except for
one, the collections FdoClassDefinition::GetIdentityProperties().

Rollback Mechanism
The FdoFeatureSchema contains a mechanism that allows you to “roll back”
model changes to the last accepted state. For example, a model retrieved via
FdoIDescribeSchema can have classes added, attributes deleted, or names and
default values changed. All of these changes are thrown out and the model
returned to its unmodified state by calling FdoFeatureSchema::RejectChanges().

The converse of this operation is the FdoFeatureSchema::AcceptChanges()
method, which removes all of the elements with a status of Deleted and sets
the state flag of all other elements to Unchanged. Generally, this method is

68 | Chapter 7 Schema Management

only invoked by FDO provider code after it has processed an
FdoIApplySchema::Execute() command. Normal FDO clients should not call
this method directly.

FDO XML Format
FDO feature schemas can be written to an XML file. The FdoFeatureSchema
and FdoFeatureSchemaCollection classes support the FdoXmlSerializable
interface. The sample code shows an FdoFeatureSchema object calling the
WriteXml() method to generate an XML file containing the feature schema
created by the sample code.

FDO feature schemas can also be read from an XML file. The
FdoFeatureSchemaCollection class supports the FdoXmlDeserializable interface.
The sample code shows an FdoFeatureSchemaCollection object calling the
ReadXml() method to read a set of feature schemas into memory from an XML
file. The code shows the desired schema being retrieved from the collection
and applied to the data store.

The XML format used by FDO is a subset of the Geography Markup Language
(GML) standardized by the Open GIS Consortium (OGC). One thing shown
in the sample code is a round-trip conversion from FDO feature schema to
GML schema back to FDO feature schema. To accomplish this round-trip, the
ReadXml() method supports a superset of the GML that is written by the
WriteXml() method.

The following table specifies the mapping of FDO feature schema elements
to GML elements and attributes. This mapping is sufficient to understand the
XML file generated from the schema defined by the sample code. It also
provides a guide for writing a GML schema file by hand. This file can then be
read in and applied to a data store. For more information, see Example:
Creating a Schema Read In from an XML File (page 88).

Another form of round-trip translation would be from a GML schema produced
by another vendor’s tool to an FDO feature schema, and then back to a GML
schema. However, the resemblance the of resulting GML schema to the original

FDO XML Format | 69

GML schema might vary from only roughly equivalent to being exactly the
same.

Map FDO Element to GML Schema Fragment

GML Schema FragmentFDO Element

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”http://<customer_url>/<FeatureSchem

aName>”

xmlns:fdo=”http://fdo.osgeo.org/isd/schema”

xmlns:gml=”http://www.opengis.net/gml”

xmlns:<FeatureSchemaName>=”http://<customer_url>/<Fea

tureSchemaName>”

elementFormDefault=”qualified”

attributeFormDefault=”unqualified”

>

{ see <MetaData> }

{ optional xs:import element to enable schema validation

<xs:import namespace="http://fdo.osgeo.org/schema"

schemaLocation="<FDO SDK Install Loca

tion>/docs/XmlSchema/FdoDocument.xsd"/>

}

{ <one xs:element and/or xs:complexType per class> }

</xs:schema>

FeatureSchema

<xs:element name=”<className>”

type=”<className>Type”

abstract=”<true | false>”

substitutionGroup=”gml:_Feature”

>

<xs:key name=”<className>Key”>

<xs:selector xpath=”.//<className>”/>

<xs:field xpath=”<identityProperty1Name>”/>

<xs:field xpath=”...”/>

<xs:field xpath=”<identityProperty<n>Name>”

</xs:key>

</xs:element>

ClassDefinition
(with identity prop-
erties)

70 | Chapter 7 Schema Management

GML Schema FragmentFDO Element

<xs:element ...see ClassDefinition (with identity proper

ties)...</xs:element>

<xs:complexType name=”<className>Type”

 abstract=”<true | false>”/>

{ see FeatureClass.GeometryProperty }

>

{ see <MetaData> }

<xs:complexContent>

<xs:extension base=”{baseClass} ?

{baseClass.schema.name}:{baseClass.name} :

‘gml:AbstractFeatureType’ “

>

<xs:sequence>

{ list of properties; see DataProperty, Geomet

ricProperty }

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

FeatureClass

<!-- these attributes belong to the xs:complexType element

-->

fdo:geometryName=”<geometryPropertyName>”

fdo:geometricTypes=”<list of FdoGeometricTypes>”

fdo:geometryReadOnly=”<true | false>”

fdo:hasMeasure=”<true | false>”

fdo:hasElevation=”<true | false>”

fdo:srsName=”<spatialContextName>”/>

FeatureClass. Geom-
etryProperty

FDO XML Format | 71

GML Schema FragmentFDO Element

<!--

 minOccurs attribute generated only if value is 1

 default attribute generated only if a default value exists

 fdo:readOnly attribute generated only if value is true

-->

<xs:element name=”<propertyName>”

 minOccurs=”{isNullable ? 0 : 1}”

 default=”<defaultValue>”

 fdo:readOnly=”<true | false>”

>

{ see <MetaData> }

<xs:simpleType>

{ see DataType String or DataType Decimal }

</xs:simpleType>

</xs:element>

DataProperty (deci-
mal or string)

<xs:element name=”<propertyName>”

type=”<datatype>”

minOccurs=”{isNullable ? 0 : 1}”

default=”<defaultValue>”

fdo:readOnly=”<true | false>”

>

{ see <MetaData> }

</xs:element>

DataProperty (oth-
er type)

<xs:restriction base=”xs:string”>

<xs:maxLength value=”<length>”/>

</xs:restriction>

DataType String

<xs:restriction base=”xs:decimal”>

<xs:totalDigits value=”<precision>”/>

<xs:fractionDigits value=”<scale>”/>

</xs:restriction>

DataType Decimal

72 | Chapter 7 Schema Management

GML Schema FragmentFDO Element

<xs:element name=”<propertyName>”

 type=”gml:AbstractGeometryType”

 fdo:geometryName=”<propertyName>”

 fdo:geometricTypes=”<list of FdoGeometricTypes>”

fdo:geometryReadOnly=”<true | false>”

fdo:hasMeasure=”<true | false>”

fdo:hasElevation=”<true | false>”

fdo:srsName=”<spatialContextName>”/>

>

{ see <MetaData> }

</xs:element>

GeometricProperty
(not a defining Fea-
tureClass Geome-
tryProperty)

FDO XML Format | 73

GML Schema FragmentFDO Element

<!-- the pattern referenced in the xs:schema element for

FeatureSchema-->

<xs:annotation>

 <xs:documentation>{description arg to static FdoFea

tureSchema::Create()}</xs:documentation>

</xs:annotation>

<!-- the pattern referenced in the xs:element element for

DataProperty -->

<xs:annotation>

 <xs:documentation>{description arg to static FdoDataProp

ertyDefinition::Create()}</xs:documentation>

</xs:annotation>

<!--

 the pattern referenced in the xs:element element for a

non-feature-defining

 GeometricProperty

-->

<xs:annotation>

 <xs:documentation>{description arg to static FdoGeomet

ricPropertyDefinition::Create()}</xs:documentation>

</xs:annotation>

<!-- the pattern referenced in the xs:complexType element

for FeatureClass -->

<xs:annotation>

 <xs:documentation>{description arg to static FdoFeature

Class::Create()}</xs:documentation>

 <xs:appinfo source=”<uri>”/>

 <xs:documentation>{description arg to static FdoGeomet

ricPropertyDefinition::Create()}</xs:documentation>

</xs:annotation>

MetaData

Map FDO Datatype to GML Type

GML TypeFDO Datatype

xs:booleanBoolean

fdo:ByteByte

xs:dateTimeDateTime

74 | Chapter 7 Schema Management

GML TypeFDO Datatype

xs:doubleDouble

fdo:Int16Int16

fdo:Int32Int32

fdo:Int64Int64

xs:floatSingle

xs:base64BinaryBLOB

xs:stringCLOB

Creating and Editing a GML Schema File
The sample in this section illustrates the creation of a GML schema file
containing the definition of an FDO feature schema that contains one feature.
The name of this file will have the standard XML schema extension name,
.xsd. This means that it contains only one schema and that the root element
is xs:schema. The ReadXml() method will take a filename argument whose
extension is either .xsd or .xml. In the latter case, the file could contain many
schema definitions. If it does, each schema is contained in an xs:schema
element, and all xs:schema elements are contained in the fdo:DataStore
element. If there is only one schema in the .xml file, then the fdo:DataStore
element is not used, and the root element is xs:schema.

You may want to validate the schema that you create. To do so, you must
include the optional xs:import line specified in the GML schema fragment
for FeatureSchema.

The sample feature implements a table definition for the Buildings feature in
the Open GIS Consortium document 98-046r1. This table definition is
expressed in an XML format on page 14 of the document and is reproduced
as follows:

Creating and Editing a GML Schema File | 75

<ogc-sfsql-table>

 <table-definition>

<name>buildings</name>

<column-definition>

<name>fid</name>

<type>INTEGER</type>

<constraint>NOT NULL</constraint>

<constraint>PRIMARY KEY</constraint>

</column-definition>

<column-definition>

<name>address</name>

<type>VARCHAR(64)</type>

</column-definition>

<column-definition>

<name>position</name>

<type>POINT</type>

</column-definition>

<column-definition>

<name>footprint</name>

<type>POLYGON</type>

<column-definition>

</table-definition>

Add GML for the FDO Feature Schema

Start with the skeleton GML for an FDO Feature Schema with the <MetaData>
reference replaced by the valid pattern:

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”http://<customer_url>/<FeatureSchemaName>”

xmlns:fdo=”http://fdo.osgeo.org/schema”

xmlns:gml=”http://www.opengis.net/gml”

xmlns:<FeatureSchemaName>=”http://<customer_url>/<FeatureSchem

aName>”

elementFormDefault=”qualified”

attributeFormDefault=”unqualified”

>

<xs:annotation>

<xs:documentation>

{description arg to static FdoFeatureSchema::Create()}

</xs:documentation>

</xs:annotation>

{ <one xs:element and/or xs:complexType per class> }

</xs:schema>

76 | Chapter 7 Schema Management

For <customer_url> substitute “fdo_customer”. For <FeatureSchemaName>
substitute “OGC980461FS”, and for {description arg ... } substitute “OGC
Simple Features Specification for SQL.”

Add GML for an FDO Feature Class

Start with the GML that is already written and add the skeleton for an FDO
Feature Class, which includes the skeleton for a class definition with identity
properties. The <MetaData> is replaced with the valid pattern.

Creating and Editing a GML Schema File | 77

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 targetNamespace=”http://fdo_customer/OGC980461FS”

 xmlns:fdo=”http://fdo.osgeo.org/schema”

 xmlns:gml=”http://www.opengis.net/gml”

 xmlns:OGC980461FS=”http://fdo_customer/OGC980461FS”

 elementFormDefault=”qualified”

 attributeFormDefault=”unqualified”

>

 <xs:annotation>

 <xs:documentation>OGC Simple Features Specification for

 SQL</xs:documentation>

 </xs:annotation>

 <xs:element name=”<className>”

 type=”<className>Type”

 abstract=”<true | false>”

 substitutionGroup=”gml:_Feature”

 >

 <xs:key name=”<className>Key”>

 <xs:selector xpath=”.//<className>”/>

 <xs:field xpath=”<identityProperty1Name>”/>

 </xs:key>

 </xs:element>

 <xs:complexType name=”<className>Type”

 abstract=”<true | false>”/>

 fdo:geometryName=”<geometryPropertyName>”

 fdo:geometricTypes=”<list of FdoGeometricTypes>”

 fdo:geometryReadOnly=”<true | false>”

 fdo:hasMeasure=”<true | false>”

 fdo:hasElevation=”<true | false>”

 fdo:srsName=”<spatialContextName>”/>

 >

 <xs:annotation>

 <xs:documentation>{description arg to static

 FdoFeatureClass::Create()}</xs:documentation>

 <xs:appinfo source=”<uri>”/>

 <xs:documentation>{description arg to static

 FdoGeometricPropertyDefinition::Create()}

 </xs:documentation>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base=”{baseClass} ?

 {baseClass.schema.name}:{baseClass.name} :

 ‘gml:AbstractFeatureType’ “

78 | Chapter 7 Schema Management

>

<xs:sequence>

{ list of properties; see DataProperty, GeometricProperty

}

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:schema>

You can make the following changes:

■ For <className> substitute “buildings”.

■ Set the value of the xs:element abstract attribute to false.

■ For <identityPropertyName> substitute “fid”. A data property whose name
is “fid” will be added.

■ Set the value of the xs:complexType abstract attribute to false.

■ For <geometryPropertyName> substitute “footprint”.

■ For <list of FdoGeometricTypes> substitute “surface”.

■ Set the values of fdo:geometryReadOnly, fdo:hasMeasure, and
fdo:hasElevation to false.

■ For <spatialContextName> substitute “SC_0”.

■ For {description arg to FdoFeatureClass::Create()} substitute “OGC 98-046r1
buildings”.

■ For <uri> substitute “http://fdo.osgeo.org/schema”.

■ For {description arg to FdoGeometricPropertyDefinition::Create()} substitute
“a polygon defines a building perimeter”.

■ This class has no base class so set the value of the xs:extension base attribute
to ‘gml:AbstractFeatureType’.

Add GML for Property Definitions

An integer data property whose name is “fid” will be added. This property is
already identified as an identity property in the xs:key element. A string data
property whose name is “name” and a geometry property whose name is
“position” will also be added.

Creating and Editing a GML Schema File | 79

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 targetNamespace=”http://fdo_customer/OGC980461FS”

 xmlns:fdo=”http://fdo.osgeo.org/schema”

 xmlns:gml=”http://www.opengis.net/gml”

 xmlns:OGC980461FS=”http://fdo_customer/OGC980461FS”

 elementFormDefault=”qualified”

 attributeFormDefault=”unqualified”

>

 <xs:annotation>

 <xs:documentation>OGC Simple Features Specification for

 SQL</xs:documentation>

 </xs:annotation>

 <xs:element name=”buildings”

 type=”buildingsType”

 abstract=”false”

 substitutionGroup=”gml:_Feature”

 >

 <xs:key name=”buildingsKey”>

 <xs:selector xpath=”.//buildings”/>

 <xs:field xpath=”fid”/>

 </xs:key>

 </xs:element>

 <xs:complexType name=”buildingsType”

 abstract=”false”/>

 fdo:geometryName=”footprint”

 fdo:geometricTypes=”surface”

 fdo:geometryReadOnly=”false”

 fdo:hasMeasure=”false”

 fdo:hasElevation=”alse”

 fdo:srsName=”SC_0”/>

 >

 <xs:annotation>

 <xs:documentation>OGC 98-046r1 buildings

 </xs:documentation>

 <xs:appinfo source=”http://fdo.osgeo.org/schema”/>

 <xs:documentation>a polygon defines the perimeter of a

 building</xs:documentation>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base=”gml:AbstractFeatureType“

 >

 <xs:sequence>

 <xs:element name=”<propertyName>”

80 | Chapter 7 Schema Management

type=”<datatype>”

minOccurs=”{isNullable ? 0 : 1}”

default=”<defaultValue>”

fdo:readOnly=”<true | false>”

>

<xs:annotation>

<xs:documentation>{description arg to static

FdoDataPropertyDefinition::Create()}

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name=”<propertyName>”

minOccurs=”{isNullable ? 0 : 1}”

default=”<defaultValue>”

fdo:readOnly=”<true | false>”

>

<xs:annotation>

<xs:documentation>{description arg to static

FdoDataPropertyDefinition::Create()}

</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base=”xs:string”>

<xs:maxLength value=”<length>”/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name=”<propertyName>”

ref=”gml:_Geometry”

fdo:geometryName=”<propertyName>”

fdo:geometricTypes=”<list of FdoGeometricTypes>”

fdo:geometryReadOnly=”<true | false>”

fdo:hasMeasure=”<true | false>”

fdo:hasElevation=”<true | false>”

fdo:srsName=”<spatialContextName>”/>

>

<xs:annotation>

<xs:documentation>{description arg to static

FdoGeometricPropertyDefinition::Create()}

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

Creating and Editing a GML Schema File | 81

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:schema>

You can make the following changes:

■ For the first data property <propertyName> substitute “fid”.

■ For the first data property <dataType> substitute “fdo:int32”.

■ Do not include the minOccurs or default attributes because the value of
minOccurs is 0, which is the default, and there is no <defaultValue>.

■ Set the fdo:readOnly attribute for “fid” to false.

■ Set the content for xs:documentation for “fid” to “feature id”.

■ For the second data property <propertyName> substitute “address”.

■ Do not include the minOccurs or default attributes because the value of
minOccurs is 0, which is the default, and there is no <defaultValue>.

■ Set the fdo:readOnly attribute for “name” to false.

■ Set the content for xs:documentation for “address” to “address of the
building”.

■ For <length> substitute “64”.

■ For the geometry property <propertyName> substitute “position”.

■ For <list of FdoGeometricTypes> substitute “point”.

■ Set the values of fdo:geometryReadOnly, fdo:hasMeasure, and
fdo:hasElevation to false.

■ For <spatialContextName> substitute “SC_0”.

■ For {description arg to FdoGeometricPropertyDefinition::Create()} substitute
“position of the building”.

The Final Result

After all the required substitutions, the GML for the schema containing the
Buildings feature is as follows:

82 | Chapter 7 Schema Management

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 targetNamespace=”http://fdo_customer/OGC980461FS”

 xmlns:fdo=”http://fdo.osgeo.org/schema”

 xmlns:gml=”http://www.opengis.net/gml”

 xmlns:OGC980461FS=”http://fdo_customer/OGC980461FS”

 elementFormDefault=”qualified”

 attributeFormDefault=”unqualified”

>

 <xs:annotation>

 <xs:documentation>OGC Simple Features Specification for

 SQL</xs:documentation>

 </xs:annotation>

 <xs:element name=”buildings”

 type=”buildingsType”

 abstract=”false”

 substitutionGroup=”gml:_Feature”

 >

 <xs:key name=”buildingsKey”>

 <xs:selector xpath=”.//buildings”/>

 <xs:field xpath=”fid”/>

 </xs:key>

 </xs:element>

 <xs:complexType name=”buildingsType”

 abstract=”false”/>

 fdo:geometryName=”footprint”

 fdo:geometricTypes=”surface”

 fdo:geometryReadOnly=”false”

 fdo:hasMeasure=”false”

 fdo:hasElevation=”false”

 fdo:srsName=”SC_0”/>

 >

 <xs:annotation>

 <xs:documentation>OGC 98-046r1 buildings

 </xs:documentation>

 <xs:appinfo source=”http://fdo.osgeo.org/schema”/>

 <xs:documentation>a polygon defines the perimeter of a

 building</xs:documentation>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base=”gml:AbstractFeatureType“

 >

 <xs:sequence>

 <xs:element name=”fid”

Creating and Editing a GML Schema File | 83

type=”fdo:int32”

fdo:readOnly=”false”

>

<xs:annotation>

<xs:documentation>feature id

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name=”address”

fdo:readOnly=”false”

>

<xs:annotation>

<xs:documentation>address of the building

</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base=”xs:string”>

<xs:maxLength value=”64”/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name=”position”

ref=”gml:_Geometry”

fdo:geometryName=”position”

fdo:geometricTypes=”point”

fdo:geometryReadOnly=”false”

fdo:hasMeasure=”false”

fdo:hasElevation=”false”

fdo:srsName=”SC_0”/>

>

<xs:annotation>

<xs:documentation>position of the building</xs:docu

mentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:schema>

84 | Chapter 7 Schema Management

Schema Management Examples
Example: Creating a Feature Schema

The following sample code creates an FdoFeatureSchema object called
“SampleFeatureSchema.” The schema contains one class, which has three
properties. The class and its properties conform to the table definition for the
Lakes feature in the Open GIS Consortium document 98-046r1. This table
definition is expressed in an XML format on page 10 of the document and is
reproduced as follows:

<ogc-sfsql-table>

<table-definition>

<name>lakes</name>

<column-definition>

<name>fid</name>

<type>INTEGER</type>

<constgraint>NOT NULL</constraint>

<constraint>PRIMARY KEY<constraint>

</column-definition>

<column-definition>

<name>name</name>

<type>VARCHAR(64)</type>

</column-definition>

<column-definition>

<name>shore</name>

<type>POLYGON</type>

</column-definition>

</table-definition>

The table definition whose name is “lakes” is mapped to an FdoFeatureClass
object called “SampleFeatureClass.” The column definition whose name is
“fid” is mapped to an FdoDataPropertyDefinition object called
“SampleIdentityDataProperty.” The column definition whose name is “name”
is mapped to an FdoDataPropertyDefinition object called
“SampleNameDataProperty.” The column definition whose name is “shore”
is mapped to an FdoGeometricPropertyDefinition object called
“SampleGeometricProperty.”

Schema Management Examples | 85

// Create the ApplySchema command

GisPtr<FdoIApplySchema> sampleApplySchema;

sampleApplySchema = (FdoIApplySchema *)

 connection->CreateCommand(FdoCommandType_ApplySchema);

// Create the feature schema

GisPtr<FdoFeatureSchema> sampleFeatureSchema;

sampleFeatureSchema = FdoFeatureSchema::Create(L"SampleFea

tureSchema", L"Sample Feature Schema Description");

// get a pointer to the feature schema's class collection

// this object is used to add classes to the schema

GisPtr<FdoClassCollection> sampleClassCollection;

sampleClassCollection = sampleFeatureSchema->GetClasses();

// create a feature class, i.e., a class containing a geometric

// property set some class level properties

GisPtr<FdoFeatureClass> sampleFeatureClass;

sampleFeatureClass = FdoFeatureClass::Create(L"SampleFeatureClass",

L"Sample Feature Class Description");

sampleFeatureClass->SetIsAbstract(false);

// get a pointer to the feature class's property collection

// this pointer is used to add data and other properties to the

class

GisPtr<FdoPropertyDefinitionCollection> sampleFeatureClassProper

ties;

sampleFeatureClassProperties = sampleFeatureClass->GetProperties();

// get a pointer to the feature schema's class collection

// this object is used to add classes to the schema

GisPtr<FdoClassCollection> sampleClassCollection;

sampleClassCollection = sampleFeatureSchema->GetClasses();

// get a pointer to the feature class's identity property collec

tion

// this property is used to add identity properties to the feature

// class

GisPtr<FdoDataPropertyDefinitionCollection> sampleFeatureClassIden

tityProperties;

sampleFeatureClassIdentityProperties = sampleFeatureClass->GetIden

tityProperties();

// create a data property that is of type Int32 and identifies

// the feature uniquely

GisPtr<FdoDataPropertyDefinition> sampleIdentityDataProperty;

sampleIdentityDataProperty = FdoDataPropertyDefinition::Cre

ate(L"SampleIdentityDataProperty", L"Sample Identity Data Property

Description");

sampleIdentityDataProperty->SetDataType(FdoDataType_Int32);

86 | Chapter 7 Schema Management

sampleIdentityDataProperty->SetReadOnly(false);

sampleIdentityDataProperty->SetNullable(false);

sampleIdentityDataProperty->SetIsAutoGenerated(false);

// add the identity property to the sampleFeatureClass

sampleFeatureClassProperties->Add(sampleIdentityDataProperty);

sampleFeatureClassIdentityProperties->Add(sampleIdentityDataProp

erty);

// create a data property that is of type String and names the

// feature

GisPtr<FdoDataPropertyDefinition> sampleNameDataProperty;

sampleNameDataProperty = FdoDataPropertyDefinition::Create(L"Sam

pleNameDataProperty", L"Sample Name Data Property Description");

sampleNameDataProperty->SetDataType(FdoDataType_String);

sampleNameDataProperty->SetLength(64);

sampleNameDataProperty->SetReadOnly(false);

sampleNameDataProperty->SetNullable(false);

sampleNameDataProperty->SetIsAutoGenerated(false);

// add the name property to the sampleFeatureClass

sampleFeatureClassProperties->Add(sampleNameDataProperty);

// create a geometric property

GisPtr<FdoGeometricPropertyDefinition> sampleGeometricProperty;

sampleGeometricProperty = FdoGeometricPropertyDefinition::Cre

ate(L"SampleGeometricProperty", L"Sample Geometric Property Descrip

tion");

sampleGeometricProperty->SetGeometryTypes(FdoGeometricType_Sur

face);

sampleGeometricProperty->SetReadOnly(false);

sampleGeometricProperty->SetHasMeasure(false);

sampleGeometricProperty->SetHasElevation(false);

// add the geometric property to the sampleFeatureClass

sampleFeatureClassProperties->Add(sampleGeometricProperty);

// identify it as a geometry property

sampleFeatureClass->SetGeometryProperty(sampleGeometricProperty);

// add the feature class to the schema

sampleClassCollection->Add(sampleFeatureClass);

// point the ApplySchema command at the newly created feature

// schema and execute

sampleApplySchema->SetFeatureSchema(sampleFeatureSchema);

sampleApplySchema->Execute();

Schema Management Examples | 87

Example: Describing a Schema and Writing It to an XML File

The following sample code demonstrates describing a schema and writing it
to an XML file:

// create the DescribeSchema command

GisPtr<FdoIDescribeSchema> sampleDescribeSchema;

sampleDescribeSchema = (FdoIDescribeSchema *)

connection->CreateCommand(FdoCommandType_DescribeSchema);

// executing the DescribeSchema command returns a feature

// schema collection that is, the set of feature schema which

// reside in the DataStore

GisPtr<FdoFeatureSchemaCollection> sampleFeatureSchemaCollection;

sampleFeatureSchemaCollection = sampleDescribeSchema->Execute();

// find the target feature schema in the collection, write it

// to an xml file, and clear the collection

sampleFeatureSchema = sampleFeatureSchemaCollection->FindItem(L"Sam

pleFeatureSchema");

sampleFeatureSchema->WriteXml(L"SampleFeatureSchema.xml");

sampleFeatureSchemaCollection->Clear();

Example: Destroying a Schema

The following sample code demonstrates destroying a schema:

// create the DestroySchema command

GisPtr<FdoIDestroySchema> sampleDestroySchema;

sampleDestroySchema = (FdoIDestroySchema *)

connection->CreateCommand(FdoCommandType_DestroySchema);

// destroy the schema

sampleDestroySchema->SetSchemaName(L"SampleFeatureSchema");

sampleDestroySchema->Execute();

Example: Creating a Schema Read In from an XML File

The following sample code demonstrates creating a schema read in from an
XML file:

sampleFeatureSchemaCollection->ReadXml(L"SampleFeatureSchema.xml");

sampleFeatureSchema = sampleFeatureSchemaCollection->FindItem(L"Sam

pleFeatureSchema");

sampleApplySchema->SetFeatureSchema(sampleFeatureSchema);

sampleApplySchema->Execute();

sampleFeatureSchemaCollection->Clear();

88 | Chapter 7 Schema Management

SampleFeatureSchema.xml

The following sample XML schema is the contents of the file written out by
the WriteXml method belonging to the FdoFeatureSchema class object that
was created in the preceding sample code:

Schema Management Examples | 89

<?xml version="1.0" encoding="UTF-8" ?>

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://fdo_customer/SampleFeatureSchema"

 xmlns:fdo="http://fdo.osgeo.org/schema"

 xmlns:gml="http://www.opengis.net/gml"

 xmlns:SampleFeatureSchema="http://fdo_customer/

 SampleFeatureSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xs:annotation>

 <xs:documentation>Sample Feature Schema Description

 </xs:documentation>

 <xs:appinfo source="http://fdo.osgeo.org/schema" />

 </xs:annotation>

 <xs:element name="SampleFeatureClass"

 type="SampleFeatureSchema:SampleFeatureClassType"

 abstract="false" substitutionGroup="gml:_Feature">

 <xs:key name="SampleFeatureClassKey">

 <xs:selector xpath=".//SampleFeatureClass" />

 <xs:field xpath="SampleIdentityDataProperty" />

 </xs:key>

 </xs:element>

 <xs:complexType name="SampleFeatureClassType"

 abstract="false"

 fdo:geometryName="SampleGeometricProperty"

 fdo:hasMeasure="false"

 fdo:hasElevation="false"

 fdo:srsName="SC_0"

 fdo:geometricTypes="surface">

 <xs:annotation>

 <xs:documentation>Sample Feature Class Description

 </xs:documentation>

 <xs:appinfo source="http://fdo.osgeo.org/schema" />

 <xs:documentation>Sample Geometric Property Descrip

tion</xs:documentation>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base="gml:AbstractFeatureType">

 <xs:sequence>

 <xs:element name="SampleIdentityDataProperty"

 default=""

 type="fdo:int32">

 <xs:annotation>

90 | Chapter 7 Schema Management

<xs:documentation>

Sample Identity Data Property Description

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="SampleNameDataProperty"

default="">

<xs:annotation>

<xs:documentation>

Sample Name Data Property Description

</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:maxLength value="64" />

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:schema>

Schema Management Examples | 91

Data Maintenance

In this chapterThis chapter provides information about using the FDO API

to maintain data. ■ Data Maintenance Operations

■ Related Class Topics

8

93

Data Maintenance Operations
The primary operations associated with data maintenance are:

■ Inserting

■ Updating

■ Deleting

■ Transactions

■ Locking

NOTE Discussion of Transactions and Locking is deferred to a future release of
this document.

Inserting Values

Preconditions

In a previous chapter, we created a feature schema and added a feature class
to it. The feature class had three properties: an integer data property, a string
data property, and a geometric property. We applied this feature schema to
the data store. We are now ready to create feature data objects, which are
instances of the feature class, and insert them into the data store.

Property Values in General

We can now create feature data objects, which are instances of the feature
class, by defining a set of property values corresponding to the properties
defined for the class and then inserting them into the data store.

An FDO class correspondends roughly to a table definition in a relational
database and a property of a class corresponds roughly to a column definition
in a table. Adding the property values corresponds roughly to adding a row
in the table.

The main distinction between a data value or geometry value and a property
value is the order in which they are created. A data value or geometry value
object is created first and is then used to create a property value object. The
property value object is then added to the value collection object belonging
to the Insert command object. Then, the command is executed.

94 | Chapter 8 Data Maintenance

An insert operation consists of the following steps:

1 Create the insert command object (type FdoIInsert); this object can be
reused for multiple insert operations.

2 Point the insert command object at the feature class to which you are
adding values (call the SetFeatureClassName(<className>) method).

3 From the insert command object, obtain a pointer using the
GetPropertyValues() method to a value collection object (type
FdoPropertyValueCollection). You will add property values to the insert
command object by adding values to the collection object.

4 Create a data value (type FdoDataValue) or geometry value (type
FdoGeometryValue) object. Creating the data value is straightforward;
you pass the string or integer value to a static Create() method. Creating
the geometry value is described in Geometry Property Values (page 96).

5 Create a property value (type FdoPropertyValue) object, which involves
passing the data value or geometry value object as an argument to a static
Create() method.

6 Add the property value object to the value collection object.

7 Execute the Insert command.

Data Property Values

A data value object contains data whose type is one of the following:

■ Boolean

■ Byte

■ DateTime

■ Decimal

■ Double

■ Int16

■ Int32

■ Int64

■ Single (another floating point type)

■ String

Inserting Values | 95

■ Binary large object (BLOB)

■ Character large object (CLOB)

The data value object is added to the data property value object. The data
property value object is added to the property value collection belonging to
the Insert command.

Geometry Property Values

A geometry property value object contains a geometry in the form of a byte
array. A geometry can be relatively simple, for example, a point (a single pair
of ordinates), or quite complex, for example, a polygon (one or more arrays
of ordinates). In the latter case, a number of geometry objects are created and
then combined together to form the target geometry. Finally, the target
geometry is converted to a byte array and incorporated into the geometry
property value object.

Creating a geometry value object consists of the following steps:

1 Create a geometry value object (type FdoGeometryValue) using a static
Create() method.

2 Create a geometry factory object (type GisAgfGeometryFactory) using a
static GetInstance() method. This object is used to create the geometry
object or objects which comprise the target geometry.

3 Create the required geometry object or objects using the appropriate
Create<geometry> method() belonging to the geometry factory object.

4 Use the geometry factory object to convert the target geometry object to
a byte array.

5 Incorporate the byte array into the geometry property value object.

Example: Inserting an Integer, a String, and a Geometry Value

The following sample code shows how to insert an integer, a string, and a
geometry value:

96 | Chapter 8 Data Maintenance

// create the insert command

GisPtr<FdoIInsert> sampleInsert;

sampleInsert = (FdoIInsert *)

 connection->CreateCommand(FdoCommandType_Insert);

// index returned by the operation which adds a value to the value

// collection

GisInt32 valueCollectionIndex = 0;

// point the Insert command to the target class

// use a fully qualified class name

// whose format is <schemaName>:<className>

sampleInsert-> SetFeatureClassName(L"SampleFeatureSchema:SampleFea

tureClass");

// get the pointer to the value collection used to add properties

// to the Insert command

GisPtr<FdoPropertyValueCollection> samplePropertyValues;

samplePropertyValues = sampleInsert->GetPropertyValues();

// create an FdoDataValue for the identity property value

GisPtr<FdoDataValue> sampleIdentityDataValue;

sampleIdentityDataValue = FdoDataValue::Create(101);

// add the FdoDataValue to the identity property value

GisPtr<FdoPropertyValue> sampleIdentityPropertyValue;

sampleIdentityPropertyValue =

 FdoPropertyValue::Create(L"SampleIdentityDataProperty",

 sampleIdentityDataValue);

// add the identity property value to the value collection

valueCollectionIndex =

 samplePropertyValues->Add(sampleIdentityPropertyValue);

// create an FdoDataValue for the name property value

GisPtr<FdoDataValue> sampleNameDataValue;

sampleNameDataValue = FdoDataValue::Create(L"Blue Lake");

// add the FdoDataValue to the name property value

GisPtr<FdoPropertyValue> sampleNamePropertyValue;

sampleNamePropertyValue =

 FdoPropertyValue::Create(L"SampleNameDataProperty",

 sampleNameDataValue);

// add the name property value to the value collection

valueCollectionIndex =

 samplePropertyValues->Add(sampleNamePropertyValue);

// create an FdoGeometryValue for the geometry property value

// this polygon represents a lake which has an island

// the outer shoreline of the lake is defined as a linear ring

// the shoreline of the island is defined as a linear ring

// the outer shoreline is the external boundary of the polygon

Inserting Values | 97

// the island shoreline is an internal linear ring

// a polygon geometry can have zero or more internal rings

GisPtr<FdoGeometryValue> sampleGeometryValue;

sampleGeometryValue = FdoGeometryValue::Create();

// create an instance of a geometry factory used to create the

// geometry objects

GisPtr<GisAgfGeometryFactory> sampleGeometryFactory;

sampleGeometryFactory = GisAgfGeometryFactory::GetInstance();

// define the external boundary of the polygon, the shoreline of

// Blue Lake

GisPtr<GisILinearRing> exteriorRingBlueLake;

GisInt32 numBlueLakeShorelineOrdinates = 10;

double blueLakeExteriorRingOrdinates[] = {52.0, 18.0, 66.0, 23.0,

73.0, 9.0, 48.0, 6.0, 52.0, 18.0};

exteriorRingBlueLake = sampleGeometryFactory->CreateLinearRing(

GisDimensionality_XY, numBlueLakeShorelineOrdinates,

blueLakeExteriorRingOrdinates);

// define the shoreline of Goose Island which is on Blue Lake

// this is the sole member of the list of interior rings

GisPtr<GisILinearRing> linearRingGooseIsland;

GisInt32 numGooseIslandShorelineOrdinates = 10;

double gooseIslandLinearRingOrdinates[] = {59.0, 18.0, 67.0, 18.0,

67.0, 13.0, 59.0, 13.0, 59.0, 18.0};

linearRingGooseIsland = sampleGeometryFactory->CreateLinearRing(

GisDimensionality_XY, numGooseIslandShorelineOrdinates,

gooseIslandLinearRingOrdinates);

// add the Goose Island linear ring to the list of interior rings

GisPtr<GisLinearRingCollection> interiorRingsBlueLake;

interiorRingsBlueLake = GisLinearRingCollection::Create();

interiorRingsBlueLake->Add(linearRingGooseIsland);

// create the Blue Lake polygon

GisPtr<GisIPolygon> blueLake;

blueLake =

sampleGeometryFactory->CreatePolygon(exteriorRingBlueLake,

interiorRingsBlueLake);

// convert the Blue Lake polygon into a byte array

// and set the geometry value to this byte array

GisByteArray * geometryByteArray =

sampleGeometryFactory->GetAgf(blueLake);

sampleGeometryValue->SetGeometry(geometryByteArray);

// add the Blue Lake FdoGeometryValue to the geometry property

value

GisPtr<FdoPropertyValue> sampleGeometryPropertyValue;

98 | Chapter 8 Data Maintenance

sampleGeometryPropertyValue =

FdoPropertyValue::Create(L"SampleGeometryProperty",

sampleGeometryValue);

// add the geometry property value to the value collection

valueCollectionIndex =

samplePropertyValues->Add(sampleGeometryPropertyValue);

// do the insertion

// the command returns an FdoIFeatureReader

GisPtr<FdoIFeatureReader sampleFeatureReader;

sampleFeatureReader = sampleInsert->Execute();

Updating Values

After inserting (see Inserting Values (page 94)), you can update the values.
The update operation involves identifying a feature class (“table”), a feature
class object (“row”), and an object property (“column in a row”) to be changed,
and supplying a new value for the object property to replace the old.

First, create an FdoIUpdate command object and use the command object’s
SetFeatureClassName() method to identify the feature class. Then, create a
filter to identity the feature class object whose properties we want to update,
and use the command object’s SetFilter() method to attach the command to
it. Filters are discussed in Filter and Expression Languages (page 115).

One of the data properties in the example SampleFeatureClass class definition
is an identity property, whose name is “SampleIdentityDataProperty” and
whose type is fdo:Int32. This means that its value uniquely identifies the
feature class object, that is, the “row”. Use the name of the identity property
in the filter. In the Insert operation, the value of the identity property was set
to be ‘101’. The value of the filter that is needed is “(
SampleIdentityDataProperty = 101)”.

Finally, create a property value, which contains the new value, attach it to
the command object, and then execute the command.

Example: Updating Property Values

The following is an example of updating property values:

Updating Values | 99

GisPtr<FdoIUpdate> sampleUpdate;

sampleUpdate =

 (FdoIUpdate *)connection->CreateCommand(FdoCommandType_Update);

GisInt32 numUpdated = 0;

// point the Update command at the target feature class

// use a fully qualified class name

// whose format is <schemaName>:<className>

sampleUpdate-> SetFeatureClassName(L"SampleFeatureSchema:SampleFea

tureClass");

// set the filter to identify which set of properties to update

sampleUpdate->SetFilter(L"(SampleIdentityDataProperty = 101)");

// get the pointer to the value collection used to add properties

// to the Update command

// we are reusing the samplePropertyValues object that we used

// for the insert operation

samplePropertyValues = sampleUpdate->GetPropertyValues();

// create an FdoDataValue for the name property value

GisPtr<FdoDataValue> sampleNameDataValue;

sampleNameDataValue = FdoDataValue::Create(L"Green Lake");

// set the name and value of the property value

sampleNamePropertyValue->SetName(L"SampleNameDataProperty");

sampleNamePropertyValue->SetValue(sampleNameDataValue);

// add the name property value to the property value collection

// owned by the Update command

samplePropertyValues->Add(sampleNamePropertyValue);

// execute the command

numUpdated = sampleUpdate->Execute();

Deleting Values

In addition to inserting (see Inserting Values (page 94)) and updating (see
Updating Values (page 99)) values, you can delete the values. The deletion
operation involves identifying a feature class (“table”) whose feature class
objects (“rows”) are to be deleted.

First, create an FdoIDelete command object and use the command object’s
SetFeatureClassName() method to identify the feature class. Then, create a
filter to identity the feature class objects that you want to delete, and use the
command object’s SetFilter() method to attach the filter to it. You can use the
same filter that was specified in the preceding section, Updating Values (page
99). Finally, execute the command.

100 | Chapter 8 Data Maintenance

Example: Deleting Property Values

GisPtr<FdoIDelete> sampleDelete;

sampleDelete =

(FdoIDelete *)connection->CreateCommand(FdoCommandType_Delete);

GisInt32 numDeleted = 0;

sampleDelete->

SetFeatureClassName(L"SampleFeatureSchema:SampleFeatureClass");

sampleDelete->SetFilter(L"(SampleIdentityDataProperty = 101)");

numDeleted = sampleDelete->Execute();

Related Class Topics
The following classes are used in the preceding Data Maintenance examples:

■ FdoIInsert

■ FdoPropertyValueCollection

■ FdoDataValue

■ FdoPropertyValue

■ FdoGeometryValue

■ GisAgfGeometryFactory

■ GisILinearRing

■ GisLinearRingCollection

■ GisIPolygon

■ GisByteArray

■ FdoIDelete

■ FdoIUpdate

For more information, see FDO API Reference Help.

Related Class Topics | 101

Performing Queries

In this chapterThis chapter describes how to create and perform queries. In

the FDO API, you can use queries to retrieve specific features

from a data store.

■ Creating a Query

■ Query Example

9

103

Creating a Query
You create and perform queries using the FdoISelect class, which is a member
of the Feature sub-package of the Commands package. Queries are used to
retrieve features from the data store, and are executed against one class at a
time. The class is specified using the SetFeatureClassName() method in
FdoIFeatureCommand. The SetFeatureClassName can be used with feature
and non-feature classes.

FdoISelect supports the use of filters to limit the scope of features returned by
the command. This is done through one of the SetFilter methods available in
the FdoIFeatureCommand class. The filter is similar to the SQL WHERE clause,
which specifies the search conditions that are applied to one or more class
properties.

Search conditions include spatial and non-spatial conditions. Non-spatial
queries create a condition against a data property, such as an integer or string.
Basic comparisons (=, <, >, >=, <=, !=), pattern matching (like), and ‘In’
comparisons can be specified. Spatial queries create a spatial condition against
a geometry property. Spatial conditions are enumerated in FdoSpatialCondition
and FdoDistanceCondition.

The feature reader (FdoIFeatureReader) is used to retrieve the results of a query
for feature and non-feature classes. To retrieve the features from the reader,
iterate through the reader using the FdoIFeatureReader.ReadNext method().

Query Example
In the Data Maintenance chapter, we created an instance of the
FdoFeatureClass SampleFeatureClass and assigned values to its integer, string,
and geometry properties (see Example: Inserting an Integer, a String, and a
Geometry Value (page 96)). The sample code in the following query example
selects this instance and retrieves the values of its properties. Specifically, the
sample code does the following:

1 Creates the select command, and

2 Points the select command at the target FdoFeatureClass
SampleFeatureClass, and

3 Creates a filter to identify which instance of SampleFeatureClass to select,
and

4 Points the select command at the filter, and

104 | Chapter 9 Performing Queries

5 Executes the command, which returns an FdoIFeatureReader object, and

6 Loops through the feature reader object, which contains one or more
query results depending on the filter arguments. In the sample code
provided, there is only one result.

7 Finally, the code extracts the property values from each query result.

Query Example | 105

// we have one FdoFeatureClass object in the DataStore

// create a query that returns this object

// create the select command

GisPtr<FdoISelect> sampleSelect;

sampleSelect = (FdoISelect *)

 connection->CreateCommand(FdoCommandType_Select);

// point the select command at the target FdoFeatureClass

// SampleFeatureClass

sampleSelect->SetFeatureClassName(L"SampleFeatureClass");

// create the filter by

// 1. creating an FdoIdentifier object containing the name of

// the identity property

GisPtr<FdoIdentifier> queryPropertyName;

queryPropertyName =

 FdoIdentifier::Create(L"SampleIdentityDataProperty");

// 2. creating an FdoDataValue object containing the value of the

// identity property

GisPtr<FdoDataValue> queryPropertyValue;

queryPropertyValue = FdoDataValue::Create(101);

// 3. calling FdoComparisonCondition::Create() passing in the

// the queryPropertyName, an enumeration constant signifying an

// equals comparison operation, and the queryPropertyValue

GisPtr<FdoFilter> filter;

filter = FdoComparisonCondition::Create(queryPropertyName,

 FdoComparisonOperations_EqualTo, queryPropertyValue);

// point the select command at the filter

sampleSelect->SetFilter(filter);

// execute the select command

GisPtr<FdoIFeatureReader> queryResults;

queryResults = sampleSelect->Execute();

// declare variables needed to capture query results

GisPtr<FdoClassDefinition> classDef;

GisPtr<FdoPropertyDefinitionCollection> properties;

GisInt32 numProperties = 0;

FdoPropertyDefinition * propertyDef;

FdoPropertyType propertyType;

FdoDataType dataType;

FdoDataPropertyDefinition * dataPropertyDef;

GisString * propertyName = NULL;

GisPtr<GisByteArray> byteArray;

GisIGeometry * geometry = NULL;

GisGeometryType geometryType = GisGeometryType_None;

GisIPolygon * polygon = NULL;

106 | Chapter 9 Performing Queries

GisILinearRing * exteriorRing = NULL;

GisILinearRing * interiorRing = NULL;

GisIDirectPosition * position = NULL;

GisInt32 dimensionality = GisDimensionality_XY;

GisInt32 numPositions = 0;

GisInt32 numInteriorRings = 0;

// loop through the query results

while (queryResults->ReadNext()) {

// get the feature class object and its properties

classDef = queryResults->GetClassDefinition();

properties = classDef->GetProperties();

// loop through the properties

numProperties = properties->GetCount();

for(int i = 0; i < numProperties; i++) {

propertyDef = properties->GetItem(i);

// get the property name and property type

propertyName = propertyDef->GetName();

propertyType = propertyDef->GetPropertyType();

switch (propertyType) {

// it’s a data property

case FdoPropertyType_DataProperty:

dataPropertyDef =

dynamic_cast<FdoDataPropertyDefinition *>

(propertyDef);

dataType = dataPropertyDef->GetDataType();

switch (dataType) {

case FdoDataType_Boolean:

break;

case FdoDataType_Int32:

break;

case FdoDataType_String:

break;

default:

}

break;

// it’s a geometric property

// convert the byte array to a geometry

// and determine the derived type of the geometry

case FdoPropertyType_GeometricProperty:

byteArray = queryResults->GetGeometry(propertyName);

geometry =

sampleGeometryFactory->CreateGeometryFromAgf

(byteArray);

Query Example | 107

geometryType = geometry->GetDerivedType();

// resolve the derived type into a list of ordinates

switch (geometryType) {

case GisGeometryType_None:

break;

case GisGeometryType_Point:

break;

case GisGeometryType_LineString:

break;

case GisGeometryType_Polygon:

polygon = dynamic_cast<GisIPolygon *>(geometry);

exteriorRing = polygon->GetExteriorRing();

dimensionality = exteriorRing-

>GetDimensionality();

numPositions = exteriorRing->GetCount();

double X, Y, Z, M;

for(int i=0; i<numPositions; i++) {

position = exteriorRing->GetItem(i);

if (dimensionality & GisDimensionality_Z &&

dimensionality & GisDimensionality_M) {

X = position->GetX();

Y = position->GetY();

Z = position->GetZ();

M = position->GetM();

else if (dimensionality & GisDimensionality_Z

&& !(dimensionality & GisDimensionality_M)) {

X = position->GetX();

Y = position->GetY();

Z = position->GetZ();

else {

X = position->GetX();

Y = position->GetY();

}

}

numInteriorRings = polygon-

>GetInteriorRingCount();

for(int i=0; i<numInteriorRings; i++) {

interiorRing = polygon->GetInteriorRing(i);

// do same for interior ring as exterior ring

}

break;

case GisGeometryType_MultiPoint:

break;

108 | Chapter 9 Performing Queries

case GisGeometryType_MultiLineString:

break;

case GisGeometryType_MultiPolygon:

break;

case GisGeometryType_MultiGeometry:

break;

case GisGeometryType_CurveString:

break;

case GisGeometryType_CurvePolygon:

break;

case GisGeometryType_MultiCurveString:

break;

case GisGeometryType_MultiCurvePolygon:

break;

default:

}

break;

default:

}

}

}

Query Example | 109

Long Transaction
Processing

In this chapterThis chapter defines long transactions (LT) and long

transaction interfaces, and explains how to implement LT

processing in your application.

■ What Is Long Transaction
Processing?

■ Supported Interfaces

NOTE For this release, the providers that support long

transaction processing are Autodesk FDO Provider for Oracle

and OSGeo FDO Provider for ArcSDE.

10

111

What Is Long Transaction Processing?
A long transaction (LT) is an administration unit that is used to group
conditional changes to objects. Depending on the situation, such a unit can
contain conditional changes to one or to many objects. Long transactions are
used to modify as-built data in the database without permanently changing
the as-built data. Long transactions can be used to apply revisions or alternates
to an object.

A root long transaction is a long transaction that represents permanent data
and that has descendents. Any long transaction has a root long transaction
as an ancestor in its long transaction dependency graph. A leaf long transaction
does not have descendents.

For more information about Oracle-specific long transaction versions and
locking, see Locking and Long Transactions (page 154).

Supported Interfaces
In the current release of FDO, the following long transaction interfaces are
supported:

■ FDOIActivateLongTransaction

■ FDOIDeactivateLongTransaction

■ FDOIRollbackLongTransaction

■ FDOICommitLongTransaction

■ FDOICreateLongTransaction

■ FDOIGetLongTransaction

These interfaces are summarized below. For more information about their
usage, supported methods, associated enumerations and readers, see the FDO
API Reference Help.

FDOIActivateLongTransaction

The FdoIActivateLongTransaction interface defines the
ActivateLongTransaction command, which activates a long transaction where
feature manipulation and locking commands operate on it. Input to the

112 | Chapter 10 Long Transaction Processing

activate long transaction command is the long transaction name. The Execute
operation activates the identified long transaction.

FDOIDeactivateLongTransaction

The FdoIDeactivateLongTransaction interface defines the
DeactivateLongTransaction command, which deactivates the active long
transaction where feature manipulation and locking commands operate on
it. If the active long transaction is the root long transaction, then no long
transaction will be deactivated.

FDOIRollbackLongTransaction

The FdoIRollbackLongTransaction interface defines the
RollbackLongTransaction command, which allows a user to execute rollback
operations on a long transaction. Two different rollback operations are
available: Full and Partial.

The operation is executed on all data within a long transaction and on all its
descendents. The data is removed from the database and all versions involved
in the process deleted.

NOTE If the currently active long transaction is the same as the one being
committed or rolled back, then, if the commit or rollback succeeds, the provider
resets the current active long transaction to be the root long transaction. If it does
not succeed, the active long transaction is left alone and current. If the currently
active long transaction is not the same as the one being committed or rolled back,
then it is not affected.

FDOICommitLongTransaction

The FdoICommitLongTransaction interface defines the
CommitLongTransaction command, which allows a user to execute commit
operations on a long transaction. Two different commit operations are
available: Full and Partial.

The commit operation can be performed on a leaf long transaction only. A
long transaction is a leaf long transaction if it does not have descendents.

FDOICreateLongTransaction

The FdoICreateLongTransaction interface defines the CreateLongTransaction
command, which creates a long transaction that is based on the currently
active long transaction. There is always an active long transaction. If the user

Supported Interfaces | 113

has not activated a user-defined long transaction, then the root long
transaction is active.

Input to the CreateLongTransaction command includes a name and description
for the new long transaction. The long transaction name submitted to the
command has to be unique. If it is not unique, an exception is thrown.

FDOIGetLongTransactions

The FdoIGetLongTransactions interface defines the GetLongTransactions
command, which allows the user to retrieve long transaction information. If
a long transaction name is submitted, the command returns the information
for the named long transaction only. If no long transaction name is given,
the command retrieves the names of all available long transactions.

For each returned long transaction, the user has the option to retrieve a list
of descendents and/or ancestors.

114 | Chapter 10 Long Transaction Processing

Filter and Expression
Languages

In this chapterThis chapter discusses the use of filters and filter expressions.

You can use filters and expressions to specify to an FDO

provider how to identify a subset of the objects in a data store.

■ Filters

■ Expressions

■ Filter and Expression Text

■ Language Issues

11

115

Filters
FDO uses filters through its commands (including provider-specific commands)
to select certain features and exclude others.

A filter is a construct that an application specifies to an FDO provider to
identify a subset of objects of an FDO data store. For example, a filter may be
used to identify all Road type features that have 2 lanes and that are within
200 metres of a particular location. Many FDO commands use filter parameters
to specify the objects to which the command applies. For example, a select
command takes a filter to identify the objects that the application wants to
retrieve or a delete command takes a filter to identify the objects that the
application wants to delete from the data store.

When a command executes, the filter is evaluated for each feature instance
and that instance is included in the scope of the command only if the filter
evaluates to True. Filters may be specified either as text or as an expression
tree. Feature providers declare their level of support for filters through the
filter capabilities metadata. Query builders should configure themselves based
on the filter capabilities metadata in order to provide users with a robust user
interface. For more information, see What Is an Expression? (page 21).

Expressions
FDO uses expressions through its commands (including provider-specific
commands) to specify input values in order to filter features. In general,
commands in FDO do not support the SQL command language (the one
exception is the optional SQLCommand). However, to facilitate ease of use
for application developers, expressions in FDO can be specified using a textual
notation that is based syntactically on expressions and SQL WHERE clauses.
In FDO, expressions are not intended to work against tables and columns, but
against feature classes, properties, and relationships. For example, an expression
to select roads with four or more lanes might look like this:

Lanes >= 4

An expression is a construct that an application can use to build up a filter.
In other words, an expression is a clause of a filter or larger expression. For
example, “Lanes >=4 and PavementType = 'Asphalt'” takes two expressions
and combines them to create a filter.

116 | Chapter 11 Filter and Expression Languages

Filter and Expression Text
In general, commands in FDO do not support the SQL command language
(the one exception is the optional SQLCommand). However, to facilitate ease
of use for application developers, expressions and filters in FDO can be specified
using a textual notation that is based syntactically on expressions and SQL
WHERE clauses. The biggest difference between this approach and SQL is that
these clauses are not intended to work against tables and columns, but against
feature classes, properties, and relationships. For example, a filter to select
roads with four or more lanes might look like:

Lanes >= 4

Similarly, a filter to select all PipeNetworks that have at least one Pipe in the
proposed state might look like:

Pipes.state = "proposed"

Furthermore, a filter to select all existing parcels whose owner contains the
text “Smith” might look like:

state = "existing" and owner like "%Smith%"

Finally, a filter to select all parcels that are either affected or encroached upon
by some change might look like:

state in ("affected", "encroached")

Language Issues
There are a number of language issues to be considered when working with
classes in the Filter, Expression, and Geometry packages:

■ Provider-specific constraints on text

■ Filter grammar

■ Expression grammar

■ Filter and Expression keywords

■ Data types

■ Operators

■ Special characters

Filter and Expression Text | 117

■ Geometry value

Provider-Specific Constraints on Filter and
Expression Text

Some providers may have reserved words that require special rules when used
with filters and expressions. For more information, see Oracle Reserved Words
Used with Filter and Expression Text (page 153).

Filter Grammar

The rules for entering filter expressions are described in the following sections
using BNF notation. For more information about BNF notation, see
http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html.

The FdoFilter::Parse() method supports the following filter grammar:

118 | Chapter 11 Filter and Expression Languages

<Filter> ::= '(' Filter ')'

| <LogicalOperator>

| <SearchCondition>

<LogicalOperator> ::= <BinaryLogicalOperator>

| <UnaryLogicalOperator>

<BinaryLogicalOperator> ::=

<Filter> <BinaryLogicalOperations> <Filter>

<SearchCondition> ::= <InCondition>

| <ComparisonCondition>

| <GeometricCondition>

| <NullCondition>

<InCondition> ::= <Identifier> IN '(' ValueExpressionCollection

')'

<ValueExpressionCollection> ::= <ValueExpression>

| <ValueExpressionCollection> ',' <ValueExpression>

<ComparisonCondition> ::=

<Expression> <ComparisonOperations> <Expression>

<GeometricCondition> ::= <DistanceCondition>

| <SpatialCondition>

<DistanceCondition> ::=

<Identifier> <DistanceOperations> <Expression> <distance>

<NullCondition> ::= <Identifier> NULL

<SpatialCondition> ::=

<Identifier> <SpatialOperations> <Expression>

<UnaryLogicalOperator> ::= NOT <Filter>

<BinaryLogicalOperations> ::= AND | OR

<ComparisionOperations> ::=

= // EqualTo (EQ)

<> // NotEqualTo (NE)

> // GreaterThan (GT)

>= // GreaterThanOrEqualTo (GE)

< // LessThan (LT)

<= // LessThanOrEqualTo (LE)

LIKE // Like

<DistanceOperations> ::= BEYOND | WITHINDISTANCE

<distance> ::= DOUBLE | INTEGER

<SpatialOperations> ::= CONTAINS | CROSSES | DISJOINT

| EQUALS | INTERSECTS | OVERLAPS | TOUCHES | WITHIN | COVEREDBY |

INSIDE

Filter Grammar | 119

Expression Grammar

The FdoExpression::Parse() method supports the following expression grammar:

<Expression> ::= '(' Expression ')'

| <UnaryExpression>

| <BinaryExpression>

| <Function>

| <Identifier>

| <ValueExpression>

<BinaryExpression> ::=

<Expression> '+' <Expression>

| <Expression> '-' <Expression>

| <Expression> '*' <Expression>

| <Expression> '/' <Expression>

<DataValue> ::=

TRUE

| FALSE

| DATETIME

| DOUBLE

| INTEGER

| STRING

| BLOB

| CLOB

| NULL

<Function> ::= <Identifier> '(' <ExpressionCollection> ')'

<ExpressionCollection> ::=

| <Expression>

| <ExpressionCollection> ',' <Expression>

<GeometryValue> ::= GEOMFROMTEXT '(' STRING ')'

<Identifier> ::= IDENTIFIER

<ValueExpression> ::= <LiteralValue> | <Parameter>;

<LiteralValue> ::= <GeometryValue> | <DataValue>

<Parameter> ::= PARAMETER | ':'STRING

<UnaryExpression> ::= '-' <Expression>

Expression Operator Precedence

The precedence is shown in YACC notation, that is, the highest precedence
operators are at the bottom.

%left Add Subtract

%left Multiply Divide

%left Negate

120 | Chapter 11 Filter and Expression Languages

Filter and Expression Keywords

The following case-insensitive keywords are reserved in the language, that is,
they cannot be used as identifier or function names:

AND BEYOND COMPARE CONTAINS COVEREDBY CROSSES DATE

DISJOINT DISTANCE EQUALS FALSE GeomFromText IN INSIDE

INTERSECTS LIKE NOT NULL OR OVERLAPS RELATE SPATIAL TIME

TIMESTAMP TOUCHES TRUE WITHIN WITHINDISTANCE

Data Types

The available data types are described in this section.

Identifier

An identifier can be any alphanumeric sequence of characters other than a
keyword. Identifiers can be enclosed in double quotes to allow special
characters and white space. If you need to include a double quote character
inside an identifier, double the character, for example "abc""def".

Parameter

Parameters are defined by a colon followed by alphanumeric characters. The
FDO filter language extends SQL to allow for a literal string to follow the colon
to allow blanks (and other possibilities), for example, :'Enter Name'.

Determine whether parameters are supported by the FDO Provider you are
using by checking SupportParameters on the Connection interface.

String

Strings are literal constants enclosed in single quotes. The FDO filter language
also supports the special characters (left and right single quotes) that Microsoft
Word uses to automatically replace the single quote character typed from the
keyboard. If you need to include a single quote character inside a string you
can double the character, for example 'aaa''bbb'.

Filter and Expression Keywords | 121

Integer

Integers allow only decimal characters with an optional unary minus sign.
Unary plus is not supported.

(-){[0-9]}

Double

Floating point numbers have a decimal point, can be signed (-), and include
an optional exponent (e{[0-9]}).

NOTE If an integer is out of the 32-bit precision range, it is converted to floating
point.

Examples:

-3.4

12345678901234567

1.2e13

DateTime

Date and time are parsed using the standard SQL literal strings:

DATE 'YYYY-MM-DD'

TIME 'HH:MM:SS[.sss]'

TIMESTAMP 'YYYY-MM-DD HH:MM:SS[.sss]'

For example:

DATE '1971-12-24'

TIMESTAMP '2003-10-23 11:00:02'

NOTE The BLOB and CLOB strings are currently not supported. If you need to
support binary input, use parameters.

Operators

The following operators are special characters common to SQL and most
programming languages:

122 | Chapter 11 Filter and Expression Languages

BinaryOperations

These binary operations are available:

+ Add (for compatibility with SQL string concatenation may also be defined
using “||”)

- Subtract

* Multiply

/ Divide

UnaryOperations

These unary operation are available:

- Negate

Comparison Operations

These comparison operations are available:

= EqualTo (EQ)

<> NotEqualTo (NE)

> GreaterThan (GT)

>= GreaterThanOrEqualTo (GE)

< LessThan (LT)

<= LessThanOrEqualTo (LE)

Operator Precedence

The following precedence is shown from highest to lowest:

Negate NOT

Multiply Divide

Add Subtract

EQ NE GT GE LT LE

AND

OR

Operators | 123

Special Character

The following special characters are used in ExpressionCollections and
ValueExpressions to define function arguments and IN conditions:

(Left Parenthesis

, Comma

) Right Parenthesis

The Colon (:) is used in defining parameters and the Dot (.) can be included
in real numbers and identifiers.

Geometry Value

Geometry values are handled using a function call GeomFromText('AGF Text
string'), as is typical in an SQL query.

The Autodesk extension to WKT, referred to as AGF Text, is a superset of WKT
(that is, you can enter WKT as valid AGF Text strings). Dimensionality is
optional. It can be XY, XYM, XYZ, or XYZM. If it is not specified, it is assumed
to be XY. For more information about AGF, see GisAgfGeometryFactory (page
136).

NOTE Extra ordinates are ignored, rather than generating an error during AGF
text parsing. For example, in the string “POINT (10 11 12)”, the ‘12’ is ignored
because the dimensionality is assumed to be XY.

The following is the grammar definition for AGF Text:

<AGF Text> ::= POINT <Dimensionality> <PointEntity>

| LINESTRING <Dimensionality> <LineString>

| POLYGON <Dimensionality> <Polygon>

| CURVESTRING <Dimensionality> <CurveString>

| CURVEPOLYGON <Dimensionality> <CurvePolygon>

| MULTIPOINT <Dimensionality> <MultiPoint>

| MULTILINESTRING <Dimensionality> <MultiLineString>

| MULTIPOLYGON <Dimensionality> <MultiPolygon>

| MULTICURVESTRING <Dimensionality> <MultiCurveString>

124 | Chapter 11 Filter and Expression Languages

| MULTICURVEPOLYGON <Dimensionality> <MultiCurvePolygon>

| GEOMETRYCOLLECTION <GeometryCollection>

<PointEntity> ::= '(' <Point> ')'

<LineString> ::= '(' <PointCollection> ')'

<Polygon> ::= '(' <LineStringCollection> ')'

<MultiPoint> ::= '(' <PointCollection> ')'

<MultiLineString> ::= '(' <LineStringCollection> ')'

<MultiPolygon> ::= '(' <PolygonCollection> ')'

<GeometryCollection : '(' <AGF Collection Text> ')'

<CurveString> ::= '(' <Point> '(' <CurveSegmentCollection> ')' ')'

<CurvePolygon> ::= '(' <CurveStringCollection> ')'

<MultiCurveString> ::= '(' <CurveStringCollection> ')'

<MultiCurvePolygon> ::= '(' <CurvePolygonCollection> ')'

<Dimensionality> ::= // default to XY

| XY

| XYZ

| XYM

| XYZM

<Point> ::= DOUBLE DOUBLE

| DOUBLE DOUBLE DOUBLE

| DOUBLE DOUBLE DOUBLE DOUBLE

<PointCollection> ::= <Point>

| <PointCollection ',' <Point>

<LineStringCollection> ::= <LineString>

| <LineStringCollection> ',' <LineString>

<PolygonCollection> ::= <Polygon>

| <PolygonCollection> ',' <Polygon>

<AGF Collection Text> ::= <AGF Text>

| <AGF Collection Text> ',' <AGF Text>

Geometry Value | 125

<CurveSegment> ::= CIRCULARARCSEGMENT '(' <Point> ',' <Point> ')'

| LINESTRINGSEGMENT '(' <PointCollection> ')'

<CurveSegmentCollection> ::= <CurveSegment>

| <CurveSegmentCollection> ',' <CurveSegment>

<CurveStringCollection> ::= <CurveString>

| <CurveStringCollection> ',' <CurveString>

<CurvePolygonCollection> ::= <CurvePolygon>

| <CurvePolygonCollection> ',' <CurvePolygon>

The only other token type is DOUBLE, representing a double precision floating
point values. Integer (non-decimal point) input is converted to DOUBLE in
the lexical analyzer.

Examples of the Autodesk extensions include:

POINT XY (10 11) // equivalent to POINT (10 11)

POINT XYZ (10 11 12)

POINT XYM (10 11 1.2)

POINT XYZM (10 11 12 1.2)

GEOMETRYCOLLECTION (POINT xyz (10 11 12),POINT XYM (30 20 1.8),
LINESTRING XYZM(1 2 3 4, 3 5 15, 3 20 20))

CURVESTRING (0 0 (LINESTRINGSEGMENT (10 10, 20 20, 30 40))))

CURVESTRING (0 0 (CIRCULARARCSEGMENT (11 11, 12 12),
LINESTRINGSEGMENT (10 10, 20 20, 30 40)))

CURVESTRING (0 0 (ARC (11 11, 12 12), LINESTRINGSEGMENT (10 10, 20
20, 30 40)))

CURVESTRING XYZ (0 0 0 (LINESTRINGSEGMENT (10 10 1, 20 20 1, 30 40
1)))

MULTICURVESTRING ((0 0 (LINESTRINGSEGMENT (10 10, 20 20, 30 40))),(0
0 (ARC (11 11, 12 12), LINESTRINGSEGMENT (10 10, 20 20, 30 40))))

CURVEPOLYGON ((0 0 (LINESTRINGSEGMENT (10 10, 10 20, 20 20), ARC
(20 15, 10 10))), (0 0 (ARC (11 11, 12 12), LINESTRINGSEGMENT (10 10, 20
20, 40 40, 90 90))))

MULTICURVEPOLYGON (((0 0 (LINESTRINGSEGMENT (10 10, 10 20, 20 20),
ARC (20 15, 10 10))), (0 0 (ARC (11 11, 12 12), LINESTRINGSEGMENT (10 10,

126 | Chapter 11 Filter and Expression Languages

20 20, 40 40, 90 90)))),((0 0 (LINESTRINGSEGMENT (10 10, 10 20, 20 20),
ARC (20 15, 10 10))), (0 0 (ARC (11 11, 12 12), LINESTRINGSEGMENT (10 10,
20 20, 40 40, 90 90)))))

Geometry Value | 127

The Geometry API

In this chapterThis chapter describes the GisGeometry API (hereafter called

the “Geometry API”) and explains the different Geometry

types and formats.

■ Description of the Geometry API

■ WKB and AGF

■ Basic / Pure Geometry

■ GisGeometryStreamFactory

■ GisAgfGeometryFactory

■ Geometry Types

■ Mapping Between Geometry and
Geometric Types

■ Spatial Context

■ Inserting Geometry Values

12

129

Description of the Geometry API
The Geometry API supports specific Autodesk applications and APIs, including
FDO (Feature Data Objects). This API consists of the following:

■ Geometry Type package (all through fully encapsulated interfaces)

■ Abstract Geometry Factory

■ Concrete Geometry Factory for AGF

You can work with the Geometry API in several different ways:

■ AGF

■ AGF Text

■ Abstract Geometry Factory

AGF

Autodesk Geometry Format (AGF) is Autodesk's extended version of the Well
Known Binary Format (WKB).

WKB is a memory layout used to store geometry used by GIS applications.
This format was created by the OpenGIS organization to allow the efficient
exchange of geometry data between different components in a GIS system.
Most pieces of the original specification defining the WKB format are in the
document, 99-050.pdf, the OpenGIS Simple feature specification for OLE/COM
that can be found at www.opengis.org.

WKB and AGF
The WKB and AGF formats are differ in only a few significant details:

■ WKB defines a byte order of the data in every piece of geometry. This is
stored as a byte field, which as a result might change the memory alignment
from word to byte. In AGF, only one memory alignment type is supported,
which is the same alignment type as used by the .NET framework and
Windows (encoded using the little-endian byte order format). As a result,
this byte flag does not need to be stored.

■ WKB is defined as a 2D format only. This is insufficient to represent 3D
points, polylines and polygons. In AGF, the dimension flag has been added.

130 | Chapter 12 The Geometry API

In particular, a flag is included for each geometry piece to indicate whether
the geometry is 2D, 3D, or even 4D (storing a measure value as used by
dynamic segmentation.

■ In AGF, geometry types are included that are not yet covered by any WKB
specification.

Basic / Pure Geometry
In this section, the memory layout of each simple geometry type is described.
The format is taken from the OGC specification, built on the memory layout
of a C++ struct. All arrays have a computable size and are inline; they do not
point to a different location in memory. The actual architecture of this format
allows streaming of geometry data.

First, the different data types, their size, and memory layout are discussed

// int == 4 byte integer in little endian encoding

// float == 4 byte IEEE floating number in little endian encoding

// double == 8 byte IEEE double number in little endian encoding.

// char == 2 byte unicode character in little endian encoding

// GisInt32 == 4 byte integer in little endian encoding

// double == 8 byte IEEE double number in little endian encoding.

// the type of the geometry

enum GeometryType : int

{

None = 0,

Point = 1,

LineString = 2,

Polygon = 3,

MultiPoint = 4,

MultiLineString = 5,

MultiPolygon = 6,

MultiGeometry = 7,

= 10,

CurvePolygon = 11,

MultiCurveString = 12,

MultiCurvePolygon = 13

}

Basic / Pure Geometry | 131

Coordinate Types

This is a bit field, for example, xym == coordinateDimensionality.XY |
CoordinateDimensionality.M. The following sequence defines the type of
coordinates used for this object:

enum CoordinateDimensionality : int

{

XY = 0,

Z = 1,

M = 2

}

Basic Geometry

The following sequence establishes the basic pure geometry:

struct Geometry

{

int geomType;

CoordinateDimensionality type;

}

Defining a Method for Notation

The following sequence defines a method for notation within this specification:

132 | Chapter 12 The Geometry API

// Define a method for notation within this specification

// int PositionSize(geometry)

// {

// if (geometry.type == CoordinateDimensionality.XY |

// CoordinateDimensionality.M ||

// geometry.type == CoordinateDimensionality.XY |

// CoordinateDimensionality.Z)

// return 3;

// if (geometry.type == CoordinateDimensionality.XY |

// CoordinateDimensionality.M | CoordinateDimensionality.Z)

// return 4

// return 2;

// }

struct Point // : Geometry

{

int geomType; // == GeometryType.Point;

CoordinateDimensionality type; // all types allowed

double[] coords; // size = PositionSize(this)

}

struct LineString

{

int geomType;

CoordinateDimensionality type;

int numPts; // >0

double[] coords; // size = numPts* PositionSize(this)

}

struct MultiPoint

{

int geomType;

int numPoints; // > 0

Point[] points; // size = numPoints

}

struct MultiLineString

{

int geomType;

int numLineStrings; // >= 0

LineString[] lineStrings; // size = numLineStrings

}

// building block for polygons, not geometry by itself

struct LinearRing

{

int numPts; // >0

double[] coords; // size = numPts* PositionSize(polygon)

Basic / Pure Geometry | 133

}

struct Polygon

{

int geomType;

CoordinateDimensionality type;

int numRings; // >= 1 as there has to be at least one ring

LinearRing[] lineStrings; // size = numRings

}

struct MultiPolygon

{

int geomType;

int numPolygons; // >= 0

Polygon[] polygons; // size = numPolygons

}

struct MultiGeometry

{

int geomType;

int numGeom; // >= 0

Geometry[] geometry; // size = numGeom

}

enum CurveElementType : int

{

LineString = 1,

CircularArc = 2

}

struct CurveStringElement

{

int CurveElementType;

}

struct LinearCurveStringElement

{

int CurveElementType;

int length;

double[] coords; // size = this.length * PositionSize (this)

}

struct CircularArcCurveStringElement

{

int CurveElementType; // == CurveElmentType.Arc

double[] coords; // size = 2 * PositionSize(this)

}

struct CurveString

{

int geomType;

134 | Chapter 12 The Geometry API

CoordinateDimensionality type; // all types allowed

double[] startPoint; // size = PositionSize(this)

int numElements; // >=0

CurveStringElement[] elements; // size = numElements

}

struct Ring

{

double[] startPoint; // size = PositionSize(this)

int numElements; // >=0

CurveStringElement[] elements; // size = numElements

}

struct MultiCurveString

{

int geomType;

int numCurveStrings; // >= 0

CurveString[] curveStrings; // size = numCurveStrings

}

struct CurvePolygon

{

int geomType; ;

CoordinateDimensionality type;

int numRings; // >=1 as there has to be at least one ring

Ring[] rings; // size = numRings

}

struct MultiCurvePolygon

{

int geomType;

int numPolygons; // >=0

CurvePolygon[] polygons; // size = numElements

}

In the following example in the OpenGIS specification, a polygon within the
byte array representing the stream is investigated:

T=3 CT=0 NR=2 NP=3 X1 Y1 X2 Y2 X3 Y3 NP=3 X1 Y1 X2 Y2 X3 Y3

Polygon

LinearRing1 LinearRing2

T = 3 stands for GeometryType == GeometryType.Polygon

CT = 0 stands for CoordinateDimensionality == CoordinateDimensionality.XY

Basic / Pure Geometry | 135

NR = 2 stands for number of rings = 2

NP =3 stands for number of points = 3

GIS Geometry API

There are two classes in the GIS Geometry API relevant to AGF:

■ GisGeometryStreamFactory

■ GisAgfGeometryFactory

GisGeometryStreamFactory
The GisGeometryStreamFactory class is a factory (abstract) for classes dealing
with serialized geometric data. The data source is defined by the
implementation. This is a helper type and does not inherit from GisIGeometry.

GisAgfGeometryFactory
The GisAgfGeometryFactory class is an AGF-based geometry factory, a concrete
class that implements all the members from GisGeometryFactoryAbstract.

AGF Text

AGF Text is the textual analogue to the binary AGF format. It is a superset of
the OGC WKT format. XY dimensionality is the default, and is optional. AGF
Text can be used to represent any geometry value in the Geometry API, whether
or not it originates from the AGF geometry factory. Conversions are done
with the following methods:

■ GisGeometryFactoryAbstract:: CreateGeometry(GisString* text);

■ GisIGeometry:: GetText();”

Abstract Geometry Factory

Geometries in AWKB format can be exchanged between software components
without depending on the Geometry API itself, because they are not genuine
geometry “objects.” AWKB content is based on byte arrays. It is handled
through a simple GisByteArray class that is not specific to geometry.

136 | Chapter 12 The Geometry API

Geometry Types
The Geometry types comprise the Global Enum GisGeometryType. The
following are Geometry types:

■ 0x00 GisGeometryType_None Indicates no specific type; used for
“unknown”, “do not care” or an incompletely constructed Geometry object.

NOTE GisGeometryType_ None does not represent an instantiable type. An FDO
client should not expect an FDO provider to list support for it in its capabilities.

■ 01 GisGeometryType_Point Point type (GisIPoint).

■ 02 GisGeometryType_LineString LineString type (GisILineString).

■ 03 GisGeometryType_Polygon Polygon type (GisIPolygon).

■ 04 GisGeometryType_MultiPoint MultiPoint type (GisIMultiPoint).

■ 05 GisGeometryType_MultiLineString MultiLineString type
(GisIMultiLineString).

■ 06 GisGeometryType_MultiPolygon MultiPolygon type (GisIMultiPolygon).

■ 07 GisGeometryType_MultiGeometry MultiGeometry type
(GisIMultiGeometry).

■ 10 GisGeometryType_CurveString CurveString type (GisICurveString).

■ 11 GisGeometryType_CurvePolygon CurvePolygon type
(GisICurvePolygon).

■ 12 GisGeometryType_MultiCurveString MultiCurveString type
(GisIMultiCurveString).

■ 13 GisGeometryType_MultiCurvePolygon MultiCurvePolygon type
(GisIMultiCurvePolygon

Mapping Between Geometry and Geometric
Types

The FDO API GeometricType enumeration of GeometricProperty gives the
client application some knowledge of which geometry types comprise the

Geometry Types | 137

geometric property so that it can present the user with an intelligent editor
for selecting styles for rendering the geometry. In particular, GeometricType
relates to shape dimensionality of geometries allowed in FDO geometric
properties. The nearest analogues in the Geometry API are:

■ GisDimensionality, which pertains to ordinate (not shape) dimensionality
of geometry values.

■ GisGeometryType, which has types whose abstract base types map to
Geometric Type

The GeometricType enumeration is as follows:

■ Point = 0x01, // Point Type Geometry

■ Curve = 0x02, // Line and Curve Type Geometry

■ Surface = 0x04, // Surface (or Area) Type Geometry

■ Solid = 0x08, // Solid Type Geometry

NOTE The enumeration defines a bit mask and the GetGeometricTypes and
SetGeometricTypes methods take and return an integer. This is to allow a geometry
property to be of more than one type. For example, the call:
geometricProperty.SetGeometricTypes(Point | Surface);

would allow the geometric property to represent either point type geometry or
surface type geometry (polygons).

Spatial Context
Spatial Context is a coordinate system with an identity. Any geometries that
are to be spatially related must be in a common spatial context.

Providing an identify for each coordinate system supports separate workspaces,
such as schematic diagrams, which are non-georeferenced. However, there
are also georeferenced cases. In general, two users may create drawings using
the same default spatial parameters (for example, rectangular and
10,000x10,000) that have nothing to do with each other. If their drawings
are to be put into a common database, the spatial context capability of FDO
preserves the container aspect of the data along wih the spatial parameters.

138 | Chapter 12 The Geometry API

The FDO Spatial Context Commands are part of the FDO API. They support
control over Spatial Contexts in the following ways:

■ Metadata control. Creates and deletes Spatial Contexts.

■ Active Spatial Context. A session setting to specify which Spatial Context
to use by default while storing/retrieving geometries and performing spatial
queries.

There is a default Spatial Context for each database. Its attributes (such as
coordinate system) are specified when the database is created. This Spatial
Context is the active one in any FDO session until a Spatial Context Command
is used to change this state. The default Spatial Context’s identifier number
is 0 (zero).

Spatial contexts have two tolerance attributes: XYTolerance and ZTolerance.
The tolerances are in distance units that depend on the coordinate system in
use. Geodetic coordinate systems typically have “on the ground” linear distance
units instead of the angular (that is, degrees, minutes or seconds) units used
for positional ordinates. The meter is the most common unit. Most
non-geodetic systems are rectilinear and use the same unit for positional
ordinates and distances, for example, meters or feet.

Inserting Geometry Values
For information about geometry property values, see Geometry Property Values
(page 96).

See Example: Inserting an Integer, a String, and a Geometry Value (page 96)
for a code example that shows how to insert a Geometry value.

Inserting Geometry Values | 139

Autodesk FDO Provider
for Oracle

In this chapterThis appendix discusses FDO API development issues that are

related to using FDO Provider for Oracle. ■ What Is FDO Provider for Oracle?

■ FDO Provider for Oracle General
Requirements

■ FDO Provider for Oracle
Connection

■ FDO Provider for Oracle and
Foreign Schemas

■ FDO Provider for Oracle and
Schema Overrides

■ Oracle-Specific Schema Creation
Restrictions

■ Oracle-Specific Schema
Modification Restrictions

■ Oracle-Specific Deletion
Restrictions

■ Oracle Reserved Words Used
with Filter and Expression Text

■ Locking and Long Transactions

■ FDO Provider for Oracle
Capabilities

A

141

What Is FDO Provider for Oracle?
The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. FDO Provider for Oracle provides FDO with
access to an Oracle-based data store.

FDO Provider for Oracle API provides custom commands specifically designed
to work with the FDO API. For example, using these commands, you can do
the following:

■ Gather information about a provider.

■ Transmit client services exceptions.

■ Get lists of accessible data stores.

■ Create connection objects.

■ Create and dropping spatial indexes.

FDO Provider for Oracle General
Requirements

For Autodesk Map 3D users, a pre-requisite for creating schema and managing
long transactions is to include the setting WM_ADMIN_ROLE in the user
definition.

If a user definition does not have this setting, use the FDO User Manager Tool
to delete the user definition and then recreate it to include WM_ADMIN_ROLE.

FDO Provider for Oracle Connection
This information supplements the Establishing a Connection chapter. You
connect to a data store directly through FDO Provider for Oracle, and the
underlying data source for the data store is an Oracle database.

You can connect to the data store in one step if you already know its name.
Otherwise, you must connect in two steps.

The minimum required connection parameters for the initial call to Open()
are service, username, and password.

142 | Appendix A Autodesk FDO Provider for Oracle

The service parameter is the Oracle Net Service Name of an Oracle instance.
An instance could be running on your machine or on some other machine
in the network. You can use the Oracle Net Manager to identify which Oracle
instances are available to you and what their Net Service Names are. In an
Oracle 10g installation on a Microsoft Windows XP machine, Net Manager
can be accessed with Start ➤ Programs ➤ Oracle ➤ Configuration and
Migration Tools ➤ Net Manager. The connection information for the Net
Service Name is contained in a file named tnsnames.ora, which is located in
the Network/Admin folder in either the Oracle instance or the client
installation directory.

Multiple users can access the data store. However, access is password-protected.

An Oracle data source, when accessed by FDO Provider for Oracle, may contain
more than one data store. For the first call to Open(), a data store name is
optional. If successful, the first call to Open() results in the data store parameter
becoming a required parameter and a list of the names of the data stores in
the data source becoming available. You must choose a data store and call
Open() again.

If you know the name of the data store, you can provide it for the first call to
Open() and make the connection in one step.

FDO Provider for Oracle and Foreign Schemas
FDO Provider for Oracle supports the creation of foreign schemas. A foreign
schema is capable of mapping a table to Oracle instances. This allows users
with a pre-existing application (for example, one created with Autodesk GIS
Design Server) to map their application to FDO. As a result, both the FDO
capability and conventional capability can be used by the same application.

Foreign Schema Settings

In order to use a foreign schema, certain privileges for FDO are required. To
support the foreign schema capability, the following settings are required:

■ FDO schema instance

■ Foreign schema instance

■ Oracle identity property

FDO Provider for Oracle and Foreign Schemas | 143

These settings are required for accessing the foreign schema objects (that is,
tables, views, and sequences.).

Settings on the FDO Schema Instance

If the foreign schema is on a different Oracle instance, create a PUBLIC database
link. A database link is a schema object that enables accessing of objects on
another Oracle instance.

Settings on the Foreign Schema Instance

If the foreign schema is on a different Oracle instance, create an FDO user
using the same Username and password as on the instance where the FDO
schema exists.

NOTE This FDO user does not need to have been granted the f_user_role role.

Grant the select, update, delete, and insert privileges on tables (views,
sequences) to the FDO user that is mapped to the FDO schema. Note that if
the Foreign Schema tables are enabled for Oracle Workspace Manager, the
privileges must be granted for the based table.

Oracle Identity Property

When specifying the main identifier for a feature class with FDO Provider for
Oracle, the data type must be Int64. It must also have the following settings:
ReadOnly=True and Autogenerated=True. If an identifier is not created with
these properties, it will be created by FDO Provider for Oracle. Otherwise, an
exception may be raised in certain conditions.

If the foreign schema uses a different data type for identifiers, the user must
define the identifier as a fdo int64 type with ReadOnly=True and
Autogenerated=True in the XML configuration file. If the identifier in the
foreign schema uses an Oracle sequence to generate the unique numbers, the
sequencename override must be defined in the override XML file.

144 | Appendix A Autodesk FDO Provider for Oracle

Read-Write Privileges

If FDO requires read-write privileges to work with a foreign schema, the owner
of the foreign schema must grant these privileges. Also, access to the Oracle
metaschema on the tables is required.

NOTE The owner must explicitly grant these privileges. These privileges will vary,
according to the schema owner.

Foreign Schema Limitations

This section provides information about known limitations of foreign schemas.

Ensuring Valid Views When Applying a Feature
Schema Against a Foreign Schema

The ApplySchema command can creates invalid views when the feature schema
is applied against a foreign schema. When you apply against a foreign schema,
tables and columns are not automatically created if they do not already exist.
A view is created, however, in the connected data store that references these
foreign tables and columns. ApplySchema succeeds even if certain tables or
columns cannot be obtained for various reasons, such as:

■ The database link to the foreign tables is invalid.

■ The Oracle instance containing the foreign tables is shut down or
unreachable due to network problems.

■ The foreign table or column simply does not exist.

When one of these situations occurs, ApplySchema creates invalid (dangling)
views because these views reference tables or columns that cannot be reached.

Invalid views can occur regardless of whether schema overrides have been
specified because the default schema mappings can also reference unreachable
tables or columns. For example, if the feature schema being applied has a Pole
class with no table name override, the Pole class is mapped to the POLE table
in the foreign schema and a POLE view (referencing the POLE table) is created
in the data store that the Oracle provider is currently connected to. If the
POLE table does not exist, then the POLE view is dangling, or invalid.

Read-Write Privileges | 145

Use one of the following procedures to correct invalid views, depending on
whether the correct table name was specified (either through a schema override
or the default class to table mapping rule):

Procedure When Table Name Is Correct

If the table name is correct, but it is not reachable for the reasons listed above:

1 Create the table or make it reachable by fixing the database link, fixing
network problems, or starting the Oracle instance that contains the table.

2 Recompile the view that references the table.

The Oracle SQL statement for recompiling the view is:

Alter view <view_name> compile;

If there are a number of views to recompile, an alternative method is to use
the following procedure for a wrong table name, but only do Steps 1 and 3.

Procedure When Wrong Table Name Is Specified

If the wrong table name is specified, to ensure valid views:

1 Destroy the feature schema. As long as the feature schema maps onto a
foreign schema, destroying it does not result in loss of data. No tables or
columns are dropped, only the referencing views created by FDO Provider
for Oracle are dropped.

2 Fix the schema overrides to supply the proper table name. In some cases,
you may need to add a schema override. For example, if a class named
"Pole" corresponds to the foreign table "telco_pole", then a table name
override must be specified for the Pole class, since the class and table
names differ.

3 Re-apply the feature schema.

If your feature schema contains a mixture of classes mapped to foreign tables
and classes mapped to non-foreign tables, then the procedure is slightly more
complex, especially if any non-foreign table contains data. In this case, the
following steps must be done programmatically throughout the FDO API:

1 Describe the feature schema using the DescribeSchema command. Retain
this description.

146 | Appendix A Autodesk FDO Provider for Oracle

2 Remove every class, except the one with the wrong table name, from the
feature schema returned. However, do not delete the classes (that is, do
not call FdoClassDefinition::Delete()).

3 Describe the feature schema again (ensure that you retain the feature
schema from the first Describe).

4 Delete the class with the wrong table name from the feature schema
returned by the second Describe (by calling its FdoClassDefinition::Delete()
function).

5 Fix the schema overrides to supply the proper table name.

6 Ensure that FdoIApplySchema::SetIgnoreStates() is set to false, then Apply
the feature schema described from Step 3. This deletes the class to repair.

7 Ensure that FdoIApplySchema::SetIgnoreStates() is set to true, then Apply
the feature schema described from Step 1, along with the schema
overrides. This re-creates the class to repair.

Overrides Capable of Causing Invalid Views

Any schema mapping between a feature schema element and a table or column
can create invalid views. This is true for mappings specified through schema
overrides or for default mappings. The specific schema mappings that can
cause invalid views are as follows:

■ Class to Table name

■ Class to Geometry Column name

■ Data Property to Column name

■ Geometric Property to Column name

■ Object Property to Table name

Table Name Restrictions When Working with a
Foreign Schema

The ApplySchema command does not automatically create tables in foreign
schemas. Therefore, the table specified for each class must already exist in the
foreign schema. The Schema Overrides, specified through
ApplySchema.SetPhysicalMapping, must contain a class to table mapping for

Foreign Schema Limitations | 147

each class whose table is named differently from the class. No mapping is
required for classes where the table name and class name are the same.

Schema Access on a Different Oracle Instance

The following are Oracle limitations on foreign schema access if the schema
is on a different (remote) Oracle instance:

■ LOB type columns are not supported.

■ Versioning and locking using Oracle Workspace Manager are not supported.

FDO Provider for Oracle and Schema
Overrides

Schema overrides are supported through the Overrides API that is specific to
FDO Provider for Oracle. This API is published as part of the FDO SDK.

Schema Override Set

A schema override set is the set of schema overrides for a particular Feature
Schema and FDO Provider.

The top level of a schema override set is very similar to the Feature Schema,
itself. There is a root class (OraclePhysicalSchemaMapping), with a list of
classes and a list of relations. These lists are subsets of the lists in the
corresponding Feature Schema. It is not necessary to list every class and
relation; list only the ones for which overrides are being specified.
OraclePhysicalSchemaMapping provides the Oracle-specific implementation
of FdoPhysicalSchemaMapping.

The methods for these MetaClasses are stripped down from the methods on
the corresponding Feature Schema MetaClasses. In the Schema Override set,
only name and physical properties are specified. For example, the names for
schema objects can be specified, but not the descriptions, since the descriptions
cannot be overridden. Name cannot be overidden either, but each object needs
a name for identification, so it must be specified.

148 | Appendix A Autodesk FDO Provider for Oracle

The Schema Override Set is used to specify schema-wide overrides such as:

■ Oracle Database for all tables for classes and object properties in the schema.
Defaults to the current Oracle Database for the current connection.

■ Oracle Owner for all tables for classes and object properties in the schema.
Defaults to the current Oracle Schema for the current connection.

■ Tablespace for all tables for classes and object properties in the schema.
Defaults to the default table space for the Oracle Owner.

■ Default table mapping type for all classes in the schema. If not specified,
the default table mapping type is Concrete.

These schema-wide overrides can themselves be overridden on an
element-by-element basis. For example, there are overrides available for class
table, object property, and geometric property.

Class Table Overrides

The RDBMS table for storing class properties can be specified by adding a table
to the class. The table specifies the table name and table primary key name.
By default, the table name is set to be the same as the class name.

Data Property Overrides

The physical representation for a data property can be overridden by attaching
a column to it. The column specifies the name of the property’s corresponding
column in the FDO database. If Column is not specified, then the column
names default to Name (the property name).

Object Property Overrides

The type of an Object Property is a class in a Feature Schema. This class can
be considered the referenced class. This referenced class has properties, so a
home for each property must be provided in the RDBMS data store. There are
are two different ways to store these properties. The Mapping Definition for

Schema Override Set | 149

each Object Property is specified by setting its MappingDefinition to an object
of one of the following classes:

■ PropertyMappingSingle. The referenced class properties are embedded in
the containing class’s table. The containing class is the class containing
the Object Property.

■ PropertyMappingConcrete. The Object Property is not stored in the
containing class’s table. A separate table is automatically generated for it.

Geometric Property Overrides

The column for a Geometric property can be overridden by attaching a
Geometric column to it. Only the column name can be specified. The column
type must always be mdsys.sdo_geometry.

The default column depends on whether the F_Geometry_0 table is present
and whether the Geometric Property is also the GeometryProperty for its
containing class.

If it is the GeometryProperty and F_Geometry_0 exists, then the table for this
property is F_Geometry_<n>, where <n> is the ID of the Spatial Context Group
for the associated Spatial Context. If the Geometric Property is not associated
with a Spatial Context, then <n> is the ID of the active Spatial Context group,
at the time the geometric property is created. The column for the property is
always RDBMS_GEOM.

Otherwise, the column name is assumed to be the same as the property name.
The column table is assumed to be the table for the containing class.

Oracle-Specific Schema Creation Restrictions
This section describes the restrictions that apply when creating schema(s)
using FDO Provider for Oracle.

FDOFeatureClass

An FdoFeatureClass must have an identity.

150 | Appendix A Autodesk FDO Provider for Oracle

Classes

■ Class names must be unique across the data store.

■ FdoFeatureClass must define or inherit at least one IdentityProperty.

Properties

Restrictions apply to specific types of properties.

Data Properties

■ The default value must not be specified.

■ A non-nullable data property cannot be added to a class that already has
data.

Identity Properties

■ Identity properties cannot be nullable.

■ Read-only Identity properties must be autogenerated.

String Properties

String property length must be between 1 and 4000 bytes inclusive.

Decimal Properties

■ Decimal property precision must be between 0 and 38 inclusive.

■ Decimal property scale must be between -84 and 127 inclusive.

Classes | 151

Geometric Properties

■ Only FdoFeatureClass can have geometric properties. A feature class can
have multiple geometric properties; main geometry is not mandatory.
HasMeasure and HasElevation are supported.

■ If the geometric property values are stored in a feature geometry system
table (F_GEOMETRY_<n>), then HasMeasure must be false.

Object Properties

■ The object property class must be an FdoClass. (FdoFeatureClass is not
allowed.)

■ IdentityProperty is mandatory if ObjectType is not FdoObjectType_Value
and the object property class has no identity properties.

Oracle-Specific Schema Modification
Restrictions

This section describes restrictions that apply when modifying schema(s) using
FDO Provider for Oracle.

Almost all modifications are disallowed, with the exception of those that
follow.

Schema Element Descriptions

■ Any schema element description is allowed.

■ Any schema attribute dictionary (entries can be added, deleted, or modified)
is allowed.

152 | Appendix A Autodesk FDO Provider for Oracle

Data Properties

The read-only setting for a data property can be modified if the property is
not autogenerated.

Oracle-Specific Deletion Restrictions
This section describes restrictions that apply when performing deletion in a
schema while using FDO Provider for Oracle.

FDOClassDefinition

FdoClassDefinition cannot be deleted if it has data (objects).

FdoClassDefinition cannot be deleted if another class in the data store has it
as its base class.

FDOClass

FdoClass cannot be deleted if it is referenced by any object property in the
data store.

Property

■ A data property cannot be deleted if it has any non-null values.

■ An object property cannot be deleted if it has data.

■ A geometric property cannot be deleted if its containing class has data.

Oracle Reserved Words Used with Filter and
Expression Text

When using a filter string with Oracle reserved words, the string within the
expression must be encapsulated inside single quotes (following the same

Data Properties | 153

convention used with the SQL language). Failure to do so will result in a
parsing error because the parser cannot determine any difference between the
value and the keyword.

Example of a filter string:

AND='linetype'

This FDO constraint appliesto the Oracle reserved words:

■ AND

■ DATE

■ IN

■ LIKE

■ NOT

■ OR

Locking and Long Transactions
The purpose of this section is two-fold. First, it illustrates ways of understanding
the subtleties of the interactions between locking and long transactions in an
Oracle context. Secondly, it provides concrete examples of those subtleties.

An FDO long transaction version is called a workspace in an Oracle context.
In this discussion, the FDO phrase “long transaction version” is shortened to
“long transaction”. A key phrase in the example is “root,” which represents
permanent data. Any long transaction has a root long transaction as an
ancestor. The Oracle Workspace Manager (OWM) name for the FDO root long
transaction is “LIVE”.

OWM and FDO Lock Types

The following table shows the names of the Oracle Workspace Manager locks
used to implement each FDO lock:

Oracle Lock TypeFDO Lock Type

SharedShared

154 | Appendix A Autodesk FDO Provider for Oracle

Oracle Lock TypeFDO Lock Type

Workspace ExclusiveExclusive

Version ExclusiveLong Transaction Exclusive

ExclusiveAll Long Transaction Exclusive

Example:AllLongTransactionExclusiveLock

The following is a proven example using the AllLongTransactionExclusiveLock
type with multiple users and the Update command. When you connect to an
Oracle data store, you are placed in the already-activated, default root long
transaction. If a long transaction is created in root, it is considered a child of
root. When the new long transaction is activated (for example, as LT1), the
subsequent actions take place in the context of LT1. If another long transaction
is subsequently created (for example, as LT2), it is created as a child of LT1.

NOTE When using FDO Provider for Oracle long transactions and locking, the
combination of Oracle Workspace Manager capabilities and, potentially, other
third-party applications can introduce many variables and combinations. The
possible resulting conflicts in locking and long transactions can be similarly wide
and varied.

This example considers two closely related cases. The same set of actions are
taken in both cases, but in slightly different sequences, yielding different
results. User1 creates a long transaction in the context of root and it is
activated. User1 applies an AllLongTransactionExclusiveLock to a feature
object in a data store. User1 updates that feature object in the data store. User2
attempts to update the same object, in the same data store, in the context of
root. In the first case, User2 succeeds, and in the second case User2 fails (that
is, a lock conflict is reported).

More specifically, the sequence of events for both cases is captured in the
accompanying Long Transaction and Locking Sequencing Example diagram.
For this example, all events occur in a single data store. The sequence of events
are:

1 User1 creates LT1, activates LT1, and updates feature object “a” in LT1.

2 User2 successfully updates object “a” in root.

Example:AllLongTransactionExclusiveLock | 155

3 User1 creates LT2, activates LT2, and updates feature object “b” in LT2.

4 User2 fails to update object “b” in root.

The key difference is that, in LT1, User1 updates feature object “a” before the
lock is applied, and, in LT2, User1 applies the lock to feature object “b” before
it is updated. Prior to update, a copy of object "b" has not been made in LT2.
This causes the lock to be applied to the copy of the object in root, because
there is not yet a copy in LT2.

Therefore, if User1 intends to prevent anyone from modifying the object from
the root level, User1 must apply the lock to the object before updating it.

For more information about Oracle Workspace Manager and its lock
management, see the Oracle documentation.

156 | Appendix A Autodesk FDO Provider for Oracle

User1 User2 ROOT

LT1

LT2

Create LT1 off ROOT

activate

Update “a”

success

Apply AllLongTransactionExclusiveLock “a”

Update “a”

success

Create LT2 off ROOT

activate

success

Apply AllLongTransactionExclusiveLock “b”

Update “b”

Update “b”

fail (lock conflict)

Long Transaction and Locking Sequencing Example

FDO Provider for Oracle Capabilities
The capabilities of an FDO provider are grouped in the following categories:

■ Connection

■ Schema

■ Commands

■ Filters

FDO Provider for Oracle Capabilities | 157

■ Expressions

■ Geometry

■ Raster

Connection Capabilities

OracleCapability

Spatial Content Extent Types

Y Static

 Dynamic

Lock Types

Y Shared

Y Exclusive

Y Transaction

Y All Long Transaction Exclusive

Y Long Transaction Exclusive

Thread Types

 Single- Threaded

Y Per Connection Threaded

 Per Command Threaded

 Multi-threaded

158 | Appendix A Autodesk FDO Provider for Oracle

OracleCapability

Supports

Y Locking

 Timeout

Y Transactions

Y Long Transactions

Y SQL

 Configuration

Schema Capabilities

OracleCapability

Class Types

Y Class

Y Feature Class

Data Types

Y Boolean

Y Byte

Y DateTime

Y Decimal

Y Double

FDO Provider for Oracle Capabilities | 159

OracleCapability

Y Int16

Y Int32

Y Int64

Y Single

Y String

Y BLOB

Y CLOB

YAuto-Generated Data Types Supported
(Int64)

Supports

Y Inheritance

Y Multiple Schemas

Y Object Properties

Y Association Properties

Y Schema Overrrides

 Network Model

Y Auto Id Generation

Y Data Store Scope Unique Id Generation

160 | Appendix A Autodesk FDO Provider for Oracle

OracleCapability

Y Schema Modification

Constraints

Y Inclusive Value Range Constraints

 Exclusive Value Range Constraints

 Value Constraints List

Y Null Value Constraints

 Unique Value Constraints

 Composite Unique Value Constraints

Command Capabilities

OracleCapability

Feature Commands

Y Select

Y Select Aggregates

Y Insert

Y Delete

Y Update

Schema Commands

Y Describe Schema

FDO Provider for Oracle Capabilities | 161

OracleCapability

Y Describe Schema Mapping

Y Apply Schema

Y Destroy Schema

Spatial Context Commands

Y Activate Spatial Context

Y Create Spatial Context

Y Destroy Spatial Context

Y Get Spatial Contexts

Data Store Commands

Y Create Data Store

Y Destroy Data Store

Y List Data Stores

Measure Unit Commands

 Create Measure Unit

 Destroy Measure Unit

 Get Measure Units

YSQL Command

Locking Commands

162 | Appendix A Autodesk FDO Provider for Oracle

OracleCapability

Y Acquire Lock

Y Get Lock Info

Y Get Locked Objects

Y Get Lock Owners

Y Release Lock

Long Transaction Commands

Y Activate Long Transaction

Y Deactivate Long Transaction

Y Commit Long Transaction

Y Create Long Transaction

Y Get Long Transactions

 Freeze Long Transaction

Y Rollback Long Transaction

 Activate Long Transaction Checkpoint

 Create Long Transaction Checkpoint

 Get Long Transaction Checkpoints

 Rollback Long Transaction Checkpoint

 Change Long Transaction Privileges

FDO Provider for Oracle Capabilities | 163

OracleCapability

 Get Long Transaction Privileges

 Change Long Transaction Set

 Get Long Transaction In Set

RDBMS Custom Commands

Y Create Spatial Index

Y Destroy Spatial Index

Y Get Spatial Indexes

Supports

 Parameters

 Timeout

Y Select Expressions

Y Select Functions

Y Select Distinct

Y Select Ordering

Y Select Grouping

Filter Capabilities

OracleCapability

Condition Types

164 | Appendix A Autodesk FDO Provider for Oracle

OracleCapability

Y Comparsion

Y Like

Y In

Y Null

Y Spatial

Y Distance

Spatial Operations

 Contains

 Crosses

 Disjoint

 Equals

Y Intersects

 Overlaps

 Touches

 Within

Y Covered By

Y Inside

Y Envelope Intersects

FDO Provider for Oracle Capabilities | 165

OracleCapability

Distance Operations

 Beyond

Y Within

Supports

 Geodesic Distance

 Non-Literal Geometric Operations

Expression Capabilities

OracleCapability

Expression Types

Y Basic

Y Function

Y Parameter

Functions

Y Double Avg(Double)

Y Int64 Ceil(Int64)

Y String Concat(String)

Y Int64 Count(Int64)

Y Int64 Floor(Int64)

166 | Appendix A Autodesk FDO Provider for Oracle

OracleCapability

Y String Lower(String)

Y Double Min(Double)

Y Double Max(Double)

 Double StdDev(Double)

Y Double Sum(Double)

Y String Upper(String)

Y geomValue SpatialExtents (<Fdo-
DataType>)

Geometry Capabilities

OracleCapability

Geometry Types

Y Point

Y Line String

Y Polygon

Y Multi-Point

Y Multi-Line String

Y Multi-Polygon

 Multi-Geometry

FDO Provider for Oracle Capabilities | 167

OracleCapability

Y Curve String

Y Curve Polygon

Y Multi-Curve String

Y Multi-Curve Polygon

Geometry Component Types

Y Linear Ring

Y Line String Segment

Y Circular Arc Segment

Y Ring

Dimensionalities

Y XY

Y Z

Y M

Raster Capabilities

OracleCapability

Supports

 Raster

 Stitching

168 | Appendix A Autodesk FDO Provider for Oracle

OracleCapability

 Subsampling

 Bitonal Data Model

 Gray Data Model

 RGB Data Model

 RGBA Data Model

 Palette Data Model

FDO Provider for Oracle Capabilities | 169

OSGeo FDO Provider for
ArcSDE

In this chapterThis appendix discusses FDO API development issues that are

related to OSGeo FDO Provider for ArcSDE. ■ What Is FDO Provider for
ArcSDE?

■ FDO Provider for ArcSDE
Software Requirements

■ FDO Provider for ArcSDE
Limitations

■ ArcSDE Limitations

■ FDO Provider for ArcSDE
Connection

■ Data Type Mappings

■ Creating a Feature Schema

■ FDO Provider for ArcSDE
Capabilities

B

171

What Is FDO Provider for ArcSDE?
The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. A provider is a specific implementation of the
FDO API that provides access to data in a particular data store. ESRI® ArcSDE®

(Spatial Database Engine) is part of the ArcGIS 9 system. ArcSDE manages the
exchange of information between an (ArcGIS 9 Desktop) application and a
relational database management system. FDO Provider for ArcSDE provides
FDO with access to an ArcSDE 9-based data store, which, in this case, must
be Oracle 9i (9.2.0.6).

FDO Provider for ArcSDE Software
Requirements

Installed Components

FDO Provider for ArcSDE dynamically linked libraries are installed with the
FDO SDK. They are located in <FDO SDK Install Location>\FDO\bin. You do
not have to do anything to make these DLLs visible.

External Dependencies

The operation of FDO Provider for ArcSDE is dependent on the presence of
ArcSDE 9 and a supported data source, such as Oracle 9i, in the network
environment. The host machine running FDO Provider for ArcSDE must also
have the required DLLs present, which are available by installing either an
ArcGIS 9.1 Desktop application or the ArcSDE SDK. For example, the required
DLLs are present if either ArcView®, ArcEditor®, or ArcInfo® are installed. For
more information about ArcGIS 9.1 Desktop applications and the ArcSDE SDK,
refer to the ESRI documentation.

Specifically, in order for FDO Provider for ArcSDE to run, three dynamically
linked libraries, sde91.dll, sg91.dll, and pe91.dll, are required and you must
ensure that the PATH environment variable references the local folder
containing these DLLs. For example, in Microsoft Windows, if ArcGIS 9.1
Desktop is installed to C:\Program Files\ArcGIS, then the required ArcSDE
binaries are located at C:\Program Files\ArcGIS\ArcSDE\bin. Similarly, if the

172 | Appendix B OSGeo FDO Provider for ArcSDE

ArcSDE SDK is installed to the default location, then the required ArcSDE
binaries are located at C:\ArcGis\ArcSDE\bin. The absence of this
configuration may cause the following exception message "The ArcSDE runtime
was not found.".

FDO Provider for ArcSDE Limitations
The FDO Provider for ArcSDE is based on a subset of the ArcSDE API. This
subset does not include the following:

■ Raster functionality

■ Native ArcSDE metadata

■ The annotation data, with the exception of the ANNO_TEXT column

ArcSDE Limitations
FDO Provider for ArcSDE must abide by limitations of the ArcSDE technology
to which it connects. This section discusses these limitations.

Relative to ArcObjects API and ArcGIS Server API

The ArcSDE API does not support the following advanced functionality found
in the ArcObjects API and the newer ArcGIS Server API:

■ Advanced geometries, such as Bezier curves and ellipses

■ Relationships

■ Topology

■ Networks

■ Analysis

■ Linear referencing

FDO Provider for ArcSDE Limitations | 173

Curved Segments

If ArcSDE encounters curved segments, it will automatically tessellate them.
This means that if you create a geometry containing an arc segment in an
ArcSDE table using ArcObjects API and then you try to read that geometry
back using the ArcSDE API, you will get a series of line segments that
approximate the original arc segment. That is, you get an approximation of
the original geometry.

Locking and Versioning

ArcSDE permits row locks or table versioning provided that the ID column,
which uniquely identifies the row, is maintained by ArcSDE. If there is no ID
column or the ID column is maintained by the user, ArcSDE does not permit
row locking or table versioning to be enabled.

NOTE In ArcSDE you can either lock rows in a table or version a table, but you
cannot do both at the same time. To do either, you must alter the table’s
registration.

The following sections illustrate these three steps:

1 The creation of a table.

2 The alteration of the table registration to identify one of the column
definitions as the row ID column and to enable row locking.

3 The alteration of the table registration to disable row locking and to
enable versioning.

Table Creation

The command is:

sdetable -o create -t hassdemaintainedrowid -d "name string(20),

fid integer(9)" -u t_user -p test

The output of the describe registration command (sdetable -o describe_reg)
for this table is as follows:

NOTE The Row Lock has no value and the value of Dependent Objects is None.

174 | Appendix B OSGeo FDO Provider for ArcSDE

Table Owner : T_USER

Table Name : HASSDEMAINTAINEDROWID

Registration Id : 18111

Row ID Column :

Row ID Column Type :

Row Lock :

Minimum Row ID :

Dependent Objects : None

Registration Date : 02/24/05 13:08:02

Config. Keyword : DEFAULTS

User Privileges : SELECT, UPDATE, INSERT, DELETE

Visibility : Visible

Identity Row ID Column and Enable Row Locking

The command is:

sdetable -o alter_reg -t hassdemaintainedrowid -c fid -C sde -L

on -u t_user -p test

The output of the describe registration command (sdetable -o describe_reg)
for this table is as follows.

NOTE The Row ID Column value is FID, the Row ID Column Type value is SDE
Maintained, and the Row Lock value is Enable.

Table Owner : T_USER

Table Name : HASSDEMAINTAINEDROWID

Registration Id : 18111

Row ID Column : FID

Row ID Column Type : SDE Maintained

Row ID Allocation : Many

Row Lock : Enable

Minimum Row ID : 1

Dependent Objects : None

Registration Date : 02/24/05 13:08:02

Config. Keyword : DEFAULTS

User Privileges : SELECT, UPDATE, INSERT, DELETE

Visibility : Visible

Locking and Versioning | 175

Disable Row Locking and Enable Versioning

The command is:

sdetable -o alter_reg -t hassdemaintainedrowid -L off -V MULTI -u

t_user -p test

The output of the describe registration command (sdetable -o describe_reg)
for this table is as follows:

NOTE The “Row Lock” is “Not Enable” and “Dependent Objects” is “Multiversion
Table”.

Table Owner : T_USER

Table Name : HASSDEMAINTAINEDROWID

Registration Id : 18111

Row ID Column : FID

Row ID Column Type : SDE Maintained

Row ID Allocation : Many

Row Lock : Not Enable

Minimum Row ID : 1

Dependent Objects : Multiversion Table

Dependent Object Names : A18111, D18111

Registration Date : 02/24/05 13:08:02

Config. Keyword : DEFAULTS

User Privileges : SELECT, UPDATE, INSERT, DELETE

Visibility : Visible

FDO Provider for ArcSDE Connection
This information supplements the Establishing a Connection chapter. You
connect to an ArcSDE data store indirectly through the ArcSDE server. The
underlying data source for the data store is a database, such as Oracle. The
ArcSDE server is connected to the data source and mediates the requests that
you send it.

You can connect to FDO Provider for ArcSDE in one step if you already know
the name of the data store that you want to use. Otherwise, you must connect
in two steps.

The minimum required connection properties for the initial call to Open()
are server, instance, username, and password. Multiple users can access the
data store. However, access is password-protected. The server property is the

176 | Appendix B OSGeo FDO Provider for ArcSDE

name of the machine hosting the ArcSDE server. The instance property acts
as an index into an entry in the services file. An entry contains port and
protocol information used to connect to the ArcSDE server. On a Windows
machine, the services file is located in C:\WINDOWS\system32\drivers\etc.
Assuming that the instance name is “esri_sde”, an entry would look something
like this: “esri_sde 5151/tcp #ArcSDE Server Listening Port”.

An ArcSDE data source may contain more than one data store. For the first
call to Open(), a data store name is optional. If successful, the first call to
Open() results in the data store parameter becoming a required parameter and
a list of the names of the data stores in the data source becoming available.
You must choose a data store and call Open() again.

If the data source supports multiple data stores, the list returned by the first
call to Open() will contain a list of all of the data stores resident in the data
source. Otherwise, the list will contain one entry: “Default Data Store”.

If you know the name of the data store, you can provide it for the first call to
Open() and make the connection in one step.

Data Type Mappings
This section shows the mappings from FDO data types to ArcSDE data types
to Oracle data types:

Oracle Column Typesdetable Column DefinitionFDO DataType

Not supportedNot supportedFdoDataType_Boolean

Not supportedNot supportedFdoDataType_Byte

DATEdateFdoDataType_DateTime

Not supportedNot supportedFdoDataType_Decimal

NUMBER(38,8)double(38,8)FdoDataType_Double

NUMBER(4)integer(4)FdoDataType_Int16

NUMBER(10)integer(10)FdoDataType_Int32

Data Type Mappings | 177

Oracle Column Typesdetable Column DefinitionFDO DataType

Not supportedNot supportedFdoDataType_Int64

NUMBER(6,2)float(6,2) // typicalFdoDataType_Single
NUMBER(n,8)float(0<n<=6, o<m<DBMSLimit)) // possible

VARCHAR2(<length>)string(<length>)FdoDataType_String

LONG RAWblobFdoDataType_BLOB

Not supportedNot supportedFdoDataType_CLOB

Not supportedNot supportedFdoDatatype_UniqueID

Creating a Feature Schema
This section describes the creation of the SampleFeatureSchema, which is the
example feature schema described in the Schema Management chapter. It also
describes the creation of the OGC980461FS schema, which is the schema
defined in the OpenGIS project document 98-046r1.

FDO Provider for ArcSDE does not support the creation or destruction of
feature schema (that is, does not support the FdoIApplySchema and
FdoIDestroySchema commands.) However, it does support the
FdoIDescribeSchema command. The intended use of FDO Provider for ArcSDE
is to operate on already existing feature schemas. FDO Provider for ArcSDE
supports inserting, selecting, updating, and deleting data in existing schemas.

You can use FDO Provider for ArcSDE to operate on a new feature schema.
However, you must create the schema using ArcSDE tools. In particular you
use the sdetable and sdelayer commands, which can be used to create a schema
in any of the data store technologies used by ArcSDE. This part of the
description is generic. Other parts of the description are specific to Oracle and
to Windows XP because Oracle is the data store technology and Windows XP
is the operating system for this exercise.

First, you must create an Oracle username for the feature schema (that is, the
name of the Oracle user is the name of the feature schema.) To do this, you
connect as system administrator to the Oracle instance used by the ArcSDE

178 | Appendix B OSGeo FDO Provider for ArcSDE

server. The following command creates the user and grants to that user the
privileges necessary for the ArcSDE tool commands to succeed:

grant connect,resource to <schemaName> identified by <password>

Secondly, you must log in to the host where the ArcSDE server is running.
ArcSDE tools are on the host machine where the ArcSDE server resides.

TIP NetMeeting can be used to remotely login to where the ArcSDE Server is
running and launch a command window (that is, in the Run dialog box, enter
cmd) The ArcSDE tool commands can be executed through the command window.
Do not use C:\WINDOWS\SYSTEM32\COMMAND.COM because the line buffer
is too short to contain the entire text of some of the SDE tool command strings.

Finally, execute the sdetable and sdelayer commands in a command window
to create each of the classes. Since you are executing these commands on the
host where the ArcSDE server is located, you can omit the server name option.
If the ArcSDE server is connected to only one data store, you can omit the
service option. For more information about all of the ArcSDE commands,
consult the ArcSDE Developer Help Guide.

SampleFeatureSchema

In this sample a feature schema called SampleFeatureSchema is created, which
contains one feature class called SampleFeatureClass. This feature class has
the following three properties:

■ An Int32 called SampleIdentityDataProperty.

■ A string called SampleNameDataProperty.

■ A polygon geometry called SampleGeometricProperty.

First, use the sdetable -o create command to add the integer and string
properties to SampleFeatureClass. Then, use the sdetable -o alter_reg command
to identify the SampleIdentityDataProperty as an identity property. Finally,
use the sdelayer -o add command to add the geometric property to
SampleFeatureClass. This assumes that only one ArcSDE server service is
running so that the -i option is optional. The -i option takes a service name
as an argument.

The sdetable -o create command can be invoked as follows:

sdetable -o create -t SampleFeatureClass -d “SampleIdentityDataProp

erty INTEGER(10), SampleNameDataProperty STRING(64)” -u SampleFea

tureSchema -p test.

Creating a Feature Schema | 179

The -o option takes the command option name. The -d option takes the
column definitions, which is a quoted list of column name/column type pairs
delimited by commas. The -u option takes an Oracle database user name,
which becomes the feature schema name. The -p option takes a password.

The sdetable -o alter_reg command is invoked as follows:

sdetable -o alter_reg -t SampleFeatureClass -c SampleIdentityDat

aProperty -C USER -u SampleFeatureSchema -p test

The -c option identifies the column name that will be the identity property.
The -C option indicates whether SDE is supposed to generate the value or
obtain it from the user. You will be prompted to confirm that you want to
alter the registration of the table.

The sdelayer command is invoked as follows:

sdelayer -o add -l SampleFeatureClass,SampleGeometricProperty -E

0,0,100,50 -e a -u SampleFeatureSchema -p test

The -o option takes the command option name. The -l option identifies the
table and column. The -E option identifies the extents; the arguments are
<xmin,ymin,xmax,ymax>. The -e option identifies the geometry type with
‘a’ indicating an area shape.

OGC980461FS

This schema contains the ten classes defined in the OpenGIS Project Document
980946r1. The types of the properties belonging to the classes is similar to
that of SampleFeatureClass, namely, an integer, a string, and a geometry. One
difference is that the geometry in three of the classes is multipart. Two of
them have MULTIPOLYGON geometries, and one of them has a
MULTILINESTRING geometry. A multipart geometry is indicated by adding
a ‘+’ to the entity argument to the -e option in the sdelayer command. A
MULTIPOLYGON geometry is indicated by “-e a+”, and a MULTILINESTRING
geometry is indicated by “-e l+”.

An ArcSDE table cannot have two geometries. This restriction impacts the
definition of the buildings class, which has a POLYGON and a POINT
geometry. We have chosen to add the POINT geometry. The OpenGIS 98-046r1
document defines one query that references building objects, and the POINT
geometry supports this query.

NOTE The use of -E option in the sdelayer command defines the extents. The
arguments are <xmin,ymin,xmax,ymax>. The values provided below ensure that
you will not receive any “ordinate out of bounds” errors when inserting the
98046r1 data.

180 | Appendix B OSGeo FDO Provider for ArcSDE

ArcSDE Commands That Define the OGC980461FS Classes

Creating a Feature Schema | 181

sdetable -o create -t lakes -d "fid integer(10), name string(64)"

-u OGC980461FS -p test

sdetable -o alter_reg -t lakes -c fid -C user -u OGC980461FS -p

test

sdelayer -o add -l lakes,shore -E 0,0,100,50 -e a -u OGC980461FS

-p test

sdetable -o create -t road_segments -d "fid integer(10), name

string(64), aliases string(64), num_lanes integer(10)" -u

OGC980461FS -p test

sdetable -o alter_reg -t road_segments -c fid -C user -u

OGC980461FS -p test

sdelayer -o add -l road_segments,centerline -E 0,0,100,50 -e l -u

OGC980461FS -p test

sdetable -o create -t divided_routes -d "fid integer(10), name

string(64), num_lanes integer(10)" -u OGC980461FS -p test

sdetable -o alter_reg -t divided_routes -c fid -C user -u

OGC980461FS -p test

sdelayer -o add -l divided_routes,centerlines -E 0,0,100,50 -e l+

-u OGC980461FS -p test

sdetable -o create -t forests -d "fid integer(10), name string(64)"

-u OGC980461FS -p test

sdetable -o alter_reg -t forests -c fid -C user -u OGC980461FS -p

test

sdelayer -o add -l forests,boundary -E 0,0,100,50 -e a+ -u

OGC980461FS -p test

sdetable -o create -t bridges -d "fid integer(10), name string(64)"

-u OGC980461FS -p test

sdetable -o alter_reg -t bridges -c fid -C user -u OGC980461FS -p

test

sdelayer -o add -l bridges,position -E 0,0,100,50 -e p -u

OGC980461FS -p test

sdetable -o create -t streams -d "fid integer(10), name string(64)"

-u OGC980461FS -p test

sdetable -o alter_reg -t streams -c fid -C user -u OGC980461FS -p

test

sdelayer -o add -l streams,centerline -E 0,0,100,50 -e l -u

OGC980461FS -p test

sdetable -o create -t buildings -d "fid integer(10), address

string(64)" -u OGC980461FS -p test

sdetable -o alter_reg -t buildings -c fid -C user -u OGC980461FS

-p test

sdelayer -o add -l buildings,position -E 0,0,100,50 -e p -u

OGC980461FS -p test

182 | Appendix B OSGeo FDO Provider for ArcSDE

sdetable -o create -t ponds -d "fid integer(10), name string(64),

type string(64)" -u OGC980461FS -p test

sdetable -o alter_reg -t ponds -c fid -C user -u OGC980461FS -p

test

sdelayer -o add -l ponds,shores -E 0,0,100,50 -e a+ -u OGC980461FS

-p test

sdetable -o create -t named_places -d "fid integer(10), name

string(64)" -u OGC980461FS -p test

sdetable -o alter_reg -t named_places -c fid -C user -u OGC980461FS

-p test

sdelayer -o add -l named_places,boundary -E 0,0,100,50 -e a -u

OGC980461FS -p test

sdetable -o create -t map_neatlines -d "fid integer(10)" -u

OGC980461FS -p test

sdetable -o alter_reg -t map_neatlines -c fid -C user -u

OGC980461FS -p test

sdelayer -o add -l map_neatlines,neatline -E 0,0,100,50 -e a -u

OGC980461FS -p test

FDO Provider for ArcSDE Capabilities
The capabilities of an FDO provider are grouped in the following categories:

■ Connection

■ Schema

■ Commands

■ Expressions

■ Filters

■ Geometry

■ Raster

Connection Capabilities

ArcSDECapability

Spatial Content Extent Types

FDO Provider for ArcSDE Capabilities | 183

ArcSDECapability

Y Static

 Dynamic

Lock Types

 Shared

Y Exclusive

 Transaction

 All Long Transaction Exclusive

 Long Transaction Exclusive

Thread Types

 Single- Threaded

Y Per Connection Threaded

 Per Command Threaded

 Multi-threaded

Supports

Y Locking

 Timeout

Y Transactions

Y Long Transactions

184 | Appendix B OSGeo FDO Provider for ArcSDE

ArcSDECapability

Y SQL

 Configuration

Schema Capabilities

ArcSDECapability

Class Types

Y Class

Y Feature Class

Data Types

 Boolean

 Byte

Y DateTime

 Decimal

Y Double

Y Int16

Y Int32

 Int64

Y Single

Y String

FDO Provider for ArcSDE Capabilities | 185

ArcSDECapability

Y BLOB

 CLOB

YAuto-Generated Data Types Supported
(Int32)

Supports

 Inheritance

Y Multiple Schemas

 Object Properties

 Association Properties

 Schema Overrrides

 Network Model

Y Auto Id Generation

 Data Store Scope Unique Id Generation

 Schema Modification

Constraints

 Inclusive Value Range Constraints

 Exclusive Value Range Constraints

 Value Constraints List

186 | Appendix B OSGeo FDO Provider for ArcSDE

ArcSDECapability

Y Null Value Constraints

Y Unique Value Constraints

Y Composite Unique Value Constraints

Command Capabilities

ArcSDECapability

Feature Commands

Y Select

Y Select Aggregates

Y Insert

Y Delete

Y Update

Schema Commands

Y Describe Schema

 Describe Schema Mapping

 Apply Schema

 Destroy Schema

Spatial Context Commands

Y Activate Spatial Context

FDO Provider for ArcSDE Capabilities | 187

ArcSDECapability

Y Create Spatial Context

Y Destroy Spatial Context

Y Get Spatial Contexts

Data Store Commands

 Create Data Store

 Destroy Data Store

Y List Data Stores

Measure Unit Commands

 Create Measure Unit

 Destroy Measure Unit

 Get Measure Units

YSQL Command

Locking Commands

Y Acquire Lock

Y Get Lock Info

Y Get Locked Objects

Y Get Lock Owners

Y Release Lock

188 | Appendix B OSGeo FDO Provider for ArcSDE

ArcSDECapability

Long Transaction Commands

Y Activate Long Transaction

Y Deactivate Long Transaction

Y Commit Long Transaction

Y Create Long Transaction

Y Get Long Transactions

 Freeze Long Transaction

Y Rollback Long Transaction

 Activate Long Transaction Checkpoint

 Create Long Transaction Checkpoint

 Get Long Transaction Checkpoints

 Rollback Long Transaction Checkpoint

 Change Long Transaction Privileges

 Get Long Transaction Privileges

 Change Long Transaction Set

 Get Long Transaction In Set

RDBMS Custom Commands

 Create Spatial Index

FDO Provider for ArcSDE Capabilities | 189

ArcSDECapability

 Destroy Spatial Index

 Get Spatial Indexes

Supports

Y Parameters

 Timeout

 Select Expressions

Y Select Functions

Y Select Distinct

Y Select Ordering

 Select Grouping

Filter Capabilities

ArcSDECapability

Condition Types

Y Comparsion

Y Like

Y In

Y Null

Y Spatial

190 | Appendix B OSGeo FDO Provider for ArcSDE

ArcSDECapability

Y Distance

Spatial Operations

Y Contains

Y Crosses

Y Disjoint

Y Equals

Y Intersects

Y Overlaps

Y Touches

Y Within

Y Covered By

Y Inside

Y Envelope Intersects

Distance Operations

Y Beyond

Y Within

Supports

 Geodesic Distance

FDO Provider for ArcSDE Capabilities | 191

ArcSDECapability

 Non Literal Geometric Operations

Expression Capabilities

ArcSDECapability

Expression Types

Y Basic

Y Function

 Parameter

Functions

Y Double Avg(Double)

 Int64 Ceil(Int64)

 String Concat(String)

Y Int64 Count(Int64)

 Int64 Floor(Int64)

 String Lower(String)

Y Double Min(Double)

Y Double Max(Double)

Y Double StdDev(Double)

Y Double Sum(Double)

192 | Appendix B OSGeo FDO Provider for ArcSDE

ArcSDECapability

 String Upper(String)

 geomValue SpatialExtents (TBD - Fdo-
DataType)

Geometry Capabilities

ArcSDECapability

Geometry Types

Y Point

Y Line String

Y Polygon

Y Multi-Point

Y Multi-Line String

Y Multi-Polygon

 Multi-Geometry

 Curve String

 Curve Polygon

 Multi-Curve String

 Multi-Curve Polygon

Geometry Component Types

FDO Provider for ArcSDE Capabilities | 193

ArcSDECapability

Y Linear Ring

Y Line String Segment

 Circular Arc Segment

 Ring

Dimensionalities

Y XY

Y Z

Y M

Raster Capabilities

ArcSDECapability

Supports

 Raster

 Stitching

 Subsampling

 Bitonal Data Model

 Gray Data Model

 RGB Data Model

 RGBA Data Model

194 | Appendix B OSGeo FDO Provider for ArcSDE

ArcSDECapability

 Palette Data Model

FDO Provider for ArcSDE Capabilities | 195

OSGeo FDO Provider for
MySQL

In this chapterThis appendix discusses FDO API development issues that are

related to OSGeo FDO Provider for MySQL. ■ What Is FDO Provider for
MySQL?

■ FDO Provider for MySQL
Capabilities

C

197

What Is FDO Provider for MySQL?
The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for MySQL provides FDO
with access to a MySQL-based data store.

The FDO Provider for MySQL API provides custom commands that are
specifically designed to work with the FDO API. For example, using these
commands, you can do the following:

■ Gather information about a provider.

■ Transmit client services exceptions.

■ Get lists of accessible data stores.

■ Create connection objects.

■ Create and execute spatial queries.

The MySQL architecture supports different storage engines. Choose an engine
as needed, depending on its characteristics and capabilities, such as the
following:

■ MyISAM is a disk-based storage engine. It does not support transactions.

■ InnoDB is a disk-based storage engine. It has full ACID transaction
capability.

■ Memory (Heap) is a storage engine utilizing only RAM. It is very fast.

■ NDB is the MySQL Cluster storage engine.

■ MERGE is a variation of MyISAM. A MERGE table is a collection of identical
MyISAM tables, which means that all tables have the same columns,
column types, indexes, and so on.

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the OSGeo FDO Provider for MySQL API Reference Help
(MySQL_Provider_API.chm).

198 | Appendix C OSGeo FDO Provider for MySQL

FDO Provider for MySQL Capabilities
The capabilities of an FDO provider are grouped in the following categories:

■ Connection

■ Schema

■ Commands

■ Expressions

■ Filters

■ Geometry

■ Raster

Connection Capabilities

MySQLCapability

Spatial Content Extent Types

Y Static

 Dynamic

Lock Types

 Shared

 Exclusive

 Transaction

 All Long Transaction Exclusive

 Long Transaction Exclusive

Thread Types

FDO Provider for MySQL Capabilities | 199

MySQLCapability

 Single- Threaded

Y Per Connection Threaded

 Per Command Threaded

 Multi-threaded

Supports

 Locking

 Timeout

Y Transactions

 Long Transactions

Y SQL

 Configuration

Schema Capabilities

MySQLCapability

Class Types

Y Class

Y Feature Class

Data Types

Y Boolean

200 | Appendix C OSGeo FDO Provider for MySQL

MySQLCapability

Y Byte

Y DateTime

Y Decimal

Y Double

Y Int16

Y Int32

Y Int64

Y Single

Y String

 BLOB

 CLOB

YAuto-Generated Data Types Supported
(Int64)

Supports

Y Inheritance

Y Multiple Schemas

Y Object Properties

Y Association Properties

FDO Provider for MySQL Capabilities | 201

MySQLCapability

Y Schema Overrrides

 Network Model

Y Auto Id Generation

Y Data Store Scope Unique Id Generation

Y Schema Modification

Constraints

Y Inclusive Value Range Constraints

 Exclusive Value Range Constraints

 Value Constraints List

Y Null Value Constraints

Y Unique Value Constraints

Y Composite Unique Value Constraints

Command Capabilities

MySQLCapability

Feature Commands

Y Select

Y Select Aggregates

Y Insert

202 | Appendix C OSGeo FDO Provider for MySQL

MySQLCapability

Y Delete

Y Update

Schema Commands

Y Describe Schema

Y Describe Schema Mapping

Y Apply Schema

Y Destroy Schema

Spatial Context Commands

Y Activate Spatial Context

Y Create Spatial Context

Y Destroy Spatial Context

Y Get Spatial Contexts

Data Store Commands

Y Create Data Store

Y Destroy Data Store

Y List Data Stores

Measure Unit Commands

 Create Measure Unit

FDO Provider for MySQL Capabilities | 203

MySQLCapability

 Destroy Measure Unit

 Get Measure Units

YSQL Command

Locking Commands

 Acquire Lock

 Get Lock Info

 Get Locked Objects

 Get Lock Owners

 Release Lock

Long Transaction Commands

 Activate Long Transaction

 Deactivate Long Transaction

 Commit Long Transaction

 Create Long Transaction

 Get Long Transactions

 Freeze Long Transaction

 Rollback Long Transaction

 Activate Long Transaction Checkpoint

204 | Appendix C OSGeo FDO Provider for MySQL

MySQLCapability

 Create Long Transaction Checkpoint

 Get Long Transaction Checkpoints

 Rollback Long Transaction Checkpoint

 Change Long Transaction Privileges

 Get Long Transaction Privileges

 Change Long Transaction Set

 Get Long Transaction In Set

RDBMS Custom Commands

Y Create Spatial Index

Y Destroy Spatial Index

Y Get Spatial Indexes

Supports

Y Parameters

 Timeout

Y Select Expressions

Y Select Functions

Y Select Distinct

Y Select Ordering

FDO Provider for MySQL Capabilities | 205

MySQLCapability

Y Select Grouping

Filter Capabilities

MySQLCapability

Condition Types

Y Comparsion

Y Like

Y In

Y Null

Y Spatial

Y Distance

Spatial Operations

 Contains

 Crosses

 Disjoint

 Equals

Y Intersects

 Overlaps

 Touches

206 | Appendix C OSGeo FDO Provider for MySQL

MySQLCapability

 Within

Y Covered By

Y Inside

Y Envelope Intersects

Distance Operations

 Beyond

Y Within

Supports

 Geodesic Distance

 Non Literal Geometric Operations

Expression Capabilities

MySQLCapability

Expression Types

Y Basic

Y Function

Y Parameter

Functions

Y Double Avg(Double)

FDO Provider for MySQL Capabilities | 207

MySQLCapability

Y Int64 Ceil(Int64)

Y String Concat(String)

Y Int64 Count(Int64)

Y Int64 Floor(Int64)

Y String Lower(String)

Y Double Min(Double)

Y Double Max(Double)

Y Double StdDev(Double)

Y Double Sum(Double)

Y String Upper(String)

 geomValue SpatialExtents (TBD - Fdo-
DataType)

Geometry Capabilities

MySQLCapability

Geometry Types

Y Point

Y Line String

Y Polygon

208 | Appendix C OSGeo FDO Provider for MySQL

MySQLCapability

Y Multi-Point

Y Multi-Line String

Y Multi-Polygon

 Multi-Geometry

Y Curve String

Y Curve Polygon

Y Multi-Curve String

Y Multi-Curve Polygon

Geometry Component Types

Y Linear Ring

Y Line String Segment

Y Circular Arc Segment

Y Ring

Dimensionalities

Y XY

 Z

 M

FDO Provider for MySQL Capabilities | 209

Raster Capabilities

MySQLCapability

Supports

 Raster

 Stitching

 Subsampling

 Bitonal Data Model

 Gray Data Model

 RGB Data Model

 RGBA Data Model

 Palette Data Model

210 | Appendix C OSGeo FDO Provider for MySQL

OSGeo FDO Provider for
ODBC

In this chapterThis appendix discusses FDO API development issues that are

related to OSGeo FDO Provider for ODBC. ■ What Is FDO Provider for ODBC?

■ FDO Provider for ODBC
Capabilities

D

211

What Is FDO Provider for ODBC?
The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for ODBC provides FDO with
access to an ODBC-based data store.

The FDO Provider for ODBC can access simple x, y, z feature objects that can
run in a multi-platform environment, including Windows, Linux, and UNIX.

The FDO Provider for ODBC has the following characteristics:

■ The FDO Provider for ODBC supports the definition of one or more feature
classes in terms of any relational database table that contains an X, Y, and
optionally, Z columns.

■ Metadata, which maps the table name, and X, Y, and optionally, Z columns
to a feature class, is maintained outside the database in a configuration
file. This information, in conjunction with the table structure in the
database, provides the definition of the feature class.

■ The x, y, and z locations of objects are stored in separate properties in the
primary object definition of a feature, but are accessible through a single
class property ‘Geometry’.

■ Read-only access is provided to pre-existing data defined and populated
through 3rd party applications (that is, FDO Provider for ODBC will not
be responsible for defining the physical schema of the data store nor for
populating the object data).

■ The schema configuration of the data store is provided to the FDO Provider
for ODBC through an optional XML file containing the Geographic Markup
Language (GML) definition of the schema that maps ‘tables’ and ‘columns’
in the data store to feature classes and property mappings in the FDO data
model.

NOTE Microsoft Excel (must have at least one named range; do not use DATABASE
or other reserved words as a range name).

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the OSGeo FDO Provider for ODBC API Reference Help (ODBC_Provider_API.chm).

212 | Appendix D OSGeo FDO Provider for ODBC

FDO Provider for ODBC Capabilities
The capabilities of an FDO provider are grouped in the following categories:

■ Connection

■ Schema

■ Commands

■ Expressions

■ Filters

■ Geometry

■ Raster

Connection Capabilities

ODBCCapability

Spatial Content Extent Types

Y Static

 Dynamic

Lock Types

 Shared

 Exclusive

 Transaction

 All Long Transaction Exclusive

 Long Transaction Exclusive

Thread Types

FDO Provider for ODBC Capabilities | 213

ODBCCapability

 Single- Threaded

Y Per Connection Threaded

 Per Command Threaded

 Multi-threaded

Supports

 Locking

 Timeout

 Transactions

 Long Transactions

Y SQL

 Configuration

Schema Capabilities

ODBCCapability

Class Types

Y Class

Y Feature Class

Data Types

Y Boolean

214 | Appendix D OSGeo FDO Provider for ODBC

ODBCCapability

Y Byte

Y DateTime

Y Decimal

Y Double

Y Int16

Y Int32

Y Int64

Y Single

Y String

 BLOB

 CLOB

YAuto-Generated Data Types Supported
(Int16, Int32, Int64)

Supports

Y Inheritance

Y Multiple Schemas

 Object Properties

 Association Properties

FDO Provider for ODBC Capabilities | 215

ODBCCapability

Y Schema Overrrides

 Network Model

Y Auto Id Generation

 Data Store Scope Unique Id Generation

 Schema Modification

Constraints

 Inclusive Value Range Constraints

 Exclusive Value Range Constraints

 Value Constraints List

Y Null Value Constraints

 Unique Value Constraints

 Composite Unique Value Constraints

Command Capabilities

ODBCCapability

Feature Commands

Y Select

Y Select Aggregates

Y Insert

216 | Appendix D OSGeo FDO Provider for ODBC

ODBCCapability

Y Delete

Y Update

Schema Commands

Y Describe Schema

Y Describe Schema Mapping

 Apply Schema

 Destroy Schema

Spatial Context Commands

 Activate Spatial Context

 Create Spatial Context

 Destroy Spatial Context

Y Get Spatial Contexts

Data Store Commands

 Create Data Store

 Destroy Data Store

 List Data Stores

Measure Unit Commands

 Create Measure Unit

FDO Provider for ODBC Capabilities | 217

ODBCCapability

 Destroy Measure Unit

 Get Measure Units

YSQL Command

Locking Commands

Y Acquire Lock

Y Get Lock Info

Y Get Locked Objects

Y Get Lock Owners

Y Release Lock

Long Transaction Commands

Y Activate Long Transaction

Y Deactivate Long Transaction

Y Commit Long Transaction

Y Create Long Transaction

Y Get Long Transactions

 Freeze Long Transaction

Y Rollback Long Transaction

 Activate Long Transaction Checkpoint

218 | Appendix D OSGeo FDO Provider for ODBC

ODBCCapability

 Create Long Transaction Checkpoint

 Get Long Transaction Checkpoints

 Rollback Long Transaction Checkpoint

 Change Long Transaction Privileges

 Get Long Transaction Privileges

 Change Long Transaction Set

 Get Long Transaction In Set

RDBMS Custom Commands

 Create Spatial Index

 Destroy Spatial Index

 Get Spatial Indexes

Supports

Y Parameters

 Timeout

 Select Expressions

Y Select Functions

Y Select Distinct

Y Select Ordering

FDO Provider for ODBC Capabilities | 219

ODBCCapability

 Select Grouping

Filter Capabilities

ODBCCapability

Condition Types

Y Comparsion

Y Like

Y In

Y Null

Y Spatial

 Distance

Spatial Operations

 Contains

 Crosses

 Disjoint

 Equals

Y Intersects

 Overlaps

 Touches

220 | Appendix D OSGeo FDO Provider for ODBC

ODBCCapability

Y Within

 Covered By

Y Inside

Y Envelope Intersects

Distance Operations

 Beyond

 Within

Supports

 Geodesic Distance

 Non Literal Geometric Operations

Expression Capabilities

ODBCCapability

Expression Types

Y Basic

Y Function

 Parameter

Functions

Y Double Avg(Double)

FDO Provider for ODBC Capabilities | 221

ODBCCapability

Y Int64 Ceil(Int64)

Y String Concat(String)

Y Int64 Count(Int64)

Y Int64 Floor(Int64)

Y String Lower(String)

Y Double Min(Double)

Y Double Max(Double)

Y Double StdDev(Double)

Y Double Sum(Double)

Y String Upper(String)

 geomValue SpatialExtents (TBD - Fdo-
DataType)

Geometry Capabilities

ODBCCapability

Geometry Types

Y Point

 Line String

 Polygon

222 | Appendix D OSGeo FDO Provider for ODBC

ODBCCapability

 Multi-Point

 Multi-Line String

 Multi-Polygon

 Multi-Geometry

 Curve String

 Curve Polygon

 Multi-Curve String

 Multi-Curve Polygon

Geometry Component Types

 Linear Ring

 Line String Segment

 Circular Arc Segment

 Ring

Dimensionalities

Y XY

Y Z

 M

FDO Provider for ODBC Capabilities | 223

Raster Capabilities

ODBCCapability

Supports

 Raster

 Stitching

 Subsampling

 Bitonal Data Model

 Gray Data Model

 RGB Data Model

 RGBA Data Model

 Palette Data Model

224 | Appendix D OSGeo FDO Provider for ODBC

Autodesk FDO Provider
for Raster

In this chapterThis appendix discusses FDO API development issues that are

related to Autodesk FDO Provider for Raster. ■ What Is FDO Provider for Raster?

■ FDO Provider for Raster
Capabilities

E

225

What Is FDO Provider for Raster?
The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The Autodesk FDO Provider for Raster is a
stand-alone file format that supports GIS data.

The FDO Provider for Raster has the following characteristics:

■ The FDO Provider for Raster supports georeferenced file-based raster images
and file-based grid coverages. Raster images are pixel-based images, such
as digital photographs (satellite images, for example). Raster images are
very useful as background images underneath your vector data, for example,
an aerial photograph of a city with a layer of streets overlaying it.

■ The FDO Provider for Raster can run in a multi-platform environment,
including Windows and Linux.

Supported Formats

The following list shows the raster image file formats that are supported, along
with their acronyms and file extensions:

■ JPEG (.jpg, .jpeg) - Joint Photographic Experts Group

■ JPG2K (.jp2, .j2k) - Joint Photographic Experts Group

■ MrSID (.sid) - Multi-Resolution Seamless Image Database

■ PNG (.png) - Portable Network Graphic

■ TIFF (.tif, .tiff) - Tagged Image File Format

■ DEM (.dem) - USGS Format Digital Elevation Model

■ ECW (.ecw) - Enhanced Compressed Wavelet

■ DTED (.dt0, .dt1, dt2) - Digital Terrain Elevation Data

■ ESRI ASCII GRID (.asc) - ESRI Surface

■ ESRI Binary GRID (.adf) - ESRI Surface

226 | Appendix E Autodesk FDO Provider for Raster

Supported Data Models

The following are the data models supported:

DataTypeOrganizationBitsPerPixelModelType

Unsigned IntegerPixel1Bitonal

Unsigned IntegerPixel8Grey

Unsigned IntegerPixel24RGB

Unsigned IntegerPixel32RGBA

Unsigned IntegerPixel8Pallete

Unsigned IntegerPixel1Data

Unsigned IntegerPixel8Data

Signed IntegerPixel8Data

Unsigned IntegerPixel16Data

Signed IntegerPixel16Data

Unsigned IntegerPixel32Data

Signed IntegerPixel32Data

FloatPixel32Data

NOTE Only DEM, TIFF, and ECW images support the ‘Data’ ModelType.

NOTE All 2- and 4-BitsPerPixel images are promoted to 8 BitsPerPixel as per the
underlying ATIL behavior.

What Is FDO Provider for Raster? | 227

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the Autodesk FDO Provider for Raster API Reference Help
(Raster_Provider_API.chm).

FDO Provider for Raster Capabilities
The capabilities of an FDO provider are grouped in the following categories:

■ Connection

■ Schema

■ Commands

■ Expressions

■ Filters

■ Geometry

■ Raster

Connection Capabilities

RasterCapability

Spatial Content Extent Types

Y Static

 Dynamic

Lock Types

 Shared

 Exclusive

 Transaction

 All Long Transaction Exclusive

228 | Appendix E Autodesk FDO Provider for Raster

RasterCapability

 Long Transaction Exclusive

Thread Types

 Single- Threaded

Y Per Connection Threaded

 Per Command Threaded

 Multi-threaded

Supports

Y Locking

 Timeout

 Transactions

 Long Transactions

 SQL

Y Configuration

Schema Capabilities

RasterCapability

Class Types

 Class

Y Feature Class

FDO Provider for Raster Capabilities | 229

RasterCapability

Data Types

 Boolean

 Byte

 DateTime

 Decimal

 Double

 Int16

 Int32

 Int64

 Single

Y String

Y BLOB

 CLOB

Auto-Generated Data Types Supported

Supports

Y Inheritance

Y Multiple Schemas

 Object Properties

230 | Appendix E Autodesk FDO Provider for Raster

RasterCapability

 Association Properties

Y Schema Overrrides

 Network Model

 Auto Id Generation

 Data Store Scope Unique Id Generation

 Schema Modification

Constraints

 Inclusive Value Range Constraints

 Exclusive Value Range Constraints

 Value Constraints List

 Null Value Constraints

 Unique Value Constraints

 Composite Unique Value Constraints

Command Capabilities

RasterCapability

Feature Commands

Y Select

Y Select Aggregates

FDO Provider for Raster Capabilities | 231

RasterCapability

 Insert

 Delete

 Update

Schema Commands

Y Describe Schema

Y Describe Schema Mapping

 Apply Schema

 Destroy Schema

Spatial Context Commands

 Activate Spatial Context

 Create Spatial Context

 Destroy Spatial Context

Y Get Spatial Contexts

Data Store Commands

 Create Data Store

 Destroy Data Store

 List Data Stores

Measure Unit Commands

232 | Appendix E Autodesk FDO Provider for Raster

RasterCapability

 Create Measure Unit

 Destroy Measure Unit

Y Get Measure Units

SQL Command

Locking Commands

 Acquire Lock

 Get Lock Info

 Get Locked Objects

 Get Lock Owners

 Release Lock

Long Transaction Commands

 Activate Long Transaction

 Deactivate Long Transaction

 Commit Long Transaction

 Create Long Transaction

 Get Long Transactions

 Freeze Long Transaction

 Rollback Long Transaction

FDO Provider for Raster Capabilities | 233

RasterCapability

 Activate Long Transaction Checkpoint

 Create Long Transaction Checkpoint

 Get Long Transaction Checkpoints

 Rollback Long Transaction Checkpoint

 Change Long Transaction Privileges

 Get Long Transaction Privileges

 Change Long Transaction Set

 Get Long Transaction In Set

RDBMS Custom Commands

 Create Spatial Index

 Destroy Spatial Index

 Get Spatial Indexes

Supports

 Parameters

 Timeout

 Select Expressions

 Select Functions

 Select Distinct

234 | Appendix E Autodesk FDO Provider for Raster

RasterCapability

 Select Ordering

 Select Grouping

Filter Capabilities

RasterCapability

Condition Types

 Comparsion

 Like

Y In

 Null

Y Spatial

 Distance

Spatial Operations

 Contains

 Crosses

 Disjoint

 Equals

Y Intersects

 Overlaps

FDO Provider for Raster Capabilities | 235

RasterCapability

 Touches

Y Within

 Covered By

Y Inside

Y Envelope Intersects

Distance Operations

 Beyond

 Within

Supports

 Geodesic Distance

 Non Literal Geometric Operations

Expression Capabilities

RasterCapability

Expression Types

Y Basic

Y Function

 Parameter

Functions

236 | Appendix E Autodesk FDO Provider for Raster

RasterCapability

Y BLOB MOSAIC(BLOB raster)

Y BLOB CLIP(BLOB raster, Double minX,
Double minY, Double maxX, Double maxY)

Y BLOB RESAMPLE(BLOB raster, Double
minX, Double minY, Double maxX, Double
maxY, Int32 height, Int32 width)

 Double Avg(Double)

 Int64 Ceil(Int64)

 String Concat(String)

 Int64 Count(Int64)

 Int64 Floor(Int64)

 String Lower(String)

 Double Min(Double)

 Double Max(Double)

 Double StdDev(Double)

Y Double Sum(Double)

 String Upper(String)

 geomValue SpatialExtents (TBD - Fdo-
DataType)

FDO Provider for Raster Capabilities | 237

Geometry Capabilities

RasterCapability

Geometry Types

 Point

 Line String

 Polygon

 Multi-Point

 Multi-Line String

 Multi-Polygon

 Multi-Geometry

 Curve String

 Curve Polygon

 Multi-Curve String

 Multi-Curve Polygon

Geometry Component Types

 Linear Ring

 Line String Segment

 Circular Arc Segment

 Ring

238 | Appendix E Autodesk FDO Provider for Raster

RasterCapability

Dimensionalities

Y XY

 Z

 M

Raster Capabilities

RasterCapability

Supports

Y Raster

Y Stitching

Y Subsampling

Y Bitonal Data Model

Y Gray Data Model

Y RGB Data Model

Y RGBA Data Model

Y Palette Data Model

FDO Provider for Raster Capabilities | 239

OSGeo FDO Provider for
SDF

In this chapterThis appendix discusses FDO API development issues that are

related to OSGeo FDO Provider for SDF. ■ What Is FDO Provider for SDF?

■ FDO Provider for SDF Capabilities

F

241

What Is FDO Provider for SDF?
The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for SDF is a standalone file
format that supports GIS data.

The FDO Provider for SDF uses Autodesk's spatial database format, which is a
file-based personal geodatabase that supports multiple features/attributes,
spatial indexing, interoperability, file-locking, and high performance for large
data sets.

The SDF file format has the following characteristics:

■ SDF files can be read on different platforms.

■ The SDF file has its own spatial indexing.

■ SDF files can store geometric and non-geometric data with minimum
overhead.

■ Although it does not support concurrency control (locking), the SDF file
format is a valid alternative to RDBMS.

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the OSGeo FDO Provider for SDF API Reference Help (SDF_Provider_API.chm).

FDO Provider for SDF Capabilities
The capabilities of an FDO provider are grouped in the following categories:

■ Connection

■ Schema

■ Commands

■ Expressions

■ Filters

■ Geometry

■ Raster

242 | Appendix F OSGeo FDO Provider for SDF

Connection Capabilities

SDFCapability

Spatial Content Extent Types

 Static

Y Dynamic

Lock Types

 Shared

 Exclusive

 Transaction

 All Long Transaction Exclusive

 Long Transaction Exclusive

Thread Types

 Single- Threaded

Y Per Connection Threaded

 Per Command Threaded

 Multi-threaded

Supports

 Locking

 Timeout

FDO Provider for SDF Capabilities | 243

SDFCapability

 Transactions

 Long Transactions

 SQL

 Configuration

Schema Capabilities

SDFCapability

Class Types

Y Class

Y Feature Class

Data Types

Y Boolean

Y Byte

Y DateTime

Y Decimal

Y Double

Y Int16

Y Int32

Y Int64

244 | Appendix F OSGeo FDO Provider for SDF

SDFCapability

Y Single

Y String

 BLOB

 CLOB

YAuto-Generated Data Types Supported
(Int32)

Supports

 Inheritance

 Multiple Schemas

 Object Properties

 Association Properties

 Schema Overrrides

 Network Model

Y Auto Id Generation

 Data Store Scope Unique Id Generation

 Schema Modification

Constraints

 Inclusive Value Range Constraints

FDO Provider for SDF Capabilities | 245

SDFCapability

Y Exclusive Value Range Constraints

 Value Constraints List

Y Null Value Constraints

 Unique Value Constraints

 Composite Unique Value Constraints

Command Capabilities

SDFCapability

Feature Commands

Y Select

Y Select Aggregates

Y Insert

Y Delete

Y Update

Schema Commands

Y Describe Schema

 Describe Schema Mapping

Y Apply Schema

 Destroy Schema

246 | Appendix F OSGeo FDO Provider for SDF

SDFCapability

Spatial Context Commands

 Activate Spatial Context

Y Create Spatial Context

 Destroy Spatial Context

Y Get Spatial Contexts

Data Store Commands

Y Create Data Store

Y Destroy Data Store

 List Data Stores

Measure Unit Commands

 Create Measure Unit

 Destroy Measure Unit

 Get Measure Units

YSQL Command

Locking Commands

Y Acquire Lock

Y Get Lock Info

Y Get Locked Objects

FDO Provider for SDF Capabilities | 247

SDFCapability

Y Get Lock Owners

Y Release Lock

Long Transaction Commands

Y Activate Long Transaction

Y Deactivate Long Transaction

Y Commit Long Transaction

Y Create Long Transaction

Y Get Long Transactions

 Freeze Long Transaction

Y Rollback Long Transaction

 Activate Long Transaction Checkpoint

 Create Long Transaction Checkpoint

 Get Long Transaction Checkpoints

 Rollback Long Transaction Checkpoint

 Change Long Transaction Privileges

 Get Long Transaction Privileges

 Change Long Transaction Set

 Get Long Transaction In Set

248 | Appendix F OSGeo FDO Provider for SDF

SDFCapability

RDBMS Custom Commands

 Create Spatial Index

 Destroy Spatial Index

 Get Spatial Indexes

Supports

Y Parameters

 Timeout

 Select Expressions

Y Select Functions

Y Select Distinct

Y Select Ordering

 Select Grouping

Filter Capabilities

SDFCapability

Condition Types

Y Comparsion

Y Like

Y In

FDO Provider for SDF Capabilities | 249

SDFCapability

Y Null

Y Spatial

 Distance

Spatial Operations

Y Contains

 Crosses

Y Disjoint

 Equals

Y Intersects

 Overlaps

 Touches

Y Within

 Covered By

 Inside

Y Envelope Intersects

Distance Operations

 Beyond

 Within

250 | Appendix F OSGeo FDO Provider for SDF

SDFCapability

Supports

 Geodesic Distance

 Non Literal Geometric Operations

Expression Capabilities

SDFCapability

Expression Types

Y Basic

Y Function

 Parameter

Functions

Y Double Avg(Double)

 Int64 Ceil(Int64)

Y String Concat(String)

Y Int64 Count(Int64)

 Int64 Floor(Int64)

 String Lower(String)

Y Double Min(Double)

Y Double Max(Double)

FDO Provider for SDF Capabilities | 251

SDFCapability

Y Double StdDev(Double)

Y Double Sum(Double)

 String Upper(String)

Y geomValue SpatialExtents (TBD - Fdo-
DataType)

Geometry Capabilities

SDFCapability

Geometry Types

Y Point

Y Line String

Y Polygon

Y Multi-Point

Y Multi-Line String

Y Multi-Polygon

Y Multi-Geometry

Y Curve String

Y Curve Polygon

Y Multi-Curve String

252 | Appendix F OSGeo FDO Provider for SDF

SDFCapability

Y Multi-Curve Polygon

Geometry Component Types

Y Linear Ring

Y Line String Segment

Y Circular Arc Segment

Y Ring

Dimensionalities

Y XY

Y Z

Y M

Raster Capabilities

SDFCapability

Supports

 Raster

 Stitching

 Subsampling

 Bitonal Data Model

 Gray Data Model

FDO Provider for SDF Capabilities | 253

SDFCapability

 RGB Data Model

 RGBA Data Model

 Palette Data Model

254 | Appendix F OSGeo FDO Provider for SDF

OSGeo FDO Provider for
SHP

In this chapterThis appendix discusses FDO API development issues that are

related to OSGeo FDO Provider for SHP. ■ What Is FDO Provider for SHP?

■ FDO Provider for SHP Capabilities

G

255

What Is FDO Provider for SHP?
The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for SHP provides FDO with
access to an SHP-based data store.

The FDO Provider for SHP uses a standalone file format that supports GIS data.
The FDO Provider for SHP (Shape) has the following characteristics:

■ Read-only access is provided to pre-existing spatial and attribute data from
an Environmental Systems Research Institute (ESRI) Shape file (SHP).

■ The FDO Provider for SHP can run in a multi-platform environment,
including Windows and Linux.

■ A Shape file consists of three separate files: SHP (shape geometry), SHX
(shape index), and DBF (shape attributes in dBASE format).

■ The FDO Provider for SHP accesses the information in each of the three
separate files, and treats each SHP, and its associated DBF file, as a feature
class with a single geometry property, and optionally, with data attribute
properties.

■ Schema configuration of the data store is provided to the FDO Provider
for SHP through an XML file containing the Geographic Markup Language
(GML) definition of the schema that maps SHP and DBF data in the data
store to feature classes and property mappings in the FDO data model.

■ Although it does not support concurrency control (locking), the SHP file
format is a valid alternative to RDBMS.

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the OSGeo FDO Provider for SHP API Reference Help (SHP_Provider_API.chm).

FDO Provider for SHP Capabilities
The capabilities of an FDO provider are grouped in the following categories:

■ Connection

■ Schema

■ Commands

256 | Appendix G OSGeo FDO Provider for SHP

■ Expressions

■ Filters

■ Geometry

■ Raster

Connection Capabilities

SHPCapability

Spatial Content Extent Types

Y Static

 Dynamic

Lock Types

 Shared

 Exclusive

 Transaction

 All Long Transaction Exclusive

 Long Transaction Exclusive

Thread Types

 Single- Threaded

Y Per Connection Threaded

 Per Command Threaded

 Multi-threaded

FDO Provider for SHP Capabilities | 257

SHPCapability

Supports

 Locking

 Timeout

 Transactions

 Long Transactions

 SQL

Y Configuration

Schema Capabilities

SHPCapability

Class Types

Y Class

Y Feature Class

Data Types

 Boolean

 Byte

Y DateTime

Y Decimal

 Double

258 | Appendix G OSGeo FDO Provider for SHP

SHPCapability

 Int16

Y Int32

 Int64

 Single

Y String

 BLOB

 CLOB

YAuto-Generated Data Types Supported
(Int32)

Supports

 Inheritance

Y Multiple Schemas

 Object Properties

 Association Properties

Y Schema Overrrides

 Network Model

Y Auto Id Generation

 Data Store Scope Unique Id Generation

FDO Provider for SHP Capabilities | 259

SHPCapability

Y Schema Modification

Constraints

 Inclusive Value Range Constraints

 Exclusive Value Range Constraints

 Value Constraints List

Y Null Value Constraints

 Unique Value Constraints

 Composite Unique Value Constraints

Command Capabilities

SHPCapability

Feature Commands

Y Select

Y Select Aggregates

Y Insert

Y Delete

Y Update

Schema Commands

Y Describe Schema

260 | Appendix G OSGeo FDO Provider for SHP

SHPCapability

Y Describe Schema Mapping

Y Apply Schema

Y Destroy Schema

Spatial Context Commands

 Activate Spatial Context

 Create Spatial Context

 Destroy Spatial Context

Y Get Spatial Contexts

Data Store Commands

 Create Data Store

 Destroy Data Store

 List Data Stores

Measure Unit Commands

 Create Measure Unit

 Destroy Measure Unit

 Get Measure Units

SQL Command

Locking Commands

FDO Provider for SHP Capabilities | 261

SHPCapability

 Acquire Lock

 Get Lock Info

 Get Locked Objects

 Get Lock Owners

 Release Lock

Long Transaction Commands

 Activate Long Transaction

 Deactivate Long Transaction

 Commit Long Transaction

 Create Long Transaction

 Get Long Transactions

 Freeze Long Transaction

 Rollback Long Transaction

 Activate Long Transaction Checkpoint

 Create Long Transaction Checkpoint

 Get Long Transaction Checkpoints

 Rollback Long Transaction Checkpoint

 Change Long Transaction Privileges

262 | Appendix G OSGeo FDO Provider for SHP

SHPCapability

 Get Long Transaction Privileges

 Change Long Transaction Set

 Get Long Transaction In Set

RDBMS Custom Commands

 Create Spatial Index

 Destroy Spatial Index

 Get Spatial Indexes

Supports

Y Parameters

 Timeout

Y Select Expressions

Y Select Functions

Y Select Distinct

Y Select Ordering

 Select Grouping

Filter Capabilities

SHPCapability

Condition Types

FDO Provider for SHP Capabilities | 263

SHPCapability

Y Comparsion

Y Like

Y In

Y Null

Y Spatial

 Distance

Spatial Operations

 Contains

 Crosses

 Disjoint

 Equals

 Intersects

 Overlaps

 Touches

Y Within

 Covered By

Y Inside

Y Envelope Intersects

264 | Appendix G OSGeo FDO Provider for SHP

SHPCapability

Distance Operations

 Beyond

 Within

Supports

 Geodesic Distance

 Non Literal Geometric Operations

Expression Capabilities

SHPCapability

Expression Types

Y Basic

Y Function

 Parameter

Functions

Y Double Avg(Double)

Y Int64 Ceil(Int64)

Y String Concat(String)

Y Int64 Count(Int64)

Y Int64 Floor(Int64)

FDO Provider for SHP Capabilities | 265

SHPCapability

Y String Lower(String)

Y Double Min(Double)

Y Double Max(Double)

Y Double StdDev(Double)

Y Double Sum(Double)

Y String Upper(String)

 geomValue SpatialExtents (TBD - Fdo-
DataType)

Geometry Capabilities

SHPCapability

Geometry Types

Y Point

Y Line String

Y Polygon

Y Multi-Point

Y Multi-Line String

Y Multi-Polygon

 Multi-Geometry

266 | Appendix G OSGeo FDO Provider for SHP

SHPCapability

 Curve String

 Curve Polygon

 Multi-Curve String

 Multi-Curve Polygon

Geometry Component Types

Y Linear Ring

Y Line String Segment

 Circular Arc Segment

 Ring

Dimensionalities

Y XY

Y Z

Y M

Raster Capabilities

SHPCapability

Supports

 Raster

 Stitching

FDO Provider for SHP Capabilities | 267

SHPCapability

 Subsampling

 Bitonal Data Model

 Gray Data Model

 RGB Data Model

 RGBA Data Model

 Palette Data Model

268 | Appendix G OSGeo FDO Provider for SHP

Autodesk FDO Provider
for SQL Server

In this chapterThis appendix discusses FDO API development issues that are

related to Autodesk FDO Provider for SQL Server. ■ What Is FDO Provider for SQL
Server?

■ FDO Provider for SQL Server
Capabilities

H

269

What Is FDO Provider for SQL Server?
The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for SQL Server provides FDO
with access to a Microsoft SQL Server-based data store.

The Autodesk FDO Provider for SQL Server API provides custom commands
that are specifically designed to work with the FDO API. For example, using
these commands, you can do the following:

■ Read and create schema.

■ Read and write geospatial and non-geospatial data.

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the Autodesk FDO Provider for SQL Server API Reference Help
(SQLServer_Provider_API.chm).

FDO Provider for SQL Server Capabilities
The capabilities of an FDO provider are grouped in the following categories:

■ Connection

■ Schema

■ Commands

■ Expressions

■ Filters

■ Geometry

■ Raster

Connection Capabilities

SQL ServerCapability

Spatial Content Extent Types

270 | Appendix H Autodesk FDO Provider for SQL Server

SQL ServerCapability

Y Static

 Dynamic

Lock Types

 Shared

 Exclusive

 Transaction

 All Long Transaction Exclusive

 Long Transaction Exclusive

Thread Types

 Single- Threaded

Y Per Connection Threaded

 Per Command Threaded

 Multi-threaded

Supports

 Locking

 Timeout

Y Transactions

 Long Transactions

FDO Provider for SQL Server Capabilities | 271

SQL ServerCapability

Y SQL

 Configuration

Schema Capabilities

SQL ServerCapability

Class Types

Y Class

Y Feature Class

Data Types

Y Boolean

Y Byte

Y DateTime

Y Decimal

Y Double

Y Int16

Y Int32

Y Int64

Y Single

Y String

272 | Appendix H Autodesk FDO Provider for SQL Server

SQL ServerCapability

 BLOB

 CLOB

YAuto-Generated Data Types Supported
(Int64)

Supports

Y Inheritance

Y Multiple Schemas

Y Object Properties

Y Association Properties

Y Schema Overrrides

 Network Model

Y Auto Id Generation

Y Data Store Scope Unique Id Generation

Y Schema Modification

Constraints

Y Inclusive Value Range Constraints

Y Exclusive Value Range Constraints

Y Value Constraints List

FDO Provider for SQL Server Capabilities | 273

SQL ServerCapability

Y Null Value Constraints

Y Unique Value Constraints

Y Composite Unique Value Constraints

Command Capabilities

SQL ServerCapability

Feature Commands

Y Select

Y Select Aggregates

Y Insert

Y Delete

Y Update

Schema Commands

Y Describe Schema

Y Describe Schema Mapping

Y Apply Schema

Y Destroy Schema

Spatial Context Commands

Y Activate Spatial Context

274 | Appendix H Autodesk FDO Provider for SQL Server

SQL ServerCapability

Y Create Spatial Context

Y Destroy Spatial Context

Y Get Spatial Contexts

Data Store Commands

Y Create Data Store

Y Destroy Data Store

Y List Data Stores

Measure Unit Commands

 Create Measure Unit

 Destroy Measure Unit

 Get Measure Units

YSQL Command

Locking Commands

Y Acquire Lock

Y Get Lock Info

Y Get Locked Objects

Y Get Lock Owners

Y Release Lock

FDO Provider for SQL Server Capabilities | 275

SQL ServerCapability

Long Transaction Commands

Y Activate Long Transaction

Y Deactivate Long Transaction

Y Commit Long Transaction

Y Create Long Transaction

Y Get Long Transactions

 Freeze Long Transaction

Y Rollback Long Transaction

 Activate Long Transaction Checkpoint

 Create Long Transaction Checkpoint

 Get Long Transaction Checkpoints

 Rollback Long Transaction Checkpoint

 Change Long Transaction Privileges

 Get Long Transaction Privileges

 Change Long Transaction Set

 Get Long Transaction In Set

RDBMS Custom Commands

Y Create Spatial Index

276 | Appendix H Autodesk FDO Provider for SQL Server

SQL ServerCapability

Y Destroy Spatial Index

Y Get Spatial Indexes

Supports

 Parameters

 Timeout

Y Select Expressions

Y Select Functions

Y Select Distinct

Y Select Ordering

Y Select Grouping

Filter Capabilities

SQL ServerCapability

Condition Types

Y Comparsion

Y Like

Y In

Y Null

Y Spatial

FDO Provider for SQL Server Capabilities | 277

SQL ServerCapability

Y Distance

Spatial Operations

 Contains

 Crosses

 Disjoint

 Equals

Y Intersects

 Overlaps

 Touches

Y Within

Y Covered By

Y Inside

Y Envelope Intersects

Distance Operations

 Beyond

 Within

Supports

 Geodesic Distance

278 | Appendix H Autodesk FDO Provider for SQL Server

SQL ServerCapability

 Non Literal Geometric Operations

Expression Capabilities

SQL ServerCapability

Expression Types

Y Basic

Y Function

 Parameter

Functions

Y Double Avg(Double)

Y Int64 Ceil(Int64)

Y String Concat(String)

Y Int64 Count(Int64)

Y Int64 Floor(Int64)

Y String Lower(String)

Y Double Min(Double)

Y Double Max(Double)

Y Double StdDev(Double)

Y Double Sum(Double)

FDO Provider for SQL Server Capabilities | 279

SQL ServerCapability

Y String Upper(String)

 geomValue SpatialExtents (TBD - Fdo-
DataType)

Geometry Capabilities

SQL ServerCapability

Geometry Types

Y Point

Y Line String

Y Polygon

Y Multi-Point

Y Multi-Line String

Y Multi-Polygon

 Multi-Geometry

Y Curve String

Y Curve Polygon

Y Multi-Curve String

Y Multi-Curve Polygon

Geometry Component Types

280 | Appendix H Autodesk FDO Provider for SQL Server

SQL ServerCapability

Y Linear Ring

Y Line String Segment

Y Circular Arc Segment

Y Ring

Dimensionalities

Y XY

Y Z

Y M

Raster Capabilities

SQL ServerCapability

Supports

 Raster

 Stitching

 Subsampling

 Bitonal Data Model

 Gray Data Model

 RGB Data Model

 RGBA Data Model

FDO Provider for SQL Server Capabilities | 281

SQL ServerCapability

 Palette Data Model

282 | Appendix H Autodesk FDO Provider for SQL Server

OSGeo FDO Provider for
WFS

In this chapterThis appendix discusses FDO API development issues that are

related to OSGeo FDO Provider for WFS. ■ What Is FDO Provider for WFS?

■ FDO Provider for WFS
Capabilities

I

283

What Is FDO Provider for WFS?
The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for WFS provides FDO with
access to a WFS-based data store.

An OGC Web Feature Service (WFS) provides access to geographic features
that are stored in an opaque data store in a client/server environment. A client
uses WFS to retrieve geospatial data that is encoded in Geography Markup
Language (GML) from a single or multiple Web Feature Service. The
communication between client and server is encoded in XML. If the WFS
response includes feature geometries, it is encoded in Geography Markup
Language (GML), which is specified in the OpenGIS Geographic Markup
Language Implementation Specification.

Using FDO Provider for WFS data manipulation operations, you can do the
following:

■ Query features based on spatial and non-spatial constraints.

■ Create new feature instances.

■ Delete feature instances.

■ Update feature instances.

■ Lock feature instances.

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf).

NOTE There is no public API documentation for the FDO Provider for WFS;
functionality is available through the main FDO API.

FDO Provider for WFS Capabilities
The capabilities of an FDO provider are grouped in the following categories:

■ Connection

■ Schema

■ Commands

■ Expressions

284 | Appendix I OSGeo FDO Provider for WFS

■ Filters

■ Geometry

■ Raster

Connection Capabilities

WFSCapability

Spatial Content Extent Types

Y Static

 Dynamic

Lock Types

 Shared

 Exclusive

 Transaction

 All Long Transaction Exclusive

 Long Transaction Exclusive

Thread Types

 Single- Threaded

Y Per Connection Threaded

 Per Command Threaded

 Multi-threaded

FDO Provider for WFS Capabilities | 285

WFSCapability

Supports

 Locking

 Timeout

 Transactions

 Long Transactions

 SQL

 Configuration

Schema Capabilities

WFSCapability

Class Types

Y Class

Y Feature Class

Data Types

Y Boolean

Y Byte

Y DateTime

Y Decimal

Y Double

286 | Appendix I OSGeo FDO Provider for WFS

WFSCapability

Y Int16

Y Int32

Y Int64

Y Single

Y String

 BLOB

 CLOB

Auto-Generated Data Types Supported

Supports

Y Inheritance

Y Multiple Schemas

Y Object Properties

Y Association Properties

 Schema Overrrides

 Network Model

 Auto Id Generation

 Data Store Scope Unique Id Generation

 Schema Modification

FDO Provider for WFS Capabilities | 287

WFSCapability

Constraints

 Inclusive Value Range Constraints

 Exclusive Value Range Constraints

 Value Constraints List

 Null Value Constraints

 Unique Value Constraints

 Composite Unique Value Constraints

Command Capabilities

WFSCapability

Feature Commands

Y Select

 Select Aggregates

 Insert

 Delete

 Update

Schema Commands

Y Describe Schema

 Describe Schema Mapping

288 | Appendix I OSGeo FDO Provider for WFS

WFSCapability

 Apply Schema

 Destroy Schema

Spatial Context Commands

 Activate Spatial Context

 Create Spatial Context

 Destroy Spatial Context

Y Get Spatial Contexts

Data Store Commands

 Create Data Store

 Destroy Data Store

 List Data Stores

Measure Unit Commands

 Create Measure Unit

 Destroy Measure Unit

 Get Measure Units

SQL Command

Locking Commands

 Acquire Lock

FDO Provider for WFS Capabilities | 289

WFSCapability

 Get Lock Info

 Get Locked Objects

 Get Lock Owners

 Release Lock

Long Transaction Commands

 Activate Long Transaction

 Deactivate Long Transaction

 Commit Long Transaction

 Create Long Transaction

 Get Long Transactions

 Freeze Long Transaction

 Rollback Long Transaction

 Activate Long Transaction Checkpoint

 Create Long Transaction Checkpoint

 Get Long Transaction Checkpoints

 Rollback Long Transaction Checkpoint

 Change Long Transaction Privileges

 Get Long Transaction Privileges

290 | Appendix I OSGeo FDO Provider for WFS

WFSCapability

 Change Long Transaction Set

 Get Long Transaction In Set

RDBMS Custom Commands

 Create Spatial Index

 Destroy Spatial Index

 Get Spatial Indexes

Supports

 Parameters

 Timeout

 Select Expressions

 Select Functions

 Select Distinct

 Select Ordering

 Select Grouping

Filter Capabilities

WFSCapability

Condition Types

 Comparsion

FDO Provider for WFS Capabilities | 291

WFSCapability

 Like

 In

 Null

 Spatial

 Distance

Spatial Operations

 Contains

 Crosses

 Disjoint

 Equals

 Intersects

 Overlaps

 Touches

 Within

 Covered By

 Inside

 Envelope Intersects

Distance Operations

292 | Appendix I OSGeo FDO Provider for WFS

WFSCapability

 Beyond

 Within

Supports

 Geodesic Distance

 Non Literal Geometric Operations

Expression Capabilities

WFSCapability

Expression Types

Y Basic

 Function

 Parameter

Functions

 Double Avg(Double)

 Int64 Ceil(Int64)

 String Concat(String)

 Int64 Count(Int64)

 Int64 Floor(Int64)

 String Lower(String)

FDO Provider for WFS Capabilities | 293

WFSCapability

 Double Min(Double)

 Double Max(Double)

 Double StdDev(Double)

 Double Sum(Double)

 String Upper(String)

 geomValue SpatialExtents (TBD - Fdo-
DataType)

Geometry Capabilities

WFSCapability

Geometry Types

Y Point

Y Line String

Y Polygon

Y Multi-Point

Y Multi-Line String

Y Multi-Polygon

Y Multi-Geometry

Y Curve String

294 | Appendix I OSGeo FDO Provider for WFS

WFSCapability

Y Curve Polygon

Y Multi-Curve String

Y Multi-Curve Polygon

Geometry Component Types

Y Linear Ring

Y Line String Segment

Y Circular Arc Segment

Y Ring

Dimensionalities

Y XY

Y Z

Y M

Raster Capabilities

WFSCapability

Supports

 Raster

 Stitching

 Subsampling

FDO Provider for WFS Capabilities | 295

WFSCapability

 Bitonal Data Model

 Gray Data Model

 RGB Data Model

 RGBA Data Model

 Palette Data Model

296 | Appendix I OSGeo FDO Provider for WFS

OSGeo FDO Provider for
WMS

In this chapterThis appendix discusses FDO API development issues that are

related to OSGeo FDO Provider for WMS. ■ What Is FDO Provider for WMS?

■ FDO Provider for WMS
Capabilities

J

297

What Is FDO Provider for WMS?
The Feature Data Objects (FDO) API provides access to data in a data store. A
provider is a specific implementation of the FDO API that provides access to
data in a particular data store. The FDO Provider for WMS provides FDO with
access to a WMS-based data store.

An Open Geospatial Consortium (OGC) Web Map Service (WMS) produces
maps of spatially referenced data dynamically from geographic information.
This international standard defines a "map" to be a portrayal of geographic
information as a digital image file suitable for display on a computer screen.
A map is not the data itself. Maps by WMS are generally rendered in a pictorial
format, such as PNG, GIF or JPEG, or occasionally as vector-based graphical
elements in Scalable Vector Graphics (SVG) or Web Computer Graphics
Metafile (WebCGM) formats.

The FDO Provider for WMS has the following characteristics:

■ The FDO Provider for WMS serves up map information originating from
an OGC Basic Web Map Service that provides pictorially formatted images,
such as PNG, GIF, or JPEG.

■ WMS map data is exposed through an FDO feature schema whose classes
contain an FDO Raster property definition. The FDO schema exposed from
the FDO Provider for WMS conforms to a pre-defined FDO schema that is
specific to WMS and that acts as the basis for all FDO interaction with
WMS data, regardless of the originating source of the WMS images.

■ WMS data manipulation operations are limited to querying features based
on spatial and non-spatial constraints. Schema manipulation operations
are not supported.

The FDO Provider for WMS can run in a multi-platform environment,
including Windows and Linux.

For more information, see The Essential FDO (FET_TheEssentialFDO.pdf) and
the OSGeo FDO Provider for WMS API Reference Help (WMS_Provider_API.chm).

FDO Provider for WMS Capabilities
The capabilities of an FDO provider are grouped in the following categories:

■ Connection

298 | Appendix J OSGeo FDO Provider for WMS

■ Schema

■ Commands

■ Expressions

■ Filters

■ Geometry

■ Raster

Connection Capabilities

WMSCapability

Spatial Content Extent Types

Y Static

 Dynamic

Lock Types

 Shared

Y Exclusive

 Transaction

 All Long Transaction Exclusive

 Long Transaction Exclusive

Thread Types

 Single- Threaded

Y Per Connection Threaded

FDO Provider for WMS Capabilities | 299

WMSCapability

 Per Command Threaded

 Multi-threaded

Supports

 Locking

 Timeout

 Transactions

 Long Transactions

 SQL

Y Configuration

Schema Capabilities

WMSCapability

Class Types

 Class

Y Feature Class

Data Types

 Boolean

 Byte

 DateTime

300 | Appendix J OSGeo FDO Provider for WMS

WMSCapability

 Decimal

 Double

 Int16

 Int32

 Int64

 Single

Y String

Y BLOB

 CLOB

Auto-Generated Data Types Supported

Supports

Y Inheritance

 Multiple Schemas

 Object Properties

 Association Properties

Y Schema Overrrides

 Network Model

 Auto Id Generation

FDO Provider for WMS Capabilities | 301

WMSCapability

 Data Store Scope Unique Id Generation

 Schema Modification

Constraints

 Inclusive Value Range Constraints

 Exclusive Value Range Constraints

 Value Constraints List

 Null Value Constraints

 Unique Value Constraints

 Composite Unique Value Constraints

Command Capabilities

WMSCapability

Feature Commands

Y Select

 Select Aggregates

 Insert

 Delete

 Update

Schema Commands

302 | Appendix J OSGeo FDO Provider for WMS

WMSCapability

Y Describe Schema

Y Describe Schema Mapping

 Apply Schema

 Destroy Schema

Spatial Context Commands

 Activate Spatial Context

 Create Spatial Context

 Destroy Spatial Context

Y Get Spatial Contexts

Data Store Commands

 Create Data Store

 Destroy Data Store

 List Data Stores

Measure Unit Commands

 Create Measure Unit

 Destroy Measure Unit

 Get Measure Units

SQL Command

FDO Provider for WMS Capabilities | 303

WMSCapability

Locking Commands

 Acquire Lock

 Get Lock Info

 Get Locked Objects

 Get Lock Owners

 Release Lock

Long Transaction Commands

 Activate Long Transaction

 Deactivate Long Transaction

 Commit Long Transaction

 Create Long Transaction

 Get Long Transactions

 Freeze Long Transaction

 Rollback Long Transaction

 Activate Long Transaction Checkpoint

 Create Long Transaction Checkpoint

 Get Long Transaction Checkpoints

 Rollback Long Transaction Checkpoint

304 | Appendix J OSGeo FDO Provider for WMS

WMSCapability

 Change Long Transaction Privileges

 Get Long Transaction Privileges

 Change Long Transaction Set

 Get Long Transaction In Set

RDBMS Custom Commands

 Create Spatial Index

 Destroy Spatial Index

 Get Spatial Indexes

Supports

 Parameters

 Timeout

 Select Expressions

 Select Functions

 Select Distinct

 Select Ordering

 Select Grouping

FDO Provider for WMS Capabilities | 305

Filter Capabilities

WMSCapability

Condition Types

 Comparsion

 Like

 In

 Null

 Spatial

 Distance

Spatial Operations

 Contains

 Crosses

 Disjoint

 Equals

 Intersects

 Overlaps

 Touches

 Within

 Covered By

306 | Appendix J OSGeo FDO Provider for WMS

WMSCapability

 Inside

 Envelope Intersects

Distance Operations

 Beyond

 Within

Supports

 Geodesic Distance

 Non Literal Geometric Operations

Expression Capabilities

WMSCapability

Expression Types

 Basic

Y Function

 Parameter

Functions

Y BLOB RESAMPLE(BLOB raster, Double
minX, Double minY, Double maxX, Double
maxY, Int32 height, Int32 width)

FDO Provider for WMS Capabilities | 307

WMSCapability

Y BLOB CLIP(BLOB raster, Double minX,
Double minY, Double maxX, Double maxY)

 Double Avg(Double)

 Int64 Ceil(Int64)

 String Concat(String)

 Int64 Count(Int64)

 Int64 Floor(Int64)

 String Lower(String)

 Double Min(Double)

 Double Max(Double)

 Double StdDev(Double)

 Double Sum(Double)

 String Upper(String)

 geomValue SpatialExtents (TBD - Fdo-
DataType)

Geometry Capabilities

WMSCapability

Geometry Types

 Point

308 | Appendix J OSGeo FDO Provider for WMS

WMSCapability

 Line String

 Polygon

 Multi-Point

 Multi-Line String

 Multi-Polygon

 Multi-Geometry

 Curve String

 Curve Polygon

 Multi-Curve String

 Multi-Curve Polygon

Geometry Component Types

 Linear Ring

 Line String Segment

 Circular Arc Segment

 Ring

Dimensionalities

Y XY

 Z

FDO Provider for WMS Capabilities | 309

WMSCapability

 M

Raster Capabilities

WMSCapability

Supports

Y Raster

 Stitching

Y Subsampling

Y Bitonal Data Model

Y Gray Data Model

Y RGB Data Model

Y RGBA Data Model

Y Palette Data Model

310 | Appendix J OSGeo FDO Provider for WMS

Index

A

AGF 130
AGF, WKB and 130
API 7

defined 7
FDO 7

application development 13
architecture and packages 10
ArcSDE 173

limitations 173
ArcSDE Provider 172, 183, 199, 213,

228, 242, 256, 270, 284, 298
Capabilities 183, 199, 213, 228,

242, 256, 270, 284, 298
Software Requirements 172

association property 17
Autodesk Geometry Format (AGF) 130

B

behaviors, GisPtr 28
BinaryOperations 123

C

calls, chain 28
capabilities 46–48, 51–56, 157, 183, 199,

213, 228, 242, 256, 270, 284, 298
API 46
Command 51
Connection 47
Expression 52
FDO Provider for ArcSDE 183, 199,

213, 228, 242, 256, 270, 284,
298

FDO Provider for Oracle 157
Filter 53
geometry 54
Raster 55
Schema 48

Topology 56
class 17, 64–65

contained 65
feature 17
IdentityProperty and

ObjectProperty 65
standalone 64

Class Diagram, FDO Schema Element 66
class type 17
code example 47–48, 51–56

Command capabilities 51
Connection capabilities 47
Expression capabilities 52
Filter capabilities 53
Geometry capabilities 54
Raster capabilities 55
Schema capabilities 48
Toplogy capabilities 56

comparison operations 123
connection 32, 34, 37, 142, 176

ArcSDE 176
establishing 34, 37
Oracle 142
semantics 32

constraints, expression text 118
constraints, filter text 118
constraints, provider-specific 118
Contained Class 65
context, spatial 20

D

data concepts 16
data property 18, 149, 151

defined 18
overrides 149

data sources and data stores 32
data store 11, 21–22, 60, 104, 116, 142,

172, 198, 212, 242, 256, 298
defined 21
FDO Provider for ArcSDE 172

311 | Index

FDO Provider for MySQL 198
FDO Provider for ODBC 212
FDO Provider for Oracle 142
FDO Provider for SDF 242
FDO Provider for SHP 256
FDO Provider for WMS 298
filtering 22, 116
locking 22
Oracle 11
querying 104
schemas and the 60
transactions 22

data stores, data sources and 32
data type 121–122

DATETIME 122
DOUBLE 122
IDENTIFIER 121
INTEGER 122
PARAMETER 121
STRING 121

data type mappings 177
data types 121
DataStore 172

FDO Provider for ArcSDE 172
decimal properties 151
develop applications 13
dimensionality, defined 18

E

edit a GML schema file 75
element states, schema 68
elements of a schema 17
example 37, 85, 88, 96, 99, 101, 104

connection 37
creating a schema 85
creating a schema read in from an

XML file 88
deleting property values 101
describing a schema 88
destroying a schema 88
inserting an Integer, a string, and a

Geometry Value 96
query 104
schema management 85
updating property values 99

expression grammar 120
expression text 117
Expression, defined 21
expressions 116

F

factory, abstract geometry 136
FDO 10

architecture and packages 10
FDO API 7

defined 7
FDO concepts 17–18, 20–22

commands 21
data store 21
expression 21
feature class 17
filter 22
geometry property 18
locking 22
object property 20
property 17
spatial context 20
transactions 22

FDO Lock Types, OWM and 154
FDO Provider for ArcSDE 172, 176, 183,

199, 213, 228, 242, 256, 270,
284, 298

capabilities 183, 199, 213, 228, 242,
256, 270, 284, 298

connection 176
defined 172
software requirements 172

FDO Provider for MySQL 198
defined 198

FDO Provider for ODBC 212
defined 212

FDO Provider for Oracle 142, 148, 157
capabilities 157
connection 142
defined 142
schema overrides 148
software requirements 142

FDO Provider for Raster 226
defined 226

312 | Index

FDO Provider for SDF 242
defined 242

FDO Provider for SDF, defined 242
FDO Provider for SHP 256

defined 256
FDO Provider for SQL Server 270

defined 270
FDO Provider for WMS 298

defined 298
FDO schema element class diagram 66
FDO XML format 69
FDOClass 63
FDOClass 153
FDOClassDefinition 153
FDOFeatureClass 63
FDOIActivateLongTransaction 112
FDOICommitLongTransaction 113
FDOICreateLongTransaction 113
FDOIDeactivateLongTransaction 113
FDOIGetLongTransactions 114
FDOIRollbackLongTransaction 113
feature class 17
feature schema, creating a 178
filter 118

grammar 118
Filter 22, 116

defined 22
filter text 117
filters 22
foreign schema 145

limitations 145
read-write privileges 145

foreign schemas 143
FDO Provider for Oracle 143

G

geometric property 150, 152
overrides 150

geometric types, mapping between
Geometry and 137

geometry 19
Geometry 18, 124, 130–131, 137

basic or pure 131
properties 18
types 137

value 124
working with 130

geometry and geometric types, mapping
between 137

Geometry API 130
GIS Geometry API 136
GIS_SAFE_RELEASE (*ptr) 26
GisPtr 26
GML schema file, creating and

editing 75

H

handler, exception 26

I

identity properties 151

K

keywords, filter and expression 121

L

lock types 154
lock, long transaction exclusive 155
locking 22, 154, 174

ArcSDE limitations 174
defined 22

long transaction 23, 112–113, 154
defined 112
leaf 112
root 23, 112–113, 154

long transactions, locking and 154

M

mappings 61, 177
data type 177
physical 61

memory management 26
models, modifying 67

313 | Index

N

non-feature class issues 64
non-smart ptr 28

O

object property 20, 149, 152
defined 20
overrides 149

ObjectProperty types 64
OGC WKT 130
operations, comparison 123
operations, data maintenance 94
operator precedence 123
operators 122
Oracle 154

lock types 154
long transaction versions 154

Oracle identity property 144
Oracle provider, software

requirements 142
Oracle reserved words used with filter and

expression text 153
Oracle Workspace Manager 155
Oracle-specific 150

schema creation restrictions 150
Oracle, FDO Provider for 141
overrides 61, 148–150

class table 149
data property 149
FDO Provider for Oracle and

Schema 148
geometric property 150
object property 149
schema 61

P

package 32, 60
connections 32
Schema 60

packages, FDO 10
parent in the schema classes 61
properties 18, 60, 151–152

base 60

data 151
decimal 151
geometric 152
Geometry 18
identity 151
object 152
string 151

property 17–18, 20, 153
association 17
data 18
defined 17
object 20
Raster 20

property definitions, adding GML for 79
property overrides 149–150

data 149
geometric 150
object 149

property values 94–96
data 95
geometry 96

Provider for ArcSDE 172, 176
connection 176
defined 172

Provider for MySQL 198
defined 198

Provider for ODBC 212
defined 212

Provider for Oracle 142, 157
capabilities, FDO 157
connection, FDO 142
defined 142
general requirements 142

Provider for Raster 226
defined 226

Provider for SHP 256
defined 256

Provider for SQL Server 270
defined 270

provider, defined 11

Q

query 104
creating 104
example 104

314 | Index

R

raster property 20
defined 20

references, cross-schema 61
requirements 142, 172

FDO Provider for ArcSDE 172
FDO Provider for Oracle 142

restrictions, Oracle-specific schema
creation 150

rollback mechanism, schema 68
root long transaction, defined 23

S

SampleFeatureSchema.xml 89
schema 16–17

defined 16
schema elements 17

schema creation restrictions,
Oracle-specific 150

schema management 85
schema mapping, defined 16
schema modification restrictions,

Oracle-specific 152
schema overrides 16, 148
schema, create 62, 178
schemas 62, 66–68

describing 66
element states 68
modifying models 67
rollback mechanism 68
working with 62

SDF 242
FDO Provider for 242

software requirements 142, 172
spatial context 138

spatial context, defined 20
special characters 124
standalone class 64
states, schema element 68
string properties 151
supported interfaces, LT 112

T

table overrides, class 149
text, expression 117
text, filter 117
transaction, long 23
types 64, 137

Geometry 137
ObjectProperty 64

U

UnaryOperations 123

V

values 99–100
deleting 100
updating 99

W

WKB and AGF 130
WKT 130
workspace, Oracle 155

X

XML Format, FDO 69

315 | Index

	Contents
	About This Guide
	Audience and Purpose
	How This Guide Is Organized
	What’s New

	Introduction
	What Is the FDO API?
	From the Perspective of the Client Application User
	From the Perspective of the Client Application Engineer

	Getting Started
	FDO Architecture and Providers
	What Is a Provider?
	Developing Applications

	FDO Concepts
	Data Concepts
	Operational Concepts

	Development Practices
	Memory Management
	Exception Handling
	Managing GisPtr Behaviors

	Establishing a Connection
	Connection Semantics
	Establishing a Connection
	Connection Example

	Capabilities
	What Is the Capabilities API?
	Connection Capabilities
	Code

	Schema Capabilities
	Code

	Command Capabilities
	Code

	Expression Capabilities
	Code

	Filter Capabilities
	Code

	Geometry Capabilities
	Code

	Raster Capabilities
	Code

	Topology Capabilities
	Code

	Schema Management
	Schema Package
	Schema Overrides
	Working with Schemas
	FDOFeatureClass
	FDOClass
	Non-Feature Class Issues
	Modifying Models
	Schema Element States
	Rollback Mechanism
	FDO XML Format
	Creating and Editing a GML Schema File
	Schema Management Examples

	Data Maintenance
	Data Maintenance Operations
	Inserting Values
	Updating Values
	Deleting Values

	Related Class Topics

	Performing Queries
	Creating a Query
	Query Example

	Long Transaction Processing
	What Is Long Transaction Processing?
	Supported Interfaces

	Filter and Expression Languages
	Filters
	Expressions
	Filter and Expression Text
	Language Issues
	Provider-Specific Constraints on Filter and Expression Text
	Filter Grammar
	Expression Grammar
	Filter and Expression Keywords
	Data Types
	Identifier
	Parameter
	String
	Integer
	Double
	DateTime

	Operators
	Special Character
	Geometry Value

	The Geometry API
	Description of the Geometry API
	WKB and AGF
	Basic / Pure Geometry
	GisGeometryStreamFactory
	GisAgfGeometryFactory
	Geometry Types
	Mapping Between Geometry and Geometric Types
	Spatial Context
	Inserting Geometry Values

	Autodesk FDO Provider for Oracle
	What Is FDO Provider for Oracle?
	FDO Provider for Oracle General Requirements
	FDO Provider for Oracle Connection
	FDO Provider for Oracle and Foreign Schemas
	Foreign Schema Settings
	Settings on the FDO Schema Instance
	Settings on the Foreign Schema Instance
	Oracle Identity Property

	Read-Write Privileges
	Foreign Schema Limitations
	Ensuring Valid Views When Applying a Feature Schema Against a Foreign Schema
	Table Name Restrictions When Working with a Foreign Schema
	Schema Access on a Different Oracle Instance

	FDO Provider for Oracle and Schema Overrides
	Schema Override Set
	Class Table Overrides
	Data Property Overrides
	Object Property Overrides
	Geometric Property Overrides

	Oracle-Specific Schema Creation Restrictions
	FDOFeatureClass
	Classes
	Properties
	Data Properties
	Identity Properties
	String Properties
	Decimal Properties
	Geometric Properties
	Object Properties

	Oracle-Specific Schema Modification Restrictions
	Schema Element Descriptions
	Data Properties

	Oracle-Specific Deletion Restrictions
	FDOClassDefinition
	FDOClass
	Property

	Oracle Reserved Words Used with Filter and Expression Text
	Locking and Long Transactions
	OWM and FDO Lock Types
	Example: AllLongTransactionExclusiveLock

	FDO Provider for Oracle Capabilities

	OSGeo FDO Provider for ArcSDE
	What Is FDO Provider for ArcSDE?
	FDO Provider for ArcSDE Software Requirements
	Installed Components
	External Dependencies

	FDO Provider for ArcSDE Limitations
	ArcSDE Limitations
	Relative to ArcObjects API and ArcGIS Server API
	Curved Segments

	Locking and Versioning
	Table Creation
	Identity Row ID Column and Enable Row Locking
	Disable Row Locking and Enable Versioning

	FDO Provider for ArcSDE Connection
	Data Type Mappings
	Creating a Feature Schema
	FDO Provider for ArcSDE Capabilities

	OSGeo FDO Provider for MySQL
	What Is FDO Provider for MySQL?
	FDO Provider for MySQL Capabilities

	OSGeo FDO Provider for ODBC
	What Is FDO Provider for ODBC?
	FDO Provider for ODBC Capabilities

	Autodesk FDO Provider for Raster
	What Is FDO Provider for Raster?
	FDO Provider for Raster Capabilities

	OSGeo FDO Provider for SDF
	What Is FDO Provider for SDF?
	FDO Provider for SDF Capabilities

	OSGeo FDO Provider for SHP
	What Is FDO Provider for SHP?
	FDO Provider for SHP Capabilities

	Autodesk FDO Provider for SQL Server
	What Is FDO Provider for SQL Server?
	FDO Provider for SQL Server Capabilities

	OSGeo FDO Provider for WFS
	What Is FDO Provider for WFS?
	FDO Provider for WFS Capabilities

	OSGeo FDO Provider for WMS
	What Is FDO Provider for WMS?
	FDO Provider for WMS Capabilities

	Index

