
libcurl-multi(3) libcurl multi interface libcurl-multi(3)

NAME

libcurl-multi − how to use the multi interface

DESCRIPTION

This is an overview on how to use the libcurl multi interface in your C programs. There are specific man

pages for each function mentioned in here. There’s also the libcurl-tutorial(3) man page for a complete

tutorial to programming with libcurl and the libcurl-easy(3) man page for an overview of the libcurl easy

interface.

All functions in the multi interface are prefixed with curl_multi.

OBJECTIVES

The multi interface introduces several new abilities that the easy interface refuses to offer. They are mainly:

1. Enable a "pull" interface. The application that uses libcurl decides where and when to ask libcurl to

get/send data.

2. Enable multiple simultaneous transfers in the same thread without making it complicated for the applica-

tion.

3. Enable the application to select() on its own file descriptors and curl’s file descriptors simultaneous eas-

ily.

ONE MULTI HANDLE MANY EASY HANDLES

To use the multi interface, you must first create a ’multi handle’ with curl_multi_init(3). This handle is then

used as input to all further curl_multi_* functions.

Each single transfer is built up with an easy handle. You must create them, and setup the appropriate

options for each easy handle, as outlined in the libcurl(3) man page, using curl_easy_setopt(3).

When the easy handle is setup for a transfer, then instead of using curl_easy_perform(3) (as when using the

easy interface for transfers), you should instead add the easy handle to the multi handle using

curl_multi_add_handle(3). The multi handle is sometimes referred to as a ´multi stack´ because of the fact

that it may hold a large amount of easy handles.

Should you change your mind, the easy handle is again removed from the multi stack using

curl_multi_remove_handle(3). Once removed from the multi handle, you can again use other easy interface

functions like curl_easy_perform(3) on the handle or whatever you think is necessary.

Adding the easy handle to the multi handle does not start the transfer. Remember that one of the main ideas

with this interface is to let your application drive. You drive the transfers by invoking curl_multi_per-

form(3). libcurl will then transfer data if there is anything available to transfer. It’ll use the callbacks and

ev erything else you have setup in the individual easy handles. It’ll transfer data on all current transfers in

the multi stack that are ready to transfer anything. It may be all, it may be none.

Your application can acquire knowledge from libcurl when it would like to get invoked to transfer data, so

that you don’t hav e to busy-loop and call that curl_multi_perform(3) like crazy. curl_multi_fdset(3) offers

an interface using which you can extract fd_sets from libcurl to use in select() or poll() calls in order to get

to know when the transfers in the multi stack might need attention. This also makes it very easy for your

program to wait for input on your own private file descriptors at the same time or perhaps timeout every

now and then, should you want that.

A little note here about the return codes from the multi functions, and especially the curl_multi_perform(3):

if you receive CURLM_CALL_MULTI_PERFORM, this basically means that you should call

curl_multi_perform(3) again, before you select() on more actions. You don’t hav e to do it immediately, but

the return code means that libcurl may have more data available to return or that there may be more data to

libcurl 7.10.1 13 Oct 2001 1



libcurl-multi(3) libcurl multi interface libcurl-multi(3)

send off before it is "satisfied".

curl_multi_perform(3) stores the number of still running transfers in one of its input arguments, and by

reading that you can figure out when all the transfers in the multi handles are done. ’done’ does not mean

successful. One or more of the transfers may have failed. Tracking when this number changes, you know

when one or more transfers are done.

To get information about completed transfers, to figure out success or not and similar,

curl_multi_info_read(3) should be called. It can return a message about a current or previous transfer.

Repeated invokes of the function get more messages until the message queue is empty. The information you

receive there includes an easy handle pointer which you may use to identify which easy handle the informa-

tion regards.

When all transfers in the multi stack are done, cleanup the multi handle with curl_multi_cleanup(3). Be

careful and please note that you MUST invoke separate curl_easy_cleanup(3) calls on every single easy

handle to clean them up properly.

If you want to re-use an easy handle that was added to the multi handle for transfer, you must first remove it

from the multi stack and then re-add it again (possibly after having altered some options at your own

choice).

libcurl 7.10.1 13 Oct 2001 2


