Oracle Berkeley DB

Programmer’s Reference
Guide

Release 4.8

ORACLE
BERKELEY DR

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forum|D=271

Published 12/18/2009

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o =Tl e XX
Conventions Used in thisS BOOKceveueiiiitireitiriiiieireeereneeeeeneereaneerannnenen XX
For More INformationueereieiiiei i rer e eee e reeeereneeereeerennnaranns XX

PR 10T [Nt o o 1
An introduction to data ManagemMeENt ...viiiiiiiiiiiiiiiiiiiiiiireeeeeiiaeeeeraaananeees 1
Mapping the terrain: theory and practiCeciiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeennenens 1
Data access and data ManagemMeENteeiiiiiiieeeeieriiieeeeeerenrneeeeeeennnnneeenns 2
Relational databasescoeeereeiiiiiiiiiiiii e e et eeeneerenaeerenneenanes 3
Object-oriented databasesceieeiiieeiiiieiiiireeieeiiieeeeeeeerneeeeesensnseeeeeanns 4
NEetWOrk databaseseieeiireieeiiiiiiiiiierreia et rrereereneerenaeerannerannnes 4
ClIENTS @NA SEIVETS nneeetiit ittt rereteeetereraterenaeeeaneerenneeranneesannesennnesanns 5
What is Berkeley DB ..ciiiiiiiiiiiiiiiiiiitieiiiitteeeeeaieeeeerenennanessessnnnesesessennnnes 6
DAta ACCESS SEIVICES . .vernnetrertereetteeterenntereneeeaneerennneranneesennesennnerennes 7

Data ManagemeNt SEIVICESuuueeeeenenenneeeneneeneeneeneeneereenseseesseesseseeseees 7
D=2 = o PPN 8
What Berkeley DB 1S NOT t.uuuuueiiiiiiiietttereiiieteeeeeenneeeeesessnnsseesessnnssssssssnnnnnes 8
Not a relational databasecceviieiiiiiiiiiii i e 9

Not an object-oriented databaseccceeeiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeiineneens 10

Not @ network databasecceviiiiriiiiiiiiii e e e 10

NOt @ dat@base SEIVET ...ttt e re e erereeeenaeeaannenannnans 10

Do you need Berkeley DBuuuieiiiiiiiietieieeiieteeeeeeraeeeesesssaseseessnnnsessesanns 11
What other services does Berkeley DB provide?ceeiiiiiiiiiiiieiiieneeieeninneeeenanns 11
What does the Berkeley DB distribution include?ccoveiiiiiiiiiiiiiiiiiiiiiennnnns 12
Where does Berkeley DB FUN? ..oiiiiiieiiiiiiiiiieeeeeiieeeereeenneeeeseesnnnnsessesennnnes 12
The Berkeley DB ProduCts ..ueeeeieeiieeeiieeiiieeereeiieteeeeeessneeeeesessnnseesssssnnnneees 13
Berkeley DB Data StOre ..uueiiiiiiieeeiieiiiieeeeeeeiineeeeeeenrnseeeesessnnnnessesannnes 13
Berkeley DB Concurrent Data Store ...cvivieiieeiiiiiiiieeteereiiineeeeeennnneeeecaennns 13
Berkeley DB Transactional Data Storeccveeeiiiiiiiiiiiieiiieeeeeeennnneeeenanns 13
Berkeley DB High Availability ...cceveeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeninneeeeeaannns 14

2. Access Method Configurationiiiiieeeeieiiiiiieteeieeeiieeeeeeeeernaeeeeeessrnneeeesesnnnnneess 15
What are the available access Methods?veeeiiiiiiiiiiiiiiiiiiiiii e eeaeens 15
5 1= e 15

=] 0 e 15
QUL iiiiiiiiiiiiii ettt i et eeeetaaneeseeessssnnseeeessssssnsnseesssssssnssseessssnnns 15
= of 3 T L 15
Selecting an access MeEthod ..o i i it e er e eennnaaeeens 15
[] 0T = = 16
QUEUE OF RECN0OT? ottiiiiittttiiiiiiiieeeetrteieeeeeeessssnneeseesssssssneseesssssnnnnaeens 17
Logical record NUMDEIS ..oiiiiti ittt iiiit e eieieeeeeeeennnaeeseessnnasessennnns 17
General access method CONfigUIrationceiieiiieeieieiiiieeeeeeeiineeeeeeeninneeeeeenns 19
SeleCtiNg @ PAgE S1ZE tiiiiiiiietitiiiiiiteteeeeiieteeeeeenrneteeeeesnnneeeeessnnnneesesanns 19
Selecting @ CAChE SIZE viiiiiiiiiiii it it i e e eiieee e e eennaaaeees 20
Selecting @ byte Order ...uvviiiiiiiiiiii ittt eiie e eeennneneeeaannns 21
Duplicate data itemS c.uuueeeiiiiiiiiieiiiiieeeeeaiirneeeeeeesnaeeceessnnnnsseeeeennns 22
Non-local memory alloCationciiiiiiieeiiriiiieeeereeiineeeeeeennneeeesessnnaneess 23
Btree access method specific configurationcceeeiiiiiiiiiiiiiiiiiiiiieneiiieeeeenns 23

12/18/2009

DB Reference Guide Page ii

Btree COMPAriSON ...uuuuetiiiiiiiietiiiiiiettteiennneeessaesansesssessannsesseasannnes 23
Btree prefix COMPAriSON ...uvieeieiiiiieiiiiteeiteeeieeeeneeeereeeesneesasneeecnneeaens 2D
MiNIMUM KEYS PEI PAZE .uvtiiinetiiietieieereneeeeneeeenneereseeessneeessnscssnnseeanees 20
Retrieving Btree records by logical record numbercccccveviiiiiiiieiinnnnenn.. 26
COMPIESSION .eiittiiiietetteeeianeeeereaeanneesseeesnnneesssessansesssesssansesssassannaesse 28
CUSTOM COMPIrESSION ..uuueeeerrierinreerreeranneeeresessaneeessessnnssssscessannaess 29
Programmer NOTES ...civiiiiieiiiiiiiiiterieeiaeeeereeannnneesssassnnsessseennans 32

Hash access method specific configurationcceeviiiiiiiiiiiiiiiiiiiiiiienieeenneeaen. 33
Page fill factor ..ueiereiiriiiiii it et eieeeeneeeasneesanaseeanaseannes 33
Specifying a database hashcovviiiiiiiiiiiiiiii i ieiieceeieeeeee. 33
Hash table SiZevieniiiiiiiiiiii it e ei et e st eeaeeeaseeness 33
Queue and Recno access method specific configurationccevvvevviieeieneeenn... 34
Managing record-based databasesccceieviiiiiieiiiiieiieiiireieeeenneeeenneeeens 34
Record Delimiters ..cveeiieeiiieiiiiiiiiiieiiiiieeiteenieeneeeaereassenesenss 34

Record Length .oouuuiiiiiiiiiii it iiiii i eeieeiieeeenaeeeeneesasneeeanness 34

Record Padding Byte Valueceviuiiiiiiiiiiiiiiiiiiiiieeeieeneneeeeaneeens 34

Selecting a QUeUe eXEENt STZE .iuviiiiiiiiiiiiiiieiieeiieeeeieeeeneeeasneeeanneees 3D
Flat-text backing filescieeeiiiiiiiiiiiiiiiii ittt ieeieeieeeeseeeenneeaaneess 3D
Logically renumbering recordsceeveiieiieieiiieeieieesieeeenieeecnneeesneeeanneess 30

3. Access Method Operations ...ceeeeeeeeereiutieeieeeeeneeeenneeeenaeeesneeeesnseeesnseesnsssasnsess 38
Database OPEN ...uiiietiiiiiiieiteeeieteeateeerateeasaeeasneeeesneesssnsessnassesnsssasnesesnns 39
Opening multiple databases in a single filecceviiiiiiiiiiiiiiiiiiiiiiiiiieiieeene.... 40
Configuring databases sharing a fileccccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiin a4
Caching databases sharing a filecccvvviiiiiiiiiiiiiiiiiiiiiiiieiiiieineeeeeee... 41
Locking in databases based on sharing a filecccceviiiiiiiiiiiiiiiiiiineninee.... 41
Partitioning databasescceiiiiiiiiiiiiiiiiiiiiiiiiii e eeieeieeeeneeeeenaeeanneees. 42
Specifying partition KEYSievueieiieiriiiiriiieriieeeeieeeeereeeesieeecsneeecnaeenens 42
Partitioning callbackceeeiuiiiiiiiiiiiiiiiii e eei e reeeenaeeeene.. 44
Placing partition files ...cveeeeiieiiiiiiiiiiiieiiiieiiiieriieeeieeeeneeeeneeesnneeaanes 4D
RELIEVING FECOIAS ..viiintieiitiiiitt it eeiteeeneteeeieeeesneeeenneeesnsesesnssecnnseeanaeess 40
Y o] [T =T oo] e S PPN o
DEleting rECOIAS ..viientiieitieeitieeieeeeneeeeineeeenaeeesneeessneeesnaeeesnassssnaessnneeenee 47
[DETR=1oF- IR 2= Y 1Y [of- S Ty 4
Database trunCationieeiieeiiieiiiiiiiiiiiiii i eiiteiieeeneeenteenteeneeenseenneeness 47
Database UPGradeuvieeeiieeeeieiteeaineeeeneeeeseeeesneeessaeeesnaesssnesessneeesnneeesnns 47
Database verification and Salvagecceviiiiieiieiieiiiiiieeeiieenieeeeeneeecsneeecnneens. 48
Flushing the database cachecccviiiiiiiiiiiiiiiiiiii i eeiceeieeeenneeene. 48
D U= o= Y I of o1 PP L
SECONAANY INAEXES .uvtiernetieiteeeiueeeeieeeeereeresneeeesneeessassesnsesssnessssnesesnasssonees 49
FOreign KeY INAEXES .nuueiiiieiiiiitiiiitieittteieteeeeeeeaneerenaeersnaeeesnessennsessnnseees D3
O] o]l o] 01T =Y (o] 1. Y
Retrieving records wWith @ CUrSOruviiiieiiiiiiiiiiiieiiieiieeneieeeanneeeanaeeaans D7
Cursor POSItioN flags ..ueieeeeiereereietienneerereeeeeneeeesneeeenneessnaessaneaeaes D7
Retrieving specific key/data pairs ...cceeeeveeieeieiieiiieenieeeeeneeeenneeeanneess D8
Retrieving based on record NUMDbErSccvviiieiieiieiieiieeeeieeeeneeeanneea. D8
Special-purpose flags ..ceeveeeeeieiieiietiriiiieiieeeeieeeeieeeenecesnaeeesnaeeaes D8

Storing records With @ CUMSOreiiiiieiiiiiiiiitiiiieeieieereneeeesneeeenaeeaaneeess 00
Deleting records With @ CUISOr ...uviieietiieieeieiietieieereieeeeneeeenaeeeenaeesnneeass O1
DUPLICATING @ CUMSOT .uviinttieitteeiuteeeeeeenneeeenneeeaneeeesneesesneeessnseasnaesanns O2

12/18/2009 DB Reference Guide Page iii

(2o UE= 1§ Y Lo 1 o RN ¥

T 1] 0 PP o X
Data item COUNT ..uuiiiiiiiiiiiiiii ittt e eteeteeeeeesesesseessasanannnns OO
OLU o o] o 1Y R o 1o

4. Access Method WIrapUp c..ueiiiieiiiiiiiiiiitieiteeeieteereeeenneeresaeeesneseesnessannsseanneees OF

D U= B 11T 3T 11 1= o | P <Y £
Retrieving and updating records in bulkcccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeneae.. 67

Bulk retrieval ..o.cviiniiniiiiiiiiiiiiiiiiiiinirc e, 67

ST o T = N 1)

BUlk deletes ...ovuiiniiniiniiiiiiiiiiiiiiiiiiicii e 09
Partial record storage and retrievalcccvveiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiieeeneeenne.. 70
Storing C/C++ SEtructures/0bJeCtS ..vuvviuriiieiiitiiiiiiiiieiieiiieiiieenteeaereaeienennnes 12
Retrieved key/data permanence for C/C++ .ioiiiiiiiiiiiiniinieinennienieenneecnneenne. 74
o YU o o P £
(OT Yo g =1 o) 1 U1 Y PPN 4o
Database lIMits ...ouevuiiuiiiiiiiiiiiiiiiiiiiiiiir e eaee 16
Disk Space requir€mMENTESeieeiiieiiieiiieiiieiieeiiteiiteenteenteentrensseassenssensssncsnees 10

Specifying a Berkeley DB schema using SQL DDLocvviiniiiniiiiinniinnennnennecnnness 79
Access Method TUNING ...uiiiieiiiii i eiireitereneeeeaeeeenneereneeeesneesanneees 19
Access method FAQovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiircncnnerereneenaeaen 81

o TR 1 17 Y = PP 2

Java configurationceeiieiiieiiiiiiiiiiii it eeie et eenteenteenereaeseaseess 84
ComPatibility ceeueiiii i i i e e e i e i e e it e e e e s reeeanaeeaens 8D
Java programming NOLESuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiateiiieeeiineesenaeeses 8D
BN T 1 PP < o

GO 0 - 1Y T - 1

ComPatibility coeeneiiiiiii i it e et er e i e e re e s e esieeeanaeeaens 89

7. Standard Template Library APloveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiieiieerieeiieesneeeneeenes 90

Dbstl introduCtionc.evuiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinrrenreneeaeeaeae. 90
Standards compatiblecceiiiiiiiiiiiiiiiiiiiiiii i erreeeieeeeneeeenaeeaens 90
Performance overheadccoeeiiieiiiiiiiiiiiiiiiiiiiiiiiiiieiienieeeneeeneeene. 90
POrtability vovereeieiiieiiii it r et er i e neeesnaeeseneeennneeaanaess 90

Dbstl typical USE@ CASES ..vveuiineiieiiieiiieiiieeiieeiieeiieenieeeneeeneeeneosnesenescnssenseenss 91

DDStl @XamPLeS ..oeuiieiiiiiiiiiiii it e e ee e eenneenaeenaeeasses 91

Berkeley DB configurationccveeeiiiiieiiieiiieiiiiieiiieenneeineerneenneesseecneeenes 93
Registering database and environment handlesccooviiiiiiiiiiiiinnnne... 94
Truncate requUIremMeENtS ..oveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii it eiiiesenniesenasesss 94
AULO COMMIL SUPPOIT .uviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiitesenaieienaeeeess 9D
Database and environment identity checkscoceeviiiiiiiiiiiiiiiiiieennee.. 95
Products, constructors and configurationsceeevveviiiiiiiniiiniiineiieienen.. 95

Using advanced Berkeley DB features with dbstlccoiviiiiiiiiiiiiiiiiiiiaiien... 96
Using bulk retrieval iteratorscooceviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiineieenee.. 96
Using the DB_RMW flag ...uviiiiiiiiiiiiiiiiiiiiieiieeenieeeeneeeennecesnaeescnaeenans 37
Using secondary index database and secondary containerscceceeveenn.. 97

Using transactions in dbstlceeviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiceeeree e 97

Using dbstl in multithreaded applicationsccvveeiiiiiiiiiiiiiiiiiiiienereneieaeine... 98

Working with primitive typescciceiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiieeieeeneeeneeene. 99

12/18/2009

DB Reference Guide Page iv

Y o]] oI d oL 100

Store and Retrieve data or objects of complex typesccccevveeiiiiiiiiiiiiiineennen. 101
Storing varying length 0bjJectscoveiiiiiiiiiiiiiiiiii e 101
Storing by marshaling 0bjJectscivveiiiiiiiiiiiiiiiiiiiiiii i eeieeeaeens 101

Using a Dbst | Dbt wrapper ObJecCt «..uveeeieiiiiiiiiiiiieiieeniieeennneeeanness 102

Storing arbitrary SEQUENCES ...uuuueeeitreriieteereenreneeeeressnnneessessnnnnessseannnns 103

The SequencelLenFunct fUNCLION .ovvinreeeiiiiiiiiiiiiiiiiiiieeeeeiiineeeenanns 104

The SequenceCopyFuNCt fUNCLION viiiiiiiiieeeiiiiiiiieereeiiieeeeeeennneaeenns 104

0 = PO 104
D01y d W o 1< § [(=] o [l PP PP PPN 105
Direct database et .iviiiiiiiiiiiiiiiiiii i i i i e e 105
Change PerSISTENCE .uuitiitiiiiii ittt e ittt eeeetiaeeeeteeannaseseesnnnnes 106
Object life time and PersisteNCE ..iiiiiiiiiiiiiiiiiiiii ittt eeeiiieeeeeaaannaes 107
Dbstl container SPeCIfiC NOTES «ivviiuiiiiiiiiiiii ittt ieeiiiteeeeeeeneeeeeeeannnnes 108
db_Vector SPECIfiC NOLES ...uueiiiiiiiiiii ittt ittt et eiiee et eeeaaaaaeen 108
Associative container specific NOLESviiiiiiiiiiiiiiiiiiiii e ciiaeees 109
Using dbstl effiCiently .uoeiiiiii i i it ettt e reree e eaaanas 109
Using iterators efficiently ...oeeeiiiiiiiiiiiiiiii it e e e e 109
Using containers efficientlycoeiiiiiiiiiiiiiiiiiiii it i et e eeiaeees 110
Dbstl MemOory ManagemeENt ..ueeiiiiiiititiiiiiieeteeiiieteeeeeaiseeeeeessnsssessesannnes 111
FreeiNg MeMO Y ciiiiiiiiiiii ittt ettt et e eeeeeeeeeeeeeeesaeesessssannnnnnnnnnnnnnnns 111
TYPE SPECITIC NOTES 1veiiiiiiiiitttiiiiiiit et teeiiieteeteeeiieeeeeeeenssseeeeeesnnneneenn 111
D07 0 AV D o T 111

3031 1 o o N 112

Dbstl MiSCEllan@OUS NOLES ...veinnetiertireietieeeerereeereneerenneerenaeerennessenneeennnens 112
Special notes about trivial methodsc.cviiiiiiiiiiiiiiiiiii e 112
Using correct container and iterator public typesccceviiiiiiiiiiiiiiiiinnnnnnn. 113
DDSEL KNOWN GSSUES . uvvennneererntereeteeeneerenneerenaeereneesesneesenneesennesssnnesesnnesannes 113
8. Berkeley DB ArChit@CiUreviiiiiiiiiiiii ittt ittt et it eeeeaiaeeeeeaeaaaaes 115
THE Dig PICtUNE ettt it it ettt ettt eeeiiesaeeeeeaanaeaeeenennnees 115
Programming MOluuueiiiiiiiiiiiii ittt ettt et it eeeeaieeeeeeeaennaaaes 118
Programmatic APIS ...ttt eaaaaaaaaaaaes 118
P 118

o teteeeeeeeeeeeeeeeeeeeeeeeeeeeseessesesssessesssessssssssssnnnnsnnnnnnnnnnnnnen 118

1 1 119

= 7 PN 119

(B0 0 A\ a0 o R o Y=Y Tl o 120
SCIIPHING LANGUAZES . vtitiiiiiittttiiiiiiteteteeiieteeteeaireteeeeeeasseeeeesessnsseeeensnnnnes 120
o] 120

o PP 120

I oL 120
SUPPOItING ULIlITIES teiiriiiittiiiiiiiiiii ittt et ettt eee it eeeaeanaeeeeeannnnnnes 120
9. The Berkeley DB ENVIrONMENT ..uiiiiiiiiiiiiiiiiiiii ittt eeeeiieeeeeeeeeinaeeeeeeannnnes 122
Database environment iNtrodUCTIONeeuveeeeneereintereneteeeeereneerennneeenneseaneenes 122
Creating a database enVviroNMENT ..oiviiieiiiiiiiiiiii ittt e e i reeieeeeeanns 123
Opening databases within the environmentcccoiiiiiiiiiiiiiiiiiiii i, 125
[g o] s U 0] o o] o (O Pt 127
DB_CONFIG configuration filecciiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeseieaeeeennnns 128
[CEI 4= 100 [V S PP PPN 128

12/18/2009

DB Reference Guide Page v

Specifying file naming to Berkeley DBcceeviiiiiiiiiiiiieeeiieeneneeennnneeann. 129
Filename resolution in Berkeley DBcccevieiieiiiiniieiinieeeieeeeneeecnneeeaneess 129
1001 o] (T PPN I 10
Shared MemMOrY FEZIONS ...uiieetieietreitereieteeaeerenaeerenaeeesnseeesnsesennsessnsesannes 131
1Yol B] 1 P [/2
T /0 o o T PP I X
REMOtE filESYStEMS .viirtiiiitieiieiieeiieeiteeeieeeeeneeeasneeecsneeesnaeesanaeennnes 134
Environment FAQ ...uviiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiii i esnesenaeeeenes 135

10. Berkeley DB Concurrent Data Store Applicationscccceevviiiiiiiieneneeeeneeeenne... 136

Concurrent Data Store introductioncceeeiieiiiiiiiiiiiniiieeiieeeeneeesneeeaane.. 136
Handling failure in Data Store and Concurrent Data Store applications 138
Architecting Data Store and Concurrent Data Store applicationsc..cceveuee... 139

11. Berkeley DB Transactional Data Store Applicationsccceeeevvieiiiineenenneennnee... 143

Transactional Data Store introductionceeveveiiiiieiiiiiiiniiiieiieereieeeeeneeeenne.. 143
Why £ransactions? ...eeueieiietieiietieiieeeiieeeeieeeeneeeeaeeessneeessaeeesnaesssneeennneess 143
] 0101 1370 o 1Y PPN P X
Handling failure in Transactional Data Store applicationscccceeevvveieennneennn... 145
Architecting Transactional Data Store applicationsc.cccveeveeieiieinerenenennne.... 146
Opening the enviroNMEeNTcicveiiiiieiiiiieiriieieiieereieeeeeneeeesneeesnnesssnacesnnaeses 100
Opening the databases ..cc.ueieieeiriitieiieeeiteeeiteerreeeeeeeeesneeesnaesesneseannseeans 103
Recoverability and deadlock handlingccceeeeiiiiiiiiiiiiiiiiiiiiiieiiieiieeeeneeeanne. 156
N o] 101t 1 Y PR o1
170 U o o PP 1
Degrees Of iSOlationciiieeiiiieiiriiiiiiiiiteeiieteeneerereeeeeneeeesneesennsseannaeaas 103

SNAPShOL ISOLATION ..viiietiiii i eie i iriiieireieeeeeneeeanneeeanneennnes. 164
Transactional CUISOIS ...vveuiieiiiniiiiiitietiitiieteetreeereaerieessecssecssecsseesnneenss 16D
Nested transactionscioeevieeiieeiiiiiiteiitiiitieiteiitietriaeretianersnessecsseesneeenss 168
Environment infrastruCtureooveiiiiiiiiiiiiiiieiiiieeieeeeneeeesneeecnneensneeeaens 169
[DISE-Te | UoTel 1@ (<] =T ot [o]) H OO [o)
(61 T<Tol 40T)] &S PP POPPP A |
Database and log file archivalcooieiiiiiiiiiiiiiiiiiiiiii i eeneeneeeeeneees 173
LOZ file remMOVAL vevieeieiitieiit i eeiteeeieteeenteeeaneeeenaeeesnsesesneeessnseesnneeasnes 170
RECOVEIY PrOCEAUIES ..uviiirtieietteeeerennteeaneeeesneeeesneeessneessnassessesssnseesnaeees 170
[0 =Y 1 (o 1= P I £ -
Recovery and filesystem Operationscceeeeeveeieieereieeeeneeeenneeeesneeeenneeenneess 179
Berkeley DB recoverabilitycceveeieiieieriiieiiiiriiieiiieeesieeeeeieeeesneeecnneeeannss. 180
TransaCtion tUNING ..uvviiiiiiiiiiiietieeiaetetreenianneesseesannsessesssnnnessssasanneess 182
Transaction throughputcoeieiiiiiiiiiii it ieii i eieeieeeeneeeenneee. 18D
Transaction FAQ ..o.uviiiiniiiiiiiiiiiiiiiiiiiiiiiiiiii i eiiseiesneeeenaeeeenaes 187

12. Berkeley DB Replicationc.ceeiiieiiiiiiiiiiiiiiiiiieiiiiiiniiieernecnneerneesneeeneeene. 190

Replication introdUCtion ...ccueieeieeieiieeiriieeerieeeeieeeeieeeesneeessneeecsnesasnnsenaness 190
Replication environmMeNnt IDSueiiieiirieieeieereieeeeeneeeeneeesnaeeesseesesneeeenneess 192
Replication environment Priorities ..eeeveeieeieeieieereieieerieeeeneeeenneeesneeeenneeeanns 192
Building replicated applicationsccceeieieiieiieiiiiiiieitiriierenieeeenneeesneeeennes. 193
Replication Manager Methodsccveeiiiieiiiiieieiiiieeieeeeiieeeeineeecneeeesneeeaaneeeans 194
Base APl Methodsc.vviuiiiiiiiiiiiiiiiiiiie it eieeiteeieeenteeneseneeaese 196
Building the communications iNfrastruCtureccceeveiiiiieieiieieeieensneeennneeaans 197
Connecting t0 @ NEW SIte tiiuiiiiiiiiiiiiiiiiiiiiiaetrieeianeeesreesanneessseasanneesseeees 198
Running Replication Manager in multiple proCessesceveeeevreeecieeeneneeeenneeeann. 199

12/18/2009

DB Reference Guide Page vi

One replication process and multiple subordinate processesc.cccceeee... 199
Persistence of network address configurationcccevvveviiiinenneeenneeeenn.. 199
Programming conSiderationscceeeeiieeeeieereeneeeenneeecsneeesneeeasneeesaneeaans 200
Handling failureeeeeiiiiiiiiiiiiiiiiiiiieiiiieiieeeiieeeenneeesnnesscnaeeasnneeanss 200
Other miscellaneous rulesc.cevveiiiiiiiiiiiiiiiiiiiiieniieniinnernecrneernnesa.. 200
= ot) 3 PP 0
Synchronizing with @ Mastereeieiiiiiiiiiiiiiiiiiiiiiiiieeieeeieeeenieeeennneeanneeannss 203
Delaying client synchronizationccceeveiiiiiiiiiiiiiiieieieereneeennneeeanne.. 203
Client-to-client synchronizationccceeeiiiiiiiiiiieiiiieiieeeeneeecnneeenneea.. 203
Blocked client Operationsccveeeerieeieiieeeeieiesineeeeieeeesneeesnnecesnneeanes. 204
Clients too far out-of-date to synchronizeccecveviiiieiiiiiiiiieinnneennn... 204
INitializing @ NEW STTE wiiiiiiiiiiiiiiii it ieiiceieeieeeeeeeeenneeesneesanneesans 20D
5T o =131 1 PR 0 1o
Transactional GUAraNTeeSuvveieiiiietieietieieereieeeeneerenneerennsesseeeasneeecnnesss 206
Lt R W] gl == T [0
CLOCK SKEW ettt ittt et et et eenteeteeeseasseassenesnncsnacsneesnes 212
NEetWOrk Partitionsceeveeieiieiiiiitiiiiiieiieieiiterereeeeneeeesneerenneeeennseesnneeannes 213
(0] o] Hat= Y 4 o] o T o POl P
Ex_rep: a replication @Xample ...ccceiiiiiiiiiiiiieiiiieiieeieeeeieeeesieeeesneeecnneeeanes 216
Ex_rep_base: a TCP/IP based communication infrastructurec..cccevvvvninnnen... 217
Ex_rep_base: putting it all togetherc.cvviriiiiiiiiiiiiiiiiiiiiiiiiiceiieeeeieeeene. 219

13. Application Specific Logging and RECOVEIYcccviiiiuiieiiniieiieeeenneeenneeenneeeannes.s 220

Introduction to application specific logging and recoveryc.c.cccevvvveeenneennnee... 220
Defining application-specific l0g recordsccevvvieiiiiiiiiiiiiiiiiiieieeneneeennneen. 221
Automatically generated fUuNCLiONS ...ocueiiiieiiiiiiiiiiiiiiiiiiiiiriieennneeeanneenenes 223
Application CoONfigUration ..c..ueieieeiiiieiiiiiieiieeeiteeareeeenneereneeeesneeeenneeeanness 226

14. Programmer NOTES ...uuuueiiiiiiiiiittiieiiiieeeereenrneeessecsannesssessannsessssssnnsesssses 229

Signal handlingueeieiniiiii i ieii et ieeiteeeieeeeeeeesnneeesnaesesnessasnneennness 229
Error returns £0 appliCations ...ceeeeieiieiieiiiieiitieiieeeeiieeeenneeeeneeeesneeeennneeannes 229
Environment variablesoooviiiiiiiiiiiiiiiiiiiiii e eeneeens 231
Multithreaded appliCationsc.veeeeeiieiterrieeieiieeeeieeeeieeeesneeeenneeecnnneesnneeaes 231
Berkeley DB handles ..ceeuuiieeeiiriniieiiiieeieteeniteeenneeeeneeeesnsesesneeesnnseesnneeannes 232
NAME SPACES +ettiintttiieeiinneeereeaanareeessessanseessesssnnsesssessannssssssssnssssssesns 234

C Language Name SPACEevirieiiineterriininnreerreesanneessesessnnessssassnnesessees 234

Filesystem Name SPacecicvveiiiiiiiiietieiieeeenieeeeineeesneeeesneeensneeeanneeass 234
Memory-only or Flash configurationsceeeeeeieiiiiieiiiiieeiiieernieeeeneerenneeens. 234
Disk drive CaChes ..o.viiniiiiiiiiiiiiiiiii e en i ee e eenneenneeneeens 237
Copying or MOoViNg databasescveeieeetiereerereeeeneerenneerenaeeesneeessneeesnnsenanees 237
Compatibility with historic UNIX interfacescceevveiiiiiiiiiieeniieennneenenneeans. 238
Run-time configurationceieeiiiiiiiiiiiiiiieeiteeiieeeenieeeenneeesneeeesneeeenneeeens 238
Programmer notes FAQciiiiiiiiiiiiiiiiiiiiiieiiiterreenianresssessanneessessnnnnessess 239

15. The Locking SUDSYStemM .iiuiiiiiiiiiiiii i eiieeeiieeeenneeeenneeaenaeennneesss 241

Introduction to the locking SUDSYStEMivieiiiiiiiiiiiiiiiiiieiiieniieeineeeenaeennne. 241
Configuring LOCKING vevuuueiiietiiiiiiiieeieeeieeeeeneeeenneeeenneeesnaesasnescssneseanness 242
Configuring locking: sizing the syStemcc.eiiiieiiiiiiiiiiiiieiiiieiiieeineeeanneeanne.. 243
Standard Lock MOAESoueiiniiiiiiiiiiiiiiiii it er et et ieeeseaenneennees 24D
Deadlock detectioncveiiiiiiiiiiiiiiiiiiiiiiiiie i rr i erieeeneeeneeenss. 246
Deadlock detection USiNG tiMErS ...ciiuiiiiiuiieiiiiriieeiieeeeieeeeeneeeasneeeanneeeanness 247
Deadlock debuggingceeeiiiiiiiiiiiiiiiiiiiiiiieiiieieeeieteeeneeeeneeesnneeeaneeeans 248

12/18/2009

DB Reference Guide Page vii

LOCKING GranULarity cuueeeereeeerieteeietiereeeeneeeeeneeeeeeeeesneeesnneeesnseeesnseeannneenn 250

Locking wWithout tranSaCtionsee.eeeereeeerieeeereeeerneeeenneeeseeeenneeeenneeeanneenns 251
Locking with transactions: two-phase locKingccevveiiiiiiiiiiiiiiiiiiiiiieineeeanns 252
Berkeley DB Concurrent Data Store locking conventionscceevveiiiieeinnneennnnen. 252
Berkeley DB Transactional Data Store locking conventionscccvvvveeennnenne.. 253
Locking and non-Berkeley DB appliCationsceeveeeeeeeierneereneeeeneeeenneerenneeenes 255

16. The Logging SUDSYSteM .ii.uiiiiiii it ieei e e e et eeinteeeneeeeaneeeanneeeannnenn 256
Introduction to the 10gging SUDSYStEM ...iiiuuiiiiieiiiii i riieeieeeeneeeanees 256
CoNfIgUNING LOGGING +enuutiiettieittieiteeenuteeeieeeeaeeeenneeessneeesnnseesnnesssnseesnnees 257

LOZ Il LIMItS tuueiiiietiiiittieii ettt eeieteeeeeretaeeranaeeeaneeeanneesennsessnnessnneesannes 258

17. The Memory Pool SUDSYStEM ..t ii e e eie e e it eeeieeeanneeeannees 259
Introduction to the memory pool sUDSYStEMciieieiiriieeiiiiiriiiereieeeeneeennneens 259
Configuring the Memory POOL ...ce.uuiiiiieiiiii i ieiiereeeeieeeeeneerennaeeanes 261

18. The Transaction SUDSYSTEM ..iiuuiiiiitiiiiiieiieiiteeiteeeinteeeneeeaeneeeenneeeannnennn 262
Introduction to the transaction sUDbSYStEMciiieiiiiiiiiiiiiiiieeiieeeieeeanneenns 262
Configuring tranSACLIONS .ueveuueeernetrerneereneeeeaeeeerneerenneesoneeeenneeesnasesonneeennees 263
Transaction LMIES t..eeeeiieiiie ittt ettt et reattenereaeanaesnaes 264
Transaction IDSeiiiniiiiiiiiiiiii it 264

O o 264

Multiple Threads of CONTrOl ..uieeueiiiieiiiiiiiiiiiiiiiieieeiieeeereereneeeannees 264

I = e 0T T <3 N 265
INEtroduction £0 SEQUENCES ...viiiittiiitteiiteeeieeeeeieeeaaneeeeraeeesnaeeesnaseesneeesnnees 265

20. Berkeley DB EXEeNSIONS: TCL .uviiiiutierieteeiieteeieeeaieeeeeneeeesneeessneeesnneeesnneseonness 266
Loading Berkeley DB With TCl .uiiiuuiiiieiiiiiiiiiiiiiieiitieieereneeeeeeeeanneerannes 266
Installing @s @ TCl PACKAZE ..veeeuuriieintiriitieiieeieiieeeeieeeenaeeeeneeeesneeennnees 266

Loading Berkeley DB With TCl ceuuuieiiutiriieiiniiieiiienieeeeieeeaaneeeennecesnnees 266

Using Berkeley DB With TCl couuuiiiiniiiiiiiiiiiiii i eiiteeieerenaeeeenneeanneesannes 267

TCL AP Programming NOTES ...ueeeueeierueerereeerereeeenneeeenneeseneeessneeeesneesennseennnens 267

B e W=y o Tl o =T Lo [L] - S PP PP 268

1oL S Y N 269

21. Berkeley DB EXLENSIONS tiuuueirretiereteenneeeenueeeaneeeesueeeenneeessneeesnsesesnsseennneenns 270
Using Berkeley DB With APaCheviiiiriiiiiiiiii it eieei e eene e eenneeenas 270
Using Berkeley DB With Perlcceueiiiiiiiiiiiiiiiiiiiiii it eiceii e eene e eenneeanas 271
Using Berkeley DB With PHPcciuuiiiiiiiiiiiiiiii it ieir i een e renneeeenaeeannes 271

22. Dumping and Reloading Databasescccceiieieiiiiiiiiiiiiiiieieeieeereneeeesecesnneens 274
The db_dump and db_load Utilitieseeerineiriiiiiii i ieeii e eieeeeneeeenees 274
DUMP OUEPUL fOMALS ©veinetierietieittieiteeeieteeeeeeenneeeenneeeenneeesneeeenneeesnnnennn 274
Loading text int0 databasesceeeueiiiiiiiiiiiiiiiiiitieiteeeieteeneerenneeeanaeeannes 275

23. System Installation NOTESueiiiieiiriiiiii i iiieeieeeeieeeaneeeenneeeenaeesaneens 276
File utility /etc/magic informationeeeieiiiiieiiiiiiiiiii i i eeeieeenneeaanaees 276
Building with multiple versions of Berkeley DBccccvviiiiiiiiiiiiiiiiiiiiiniinnnnnee, 276

24. Debugging ApPPlICAtioNS ...ueiiiieiiiiietiiiitieiiterereteeeneeeenneeranneereneeeesneerenneeeanns 278
Introduction 0 debUZGZiNgcccuiiiiiiiiiiiiiiiiieiieeeieeeeieeeenneeeenaeeaenaeeannnees 278
Compile-time configurationicveiiiiieiiiiieiriiiiiiiaieereieeerereeeenaeeeenaeeannens 278
Run-time error informationcovviiiiiiiiiiiiiiiiii it eient e eeaees 279
Reviewing Berkeley DB lOg fileS ..uuieereiiriniierieieiiteeiieeeeieeeenneeesnaeeeoneeennnees 279
Augmenting the Log for DebUZZiNgcevueiiiiiiiriiiiiiiiriieniieenieeeannees 283
Extracting Committed Transactions and Transaction Statusccc.ceeeee... 283
Extracting Transaction HiStOriescevieriiiiiiiiiiiiiiiiiiiiiiiieereeannaneeeenas 283

12/18/2009 DB Reference Guide Page viii

EXtracting File HiStOries .ueeeuuiiiieiiiiiiiiiiiiieiietieieereneeeeneeeanneerannes 283

Extracting Page Histories .ovueueeiiiiiiiiiiiiiiiiiiiiiiiiierreeianneeereennnnnes 283
Other log processing t00LS ...uiieuetiriretieieireieeerieereneereneeeeaneeeesneeeonnees 284

25. Building Berkeley DB for the BREW Simulatorc.ccevveiiiiiiiiiiiiiiiiiiiiniiniennenne, 285
Building a BREW applet with Berkeley DB librarycccceevieiiiiiiiiiiiiiiiiiinniinnnnns 286
Building a BREW applet for the physical deviceccccovviiiiiiiiiiiiiiiiiiinenne.. 286
26. Building Berkeley DB for SO0 ..i.ueiieieiiiieeieeieteeiieeeenneeeeieeeesnaeessneeessneeesnneens 287
Building Berkeley DB for the S60 EMULatorcceeveveiiiiieiiiiieiniieeniieerenneenannens 287
Building Berkeley DB Library for the DeViCecccviiiiiiiiiiiiiiiiiiieiiieenanneeanns 287
Building a S60 application with the Berkeley DB libraryccccceeiiiiiiiiiiiinniinnnnns 288
SO0 NOTES . ueiiintiiit ittt ittt ittt ettt teiateteaaesetateseratesesstsssnsesenans 288
27. Building Berkeley DB for UNIX/POSIX ..iiinueiiiitiiiiitieiiteeiieeeeieeeeneeeesneeeanneeens 289
Building for UNIX/POSIX .. .ineiiieieiert ettt eet et eeeeeaeeneaneaneaneaneaneenennes 289
Configuring Berkeley DBueiiiietiiiietiiiietiiieeeeieeeeaeteenneeeenaeeesneseenneeeonnees 290
Building a small memory footprint libraryccceeiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeaeen 294
Changing compile or l0ad OPLIONSciiieiiiiietiiiitieiteeeieeeeeereneeeenaeeenneeeanns 295
INStalling BErkeley DB ...ciuuutiiiittieittieiteeeiueeeaieeeeaneeeesneeesnneeesnaesesnasennneens 296
Dynamic shared LIDrarieseeeeeeeieireitieiiteeiteeenteeeneeeeeneeeenneeeenaeeesnaeenns 297
Running the test suite under UNIX it iii i eeeneeeenaeeaeaees 298
Architecture independent FAQ ...cuuiiiiiiiiittiiiiteiiitieeieeeeneeeenneeesneeeennessanns 299
Y 302
Fre@BSD et et 303
LGN 303
3N 305
LINUX ettt ettt et e et eeaaeas 305
= ol 306
0] e N 307
0] 307
1T O PP 308
170] = o £ N 308
T8 0N 310
U 310
28. Building Berkeley DB fOr WiNAOWSiiieueiiiiutieiieteeaeerenneeeenneeeeneeeesneeeenneeenns 311
Building Berkeley DB for 32 bit WindOWS «.cceueiiiiiiiiiiiiiiiiiiiteieieeenneeeenneenanns 311
Visual C++ UNET 2008 ..euuientintintinereeeeeeeeeaneaneaneaneeneaneensenssnesnesneenens 31
Visual C++ UNET 2005 ..inieniintitieeeeteeteeeeaneeneeneaneaneaneaneanssnesnesneenens 31
Visual C++ .NET or Visual C++ .NET 2003eeiniiniiniinininnerererneeneeneeneenns 312

LA U L O T T 312
BUILA F@SULES wenneeneiitiit ittt ettt et et e et e et eeneseaeeeanes 312
Building Berkeley DB for 64-bit WindOWSceeiueiriieiiriieieriieieeneeeeieeeeeneeennnees 312
x64 build with Visual Studio 2005 OF NEWETc.vviiiiniiiiiiiiiiiiiiiienneennes 313

x64 build with Visual Studio .NET 2003 or earliercceevviiiiiiiiiiniinninennnnns 313
Building Berkeley DB With CYSWIN ..uiiieiiiiitiiiiieiittieieereneeeenneerenneerenneeeanes 313
BUilding the C++ APl ...ttt et et e e eeeeeaeeneaneanaanann 313
Building the C++ STL AP . .uuiiii ittt e e eeneeneaneaneanenaeaneanaanens 313
BUilding the Java APleiiiiiiiii it ieii et et eeeeerenaeeeenaeeannnesanneesannes 314
Building Java with Visual C++ .NET Or @boveccceiiiiiiiiiiiiiiniiiineennnenns 314
Building Java with Visual C++ 6.0 ...iiiiuiiiiieiiiiiiiiiitriiteerreereneerenneeennes 314
BUIlding the CH# APl ...ttt e ee et et et e e e e e e eneeeenenes 315

12/18/2009

DB Reference Guide Page ix

Building C# with Visual Studio 2005cceeiiiieiiiiiiiiiieriieeniieerenneeeennens 315

BUIlding the Tl APl . .vieeiiii i ei ettt eerteeeeeerenneeranneeeansesenneesanns 315
Building Tcl with Visual C++ .NET Or @above ...ccvviiiiiiiiiiiiiiiiiiieennneenannens 316

Building Tcl with Visual C++ 6.0 .eeviniiiiiiiiiiiiiiieriieeeieeeeieeeeneeeannees 316
DiSErIDULING DLLS «uvttinttteetteeeeeeenteeenaeeeaeeeesneeessneeessaeeesnnsessnasessneeesnnees 317
Building a small memory footprint libraryccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiriieeeaeen 317
Running the test suite under WindOoWscueiiiieiiiiiiiiiiiiiiieiieeeieereneeeanneens 318
Building the software needed by the testscccvvvviiiiiiiiiiiiiiiiiiiiiniieenns 318

Visual Studio 2005 OF NEWET «.c.ueiineiitiiiteiiteiiteiiteeiteentienteeneenaeanaess 318

Visual Studio 2003 .NET or €arliercccvveiiiniiieiiiiiiiiieiienneennnenns 318

Running the test suite under Windowscceeeeiieiiiiiiiriieieriieereneeeenneeennns 318

WINAOWS NOTES .ottt ittt ettt eeteenteentseasseatsenssnnesnacsnness 319
WINAOWS FAQ .ttt ittt ettt ettt et et teateeaeteasseassanssnnesnaennes 320

29. Building Berkeley DB for Windows CEiiiiiiiiiiiiiiiiiiiieiieeeaieeeneneeeenneceanness 322
Building for WINAOWS CE ..nuueiiiitiiiitiiiiiiieteeieeeeaeeeenneeeenaeeesneeessneeeennees 322
Building Berkeley DB for Windows CE ...civueiiiiiiiiiiiiiiiieieereieeenaneeeennees 322
eMbedded Visual C++ 4.0 1.uiiiniiieiiiiiiiiiiiiiie it et eeneeaneens 322

BUILA FESULES .eeniiiieiiiii ittt r e et e eenaeans 322

Building Berkeley DB for different target CPU architecturesc...oe...e. 322
eMbedded Visual C++ 4.0 1.uiiiniiieiiiiiiiiiiiiiie it et eeneeaneens 323

WINAOWS CE NOTES .eenneiineiitiitiiteiiteiitetitetteeteenteenteentreatsenssonssoncssacsnnes 323
Windows CE/MODile FAQ ..cuutintiitiiiiiitiiiiiit it eeatreat et ieteeneeeaeseaesaens 324

30. Building Berkeley DB for VXWOIKS ...uiiiietiriietieittieieteeareeeenneererneeesnseeesneseannes 326
Building for VXWOrks 5.4 and 5.5 ...eiiiiniiiiiiiiiiiiiiiiiii i it eeieerne e renneeeanas 326
Building With Tornado 2.0 or Tornado 2.2eevviiiiiiiiieiinieeniienereneeennnns 326

BUIldiNg fOr VXWOIKS 6.X uueietiiittieiittieiteeeneeeeneerenneerenaeeesneesesnsesonneeennes 327
Building With Wind River Workbench using the Makefilec..ceeieeeneee. 327

A o] 4 T 1T =2 N 328
Building and Running the Demo Programcccveeiiiiiiiiiiiiiniininneninnnn. 328

Building and Running the Utility Programscccoeviiiiiiiiiiiiiiiienneennnen. 328

VxWorks 5.4/5.5: shared Memory ...cccoeeeiiiiiiiiiiiiiieiieiieeeeaneeeanneeanns 329

VxWorks 5.4/5.5: building a small memory footprint libraryccco.o..l. 329

VXWOIKS FAQ .« euutenntiteit ittt et teattetteatteaetaattaaetaaeeneesneesnnesnnoenseennos 329

31. Upgrading from previous versions of Berkeley DBcccveiiiiiiiiiiiiiiieeinneeennnnns 332
Library version informationc.eeeeieieiieiriieiriieeieeeeieeeeieeeenneeessneeeenaeens 332
Upgrading Berkeley DB installationsceeveeeeieieriiieiieteniieierieeeeieeeeeneeennnees 332

32. Upgrading Berkeley DB 1.85 or 1.86 applications to Berkeley DB 2.0c..c....... 337
Release 2.0: iNtrodUCTiONieiiieiiieiiiiii it i e et et eeneeeneeenneens 337
Release 2.0: system iNtegrationceeeeieieiiriieiiiitereieteeiieereneeeeeneeeenneeeennees 337
Release 2.0: converting appliCationscevueeeeieeierieeernieteeiueeesneeeeereeeenneeennnees 338
Release 2.0: Upgrade ReqQUIr€MENLES . .uuiiietiriieterieereineereneeeanneeeenaeeeoneeennnees 339

33. Upgrading Berkeley DB 2.X applications to Berkeley DB 3.0cccveiiiiiiiiiiiinnnnnene. 340
Release 3.0: iNtrodUCtioNicuiiieiiiiiiiiiii it er et eeneeeneeenaeens 340
Release 3.0: environment open/close/unlinkceeveieiiieiiiiieiriieinineerenneenannns 340
Release 3.0: funCtion argUmENTSicvueiiiietirieiieitereieeeeaneeeenneeeeneeeeaneeeannees 343
Release 3.0: the DB_ENV StrUCTUIEuiineiiiiiiiiitiiiiiitiiitieiteentieeienereaeaass 344
Release 3.0: database OPEN/ClOSE .i.uuuiiiietiriietieiieeeiieeeeiaeeeeneeeeeeeeesneeesnnees 345
Release 3.0: db_X@_OPEN tiuuiiiittiiittieietereeteeaneerenaeeeenaeeesneesesaeessnaeeennnens 346
Release 3.0: the DB StrUCTUIec.viiuiiiiiiiiiiiiiiiiiii it eeneeeeenns 346

12/18/2009

DB Reference Guide Page x

Release 3.0:

the DBINFO SErUCEUIE vvvviiiiiiiiiii it teeteeeeeeeeeeeeseeeennnnns 347

Release 3.0: DB->JOTN .uuieruutieeeteeeeteeiueeeeneeeeseeeesneeessneeesnnseesnaesssnseesnnnens 349
Release 3.0: DB->Stal uueeeueiiriietiritieeiueeeaieeeeaneeeesneeessaeeesnaesesnaeessneeesnnnens 349
Release 3.0: DB->SynC and DB->ClOSE t..uiiieueiiiinetieintireieeeeneerenneeranneeenneeeannes 349
Release 3.0: LOCK_PUL ..utiiittieittiiiiteeiteeeeeeeaeeeenneeeanaeeesnneessneeeenneeesnnees 349
Release 3.0: l0CK _dELECE t.uuuiiiietiriit it eeieeeieeeeneeeaaeeeanneeeenaeeeenaeennnnees 349
Release 3.0: LOCK_SEAt viveutirrietieiittieiteeerteeeieeeeeeeeenneeeanaeeesneesenneeeennneenns 349
Release 3.0: 08 _MGiSter tuuuuiiiitieiitieeieteeiiteeeiteeeieeeeenaeeesneeeesneeesnneeesnneen 350
Release 3.0: L0g _Stal tivuuiirieiiiieiieieiiieeteieerenaeeeaeeeerneeeeraeeeonaeessneeeannees 350
Release 3.0: MemMP_Stal vivereiirrietiiiittiiitereieteereereneeerenneeenneeeeraeesonaeeenneens 350
Release 3.0: tXN_DEGIN 1..uuiiiiiiiii i et eiiteeteeeeeeerenneeeaneeeenneesenneeeanes 350
Release 3.0: TXN_COMMIL tiuuutirrttiiiteeiteeieeeeaneeeeaeeeenneeeenaeeesnaseesneeennnees 350
Release 3.0 TXN_SEAt viiiieiiriittiiiiiieei ettt reneeeeaneeeenneerenneeesnseeesneesanns 350
Release 3.0: DB_RMW .iiiiiiiiiiiiiiiitieeieteeiieeeeaneeeenneeesaeeesnaeessnesesnneeesnnees 350
Release 3.0: DB_LOCK _NOTHELDcoueieinieietetireeneeneeneeeneaneaneanenncnneaneanens 351
Release 3.0: EAGAIN ..ottt ieii et et eeeeeeeeneeranneeeanaeeesnsesennessanns 351
Release 3.0: EACCES ..uiiintiiiittieiittieitteeitteeeeeeeaneeeanneeesnaeeesnsesenneeesnnneenns 351
Release 3.0: db_JUumpP_set ciuuiiiiiiiii e i e eere e eeiaeeeeneeeannees 351
Release 3.0: db_ValUE_Set vuvvueiiiitiiiitiiiit it eeiteeeneeeeneerenneerenaeeesneasanns 352
Release 3.0: the DbENnv class for C++ and Javacceeeiiieiiiieinnieeinieeienneennnnens 353
Release 3.0: the Db class for C++ and Javaeieieeieiieiieieeieneeeenneerenneerenneeennes 354
Release 3.0: additional C++ Chang@es ...c.uviieeiiiieiiiitieiietieiieereneeeenaeeenneeeanns 355
Release 3.0: additional Java Changes ...ccuviieiriiirineieiieeieiieeeeneerereeeeeneeeanneees 355
Release 3.0: Upgrade ReqQUIr€MENLES . .uuiieietiriieiirieeiaieeereneeeenneeeenaeeeoneeennnees 355
34. Upgrading Berkeley DB 3.0 applications to Berkeley DB 3.1cccvviiiiiiiiiiinnnnnnnne. 356
Release 3.1: iNErodUCTioN ..uiiueiiiiet i it eii e et rerneeeeneeeenneeeanneeeanas 356
Release 3.1: DB_ENV->0pen, DB_ENV->remoOveccceiiiitiiiietinieeieineeneneeennneens 356
Release 3.1: DB_ENV->S@t_IX_F@COVET .uuiiiinttiiittreietieneerenneeeaneeeesneesenneseanns 356
Release 3.1: DB_ENV->set_feedback, DB->set_feedbackcccvvvvvvvviviiiiiiinnnnnnn. 357
Release 3.1: DB_ENV->set_paniccall, DB->set_paniccallccevvveiiiineiiinnnnnnnnnn. 357
RELlEASE 3.1: DB->PUL tiuuetiiieiiiittieietieietreraeeeenaeeeaeeeesneeeennesssneeesnneeeennees 357
Release 3.1: identical duplicate data itemsceuveiiieiiiiieiiiiiiiiiereieeeeaneerannes 358
RelEase 3.1: DB->Stal uuierueiiritiieitieeieeeeeieeeeeeeeenneeesneeeesnaeeesneeessneeeenneens 358
Release 3.1: DB_SYSTEM_MEMuuiniiiiii i e ereentere et et reeeeneeneeeneenes 359
Release 3.1: (08 _MGiSter tuuuiiiitiiiitieiiteeiieeeieeeeieeeeareeeanneeeesnecesnneeesnneens 359
Release 3.1: MEMP _reQiSter viiuuuiiiitiiiiteeiteeeieeeeaeeeenneeeenaeeasnaeessneeeanneens 359
Release 3.1: tXN_cheCKpointcvueiiiiiiiiiiiiiii it ei e eieeeereeeenaeeaenaees 359
Release 3.1: environment configurationcceeeeeieeeriieieriieieeieeeeeieeeenneeennnees 359
ReElEase 3.1: TCL APl ettt ii et ee ettt teneeeaaneeeanneesanaeessneeeanneens 360
Release 3.1: DB_TMP_DIR ...ciuutiiittieitteenuteeeneeeeaeeeenneeeeneeeesnaesesnesesnnneenns 360
Release 3.1: log file pre-allocationivveeiiiiiiiiiiiiiiiiiiieiieieereieeeaanaens 361
Release 3.1: Upgrade ReqQUIr€MENLES . .uuiiietiriieiinieereietereneeennneeeenaeeroneeennnees 361
35. Upgrading Berkeley DB 3.1 applications to Berkeley DB 3.2ccceviiiiiiiiniinnnnnnnnn. 362
Release 3.2: iNtrodUCtion ...icueiiiiiiiiiiiii i e eeeerenneeeenneeenneeeanneeeanas 362
Release 3.2: DB_ENV->SeT_flags ...civeeiiiiniiriieiiniieiieietreieeennneereneeeeonaceenneens 362
Release 3.2: DB callback functions, app_private fieldcccvvviiiiiiiiiiiiiiinennnes 362
Release 3.2: Logically renumbering recordsceeveiiiieiiiiiiiieieereneeeenneeeannns 362
Release 3.2: DB_INCOMPLETEciutitieeterteteeeeeeeneeaeeaneeneaneaneancancaneaneanens 363
Release 3.2: DB_ENV->S@t_IX_F@COVET 1.uuiiiitiiiitireieteeaeerenneeeenaeeesneesesneeeanns 363

12/18/2009

DB Reference Guide Page xi

Release 3.2: DB_ENV->set_mMUEEXIOCKS ..vvvrrriiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeteeeeeennnns 363

Release 3.2: Java and C++ ODJECE MEUSE ..vviiireiiiitiiiiiiiiiiieeeeieeneneeeanneens 364
Release 3.2: Java java.io.FileNotFoundEXCeptionccevvveiiiiiiiiiiiniieienneenannns 364
Release 3.2: db_dUmMP .iiiniiiiiiiiii e e e et eeeteeenaeeeenaeeanneeeannneenn 364
Release 3.2: Upgrade ReqQUIr€MENTES . .uuiieetirietirieereieeereneeeenneeeenaeeeoneeennnees 364
36. Upgrading Berkeley DB 3.2 applications to Berkeley DB 3.3cccvviiiiiiiiiiinnnnnnnne. 365
Release 3.3: introdUCtioncouiiieiiiiiiiii it ee it r e et eeneeenaeens 365
Release 3.3: DB_ENV->SET_SEIVer ..coiuiiiiiiiiiiiiiiiitiiitiiiiiitiieeiierieeiieeaneeaneens 365
Release 3.3: DB->gel _tY P uviiiittiiiittieiitteeiteeeieeeeaneeeeneeeenneeesaeeesnaeeennnees 365
Release 3.3: DB->get_byteswapped ..cocviiiiiiiiiiiiiiiieiieeieiteeaneeeenneerenneeeanns 365
Release 3.3: DB->set_malloc, DB->set_realloCvvvviviiiiiiiiiiiiiiiiiiiiiiiieieeeennns 365
Release 3.3: DB_LOCK_CONFLICT ..uueineirntineineeneeneaneanennennenneaneaneaneanneneeneenes 366
Release 3.3: memp_fget, ElO ..ciieiiiiiiiiiiiiiiiii it ereieeeeneeeenneeeeneeeannees 367
ReElEase 3.3: tXN_PrEPaAIE vuieuueiieittierteeeeteenneerennteeeraeeesneesesneesennsessnsesannes 367
Release 3.3: --enable-dynamic, --enable-sharedccocveiiiiiiiiiiiiiiiiiiniieennne.. 367
Release 3.3: --disable-bigfile ..cuiirieiiiiiiiiiii i rir e e e eenaens 367
Release 3.3: Upgrade ReqQUIr€MENLS . .uuiieetirieeieieereietereneeennneeeenaeeeoneeennnees 367
37. Upgrading Berkeley DB 3.3 applications to Berkeley DB 4.0cceivviiiiiiinnnnnnnne. 368
Release 4.0: INtrodUCTioNnicuiieiiieiiiiiiiii ittt ettt eenteeaeeennaans 368
Release 4.0: db_deadlockco.veiuiiiiiiiiiiiiiiiiiiiiii i e eees 368
Release 4.0: LoCK XXX .uiieiieiiiiii ittt ettt e it eenteenteeneseasseanaans 368
ReElEase 4.0: L0G XXX 1uuutiiiietiiittieiteeeieeeeaeerenaeeeenaeeesnaeeenneeesnaeessneeennneens 368
Release 4.0: MeMP_ XXX 1iuutiritteeitieeieeeeaeeeeseeeenneeesaeeesnasessnasessneeesnnees 369
Release 4.0: TXN_XXX tuuiieiiitiiit ittt ettt eenteeteenteetsensrentsenssnnssnassnns 370
Release 4.0: db_env_set XXX .iiuiiiiiiiiiiiiiiiiiiieiieiie et eintetiteeneeeneeenseens 371
Release 4.0: DB_ENV->SET_SEIVEI ...iiiiiiiiiiiiiiiiiitiiiiiiiiiitiieiieiieeiieeaneeanaees 372
Release 4.0: DB_ENV->SEt_LK_MaX tievutirretieneereneeereneeeenneeeenneeeonaeessneeeenneens 372
Release 4.0: DB_ENV->10CK_id_free ..cvveiiiiiiiiiiiiiiiieiiiiiiiiceeieeeneeeenneeeanas 372
Release 4.0: Java CLASSPATH environment variablecccovviiiiiiiiiiiiiniinninnns 372
Release 4.0: C++ 0Stream ObDJECES ..uvirrreiiiiteiiitieiietieneerenneeeaneeeesneerenneeeanns 373
Release 4.0: application-specifiC rECOVEIY ..iiveiiriieieiiiieiieieiieeeiieeeenneeaennees 373
Release 4.0: Upgrade ReqQUIr€MENTES . .uuiieietiriieteeieeieietereneeeenneeeenaeeeoneeennnees 374
4.0.14 Change LOG tuuueiiiintieeitteeetttennteeennteeeneeeesneeeesneeesnneessnnesesnssesnnneenns 374
Major NeW FEatUIES: .ueeriiiiiiiiieteiiiat e reeeianteeseearanneesseeannneesssanns 374
General Environment Changes: ...ceeiueireieiiiiiieeeieeerieeeeeneeeeseeeesneeesnnees 374
General Access Method Changes:ccvueiiiieiiiiieiieiitireieeeiieeeeneerenneeennns 375
Btree Access Method Changes:uiiieiiiiiiiiiiiiiiiiiiiiie et eeieeeeneeeannees 375

Hash Access Method Changes:c.ueiieeiiiiiiiiiiiiiitieiitreieereneeeenneeeannes 375
Queue Access Method Changes:viiiiiiriiiiriitieiieeeieeeeieeeenneeeanneeenns 375
Recno Access Method Changes:ceueieiiiiiiiiiiiiiiiiiieeeieeeeieeeenneeennnees 375

O\ o B O - Ty o £ POt 375

JaVa APl Changes: tuuutiiiittiiiteeeitteeeteeenneeeenateaaneesesneeeesnseesnnssesnneenns 375

TCL AP CNaNgES: uveiieietttiieteeeetreiaeeeeneeeenneeeenneeeesaeeesneeesnnseesnaeesnneens 376

RPC Client/Server Changes: «iveuueieeieteeieieeieeeeeneeeeaneeeesneeesnneeeenaesesneens 376

XA Resource Manager Changes: ti.uuiieeeiiereerereterneeeenneereraeeeonaeeesneeeanns 376
Locking Subsystem Changes:cccuiieiiiiiiiiiriitereieeeenieeeenneeesnneeennaeenns 376
Logging Subsystem Changes:cccuiiiiiiiiiiieiiiitireieeeenieeeenneeesnaeeennaeenns 376
Memory Pool Subsystem Changes:ccceieeiuiierieterrieereneeeenneeeeneeeenneeenns 376
Transaction Subsystem Changes:cceiiiieiiiiieiiiiitireieteenieerenneerenneeennns 377

12/18/2009 DB Reference Guide Page xii

UBiltY CNanges: «veieniiiiitt it ieiteeiteeeieteeeneeeanneeeanaeeesneesesneeeannneanns 377

Database or Log File On-Disk Format Changes:ccceiviieiiiiieiiiineeennneeannns 377
Configuration, Documentation, Portability and Build Changes: 377

38. Upgrading Berkeley DB 4.0 applications to Berkeley DB 4.1ccccviiiiiiiiiiiinnnnnnnnn. 379
Release 4.1: INtrodUCtionc.uiieiiieiiiiii ittt ettt e et eeaeeeneens 379
Release 4.1: DB_EXCL .eiuutiiniiiiiiitiiitiiitiiiiiiitieatieetiitieeerreerieesneesneeenneennes 379
Release 4.1: DB->associate, DB->open, DB->remove, DB->renameccc....... 379
Release 4.1: DB_ENV->108 _register ..uuiieieiiiieiiiitireieteenieerenneeeenaeeesneeeenneeens 381
Release 4.1: st_flushCOmMMItooiniiiiiiiiiiiiiii e 381
Release 4.1: DB_CHECKPOINT, DB_CURLSNctttiieirnernenneinennenennenernenennens 381
Release 4.1: DB_INCOMPLETEciueitieitenteteneereeneeaeeeneeneaneaneancancancaneanens 382
Release 4.1: DB_ENV->MEMP_SYNC ..vttirutirrnttrenneerenaeeeeneeeesneerenneeesnsseesneasanns 382
Release 4.1: DB->stat.hash_nelemccooiiiiiiiiiiiiiiiiiiiiiiiiii e 382
Release 4.1: Java @XCEPLIONS tivuuueirireierintteeieeeeeneeeeaeeeesneeesnaeeesnaeessneeesnnees 382
Release 4.1: C++ @XCEOPLIONS vuivuuetiernteerineeeeieeeeseeeesneeeesneeesnaseesnaeessneeesnnees 382
Release 4.1: Application-specific logging and recoveryc..cccevvvieiiiieennneeennnen. 383
Release 4.1: Upgrade ReqQUIr€MENTES . .uuiieetiriieterieereieeereneeennneeeenneeeoneeennnees 383
Berkeley DB 4.1.24 and 4.1.25 Change LOgccvueiieiutiiiietieneeienneerenneeenneeeannes 383
Database or Log File On-Disk Format Changes:ccceieiieiiriieeienneeennneeannns 383
Major NeW FEatUIeS: .ueeiiiiiieiiitteiiiieereeenanteeeeeannneessesesnnneesssanes 384
General Environment Changes: ...cieieeieiieiiiiiiteeiieeerieeeeneeeeseeeennecesnnees 384
General Access Method Changes:ccvueiiiieiiiiieiieitiriiteeiieeeeneerenneeennns 385
Btree Access Method Changes:uiieieiiiiiiiiiiiiiiiiiiieieieeneeneneeeanees 386

Hash Access Method Changes:c.ueiiieiiiiiiiiiiiiiieiiereieeeeneeeenneeeannes 386
Queue Access Method Changes:viieiuiiiiiiiriitieiieeeiteeeineeeeneeeanneeenns 387
Recno Access Method Changes:ceueieiiiiiiiieiiiiiieiiieeeieeeeieeeenneeeennees 387
C++-SPeCific APl Chan@es: .vvietiieiteeiieteeeieeeenneeeenneeeeneeeesnseessneeesnneennn 387
Java-specific APl Changes: ..uiieietiriietieiiteeeiieeeenneeeeneeeeeneeeesneeesnneeesnnees 388
TCl-SpPeCific APl Changes: «iieuuiiiiietieiittieitereieteaeeeeenneereraeeesneeeenneeeanns 388
RPC-specific Client/Server Changes:iieeeiieieeieietiinieeeeieeereneeeenneceannens 388
Replication Changes:uuiiieiiiiitiiiiitiiiitieiietreieereneeeeaneerenneerenaeeennes 388

XA Resource Manager Changes: ti.uueieeeeierueereneteeeeeeenneerenneersnaseesneeeanns 388
Locking Subsystem Changes:ccceiieiiiiiiitiriintereieeeeneeeenneeeenaeeennaeenns 389
Logging Subsystem Changes:cccuiieiiiiiiiiiiiiitieiieeeerneeeenneeeenaeeennaeenns 389
Memory Pool Subsystem Changes:ccveeeitiriieteerieereneeeenneeeeneeeenneeenns 389
Transaction Subsystem Changes:cceiiiieiiiiieiiiiitiriiternieerenneerenneeennes 390
UBilitY CNanges: vuiieeiiiiittiiiitieitteeiteeeneeeeeneeeanneeeanaeeesnaesesneeeannneenns 390
Configuration, Documentation, Portability and Build Changes: 390
Berkeley DB 4.1.25 Change Loguuiiiiiiiiiiiiiiiiiiiitieiteieneeeeneeeesneesenneeeanns 392
39. Upgrading Berkeley DB 4.1 applications to Berkeley DB 4.2ceivviiiiiiiinnnnnnnne. 393
Release 4.2: INtrodUCtioNnoeiieiiieiiiiii ittt en et eeneeeaeeenneens 393
RELEASE 4.2: JAVA ettt ittt ettt et eteetteteeatreatsaneianeanaaaaens 393
Release 4.2: Queue access MEethodeiuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiireireernees 394
Release 4.2: DB_CHKSUM_SHAT ...ttt eet e eeaeeneeneeneaneaneanennes 395
Release 4.2: DB_CLIENT ..uuiieiiiiiiiiiiii ittt etneerieesaesneeaneeannens 395
Release 4.2: DB->del ..uuuuiineiiiiiiiiii it eeas 395
Release 4.2: DB->set_cache_priority ..ceeveeeeiieiiiiiiieiiiiieiiiiiieeieeeeieeeenneens 395
Release 4.2: DB->Verify .uiiiitiiiiiiii i i et reieeerereeeanneeranaeerenaeennneens 396
Release 4.2: DB_LOCK_NOTGRANTEDceiutiniiniiniainnennererneeneeneeneeneeneennennss 396

12/18/2009

DB Reference Guide Page xiii

Release 4.2: RePliCAtiON .iiiueiiiitiiiiiiii i eitereieteeieeeenaeeeeneeeenneeeanneen 396

Replication initializationeeeeeeiieiriiiiiiiiiiiii i eeieeeeieeeenneeeannees 396
Database methods and replication clientscceevveiiiiiiiiiiiiiiiiiiiiiieennnnnnn 397
DB_ENV->rep_proCess_MESSAZE() «veeereerenneerreasanneeeseeessnneesssessnassesseannas 397
Release 4.2: Client replication environmentscveeeiiieiiiiieiieieeneieeeenneeeennees 397
Release 4.2: TCLAPI ...t ettt e s e eeaeeenaes 397
Release 4.2: Upgrade ReqQUIr€MENTES . .uuiieietirieierieeraieeereneeeenneeeenaeeeoneeeennees 397
Berkeley DB 4.2.52 Change LOguuiiiieiiiitiiiitieiittieineerenneereneeeesneesenneeeanns 397
Database or Log File On-Disk Format Changes:ccceieiieiiiiieiiinneennnnneannns 397

NEW FRATUIES: ettt i ittt rerat e raesenas 398
Database Environment Changes:cveeiieieiiiieiiiietereieerenneeeeneeeesneceennees 398
Concurrent Data Store Changes:iieeueiiiietiriietieiieereineereneeeenneerenneeeanns 400
General Access Method Changes:ccvueiieieiiiiieiieiitireiteeaneereneerenneeennns 400
Btree Access Method Changes: . ..uiiieiiiiiiiiiiiiiiiiii i i eeieeenneeeannees 402

Hash Access Method Changes: ...c.uviieeiiiiiiiiiiiiiiieiiereieereneeeenneeeannes 402
Queue Access Method Changes:viieiiiiiieiiriiieiieeieeeieeeeeneeeenneeenns 403
Recno Access Method Changes:eeueieeiiieiieiiiiiieiiieeieeeeieeeenneeeannees 404
C++-SPeCifiCc APl Chan@es: .vvieutiieiteeeieteeeiteeeaeeeenneeeeneeeesnseeesneeesnnnennn 404
Java-specific APl Changes: ..viieietiriietieiiteeeieeeeineeeaieeeeeneeeesneeesnneeesnnees 405
TCl-SpPeCific APl Changes: «iiiuuiiieietieittieitereieteeaeeeenneerenaeeesneeeenneeeonns 406
RPC-specific Client/Server Changes:iieveiiiieiiiietirnieeeeieereneeeenneeeannees 406
Replication Changes:uuiiieiiiiitiiiiiiiiit it reieereneeeeaeerenneeranneeennes 406

XA Resource Manager Changes: ti.uueieeetieieerereteereeeesneerenneeeonaeeesneeeanns 409
Locking Subsystem Changes:ccceiieiiiiiiiieiiiiutereieerenneeeenneeesnneeennaeenns 409
Logging Subsystem Changes:cccuiiiiiiiiiiiiiiiitireneeeenieeeeneeesnneeennaeenns 410
Memory Pool Subsystem Changes:cceeeeieiriieteerieereneeeeineeesneeeenneeenns 411
Transaction Subsystem Changes:ccceiiiieiiiiieiiiiitiriieteenieerenneerenneeennns 412
UBiltY CNanges: «viieniiiiittiiiitieieeiteeeneeeeaneeeanneeeanneeesnaesenneeeennneenns 412
Configuration, Documentation, Portability and Build Changes: 413

40. Upgrading Berkeley DB 4.2 applications to Berkeley DB 4.3cccceviiiiniiininnnennes 416
Release 4.3: INtrodUCtionceiiieiiieiiiiii it et e et eeaeeenneens 416
RELEASE 4.3: JAVA ettt ittt ettt et et ee e reatreatrenetanearaaaaens 416
Release 4.3: DB_ENV->set_errcall, DB->set_errcallevvvviviiiiiiiiiiiiiiiiiiiiienennn. 417
Release 4.3: DBCUISOr->C_PUL uuirrueteerneerenneeraneeeesneeeesneerenaeessnsesesnsesesneeeanes 417
NI I N D S B - | N 417
Release 4.3: DB_ENV->Set_VerboSecocuiiiiiiiiiiiiiiiiiiiiiiiieiiieiieeeneeennnes 417
RElEaSE 4.3: LOGGING .uvtrenttiiietieittrennteeeneeeeaneerenneeeenneeesnaseesnsessnnneesnnnenns 418
Release 4.3: DB_FILEOPEN ...c.ueiutiietetitreereeeeeeneeneaneanenneaneaneaneaneenneneens 418
Release 4.3: ENOMEM and DbMemOryEXCEPLioN ..vvuueieiieeieiieeerineeeeineeneneeennnnens 418
Release 4.3: RePlICAtION viiiiueiiiiitiiiiii i it reieeeeieeeenaeeeenaeeenneeeanneen 419
Release 4.3: Run-time configurationceeveeiiiiiiriiiiiiiiiiiieeneieeennneeennneens 419
Release 4.3: Upgrade ReqQUIr€MENTES . .uuiieietiriieierieereieeereneeeanneeeenaeeeeneeennnees 419
Berkeley DB 4.3.29 Change LOguuiiiieiiiiiiiiiitiiiietieietrenneeeenaeeesneeeenneeeanns 419
Database or Log File On-Disk Format Changes:ccceiviieiieiieeienneennnneeannns 419

NEW FRATUIES: ettt et eet e raesenas 419
Database Environment Changes:cveeiiiieiiiieiieietereieeeenneeeeneeeesneceennees 420
Concurrent Data Store Changes:iieeeiiiietiriietieiitereieereneeeesneeeenneeeanns 421
General Access Method Changes:cceueiieieiiriieiieitireiteeineereneerenneeennns 421
Btree Access Method Changes: . ..uiiieiiiiiiiiiiiiiiiiiiiiiieieeieeieeaeneeeanneen 422

12/18/2009

DB Reference Guide Page xiv

Hash Access Method Changes:c.ueiiieiiiiiiiiiiiiiiiiieiiereieereneeeenneeeannes 423

Queue Access Method Changes:uiiiiuiiiiiiiriiieiieeieeeieeeeaneeeanneeenns 423
Recno Access Method Changescevueieeieiiiiiiiiiieiiieeieeeeieeeenneeennnees 424
C++-SPeCific APl Chan@es: .vvieentiieiteeeieteeeieeeeateeenneeeeneeeesneeeesneeesnnnennn 424
Java-specific APl Changes: ..uiieiuiiriieieiiteeeiieeeeieeeeieeeeeneeeesneeesnneeesnnees 424
TCl-SpPeCific APl Changes: «iiiuuiiieietieittieitereieteeaeeeenneerenaeeesneeeenneeeonns 425
RPC-specific Client/Server Changes:iieeeiiiiieiiiietrreieerereeeeeneeeenneeeennees 425
Replication Changes:uiiiieiiiitiiiiiieiitieiieeteieereneeeenneerenneeranneeennes 425

XA Resource Manager Changes: ti.uuiieeetiereereneteenneeeenneerenneeeonaseesneeeanns 427
Locking Subsystem Changes:cccuiieiiiiiiiieiirieteeeieerenneeeenneeeenaeeennaeenns 427
Logging Subsystem Changes:cccuiiiiiiiiiiieiiiitiriieeeenieeeenneeeenaeeennaeenns 427
Memory Pool Subsystem Changes:ccceeeeiiieiieteerieereneeeenneeesneeeennneenns 428
Transaction Subsystem Changes:ccceiiiieiiiiieiiiiitiriieeeenieerenneerenneeennns 428
UBilitY CNanges: «uiieniiiiittiiiit it eeiteeeneeeeaneeeanneeeanaeeesnaesesneecannneenns 428
Configuration, Documentation, Portability and Build Changes: 429

41. Upgrading Berkeley DB 4.3 applications to Berkeley DB 4.4ccccevviiieiiininnnnnnes 431
Release 4.4: INtrodUCtionc.iiieiiieiiiiiiii ittt ettt e et eeneeeneaens 431
Release 4.4: DB_AUTO_COMMIT ...unuinniiniiiieieeeeeeteerererneeneeneeneeeennenes 431
Release 4.4: DB_DEGREE_2, DB_DIRTY_READ ..cvtiiiiiiiiiiiiiiiieeiitiietieeeeseeeeeeannns 431
Release 4.4: DB_JOINENVuiiiiiiiiiiiiiiiiiiiet ittt erieesaeeaneeaneenns 431
RELEASE 4.4: MULEXES touutinntiitiiitiitiit ettt teatietteatteattaatrenttanesancsnacsnness 432
Release 4.4: DB_MPOOLFILE->set_clear_lencccceiiiiiiiiiiiiiiiiiiiiiiiiininennnennnnns 432
Release 4.4: 10CK StatiStiCs «iuuiiniineiiieiiiiii it et et eeeeeeeeaes 433
Release 4.4: Upgrade ReqUIr€mMENES . .uuiieietiriieteeieerenetereneeeenneeeenaeeeoneeeennees 433
Berkeley DB 4.4.16 Change LOguiiiieiiiiiiiiitieiietieineerenneerenaeeesneeeenneeeanns 433
Database or Log File On-Disk Format Changes:ccceieiieiiriieeienneeennneeannns 433

NEW FRATUIES: ettt i ittt eet e eraesenas 433
Database Environment Changes:cveeiieieiiiieiiiietereieeienneereneeeesneceannees 434
Concurrent Data Store Changes:iieetiieietiriietieiiterenneeraneeeesneeeenneeeanns 435
General Access Method Changes:ccvueiieieiiriieiieitireiteeiieereneerenneeennns 435
Btree Access Method Changes:uiiiieiiiiiiiiiiiiiiiiiiiiieieieeieeeeeneeeannees 436

Hash Access Method Changes: ...c.uiiiieiiiiiiiiiiiiiiieiiereieeeeneeeenneeeannes 436
Queue Access Method Changes:viiiiiiriiiiriitieiieeeieeeeieeeenneeeanneeenns 436
Recno Access Method Changesccvueieiiiiriieiiiiiieiiieeieeeeieeeenneeennees 436
C++-SPeCifiC APl Chan@es: .viieetiiiiteeeieteeeieeeeeteeeineeeeneeeesneeeesneeesnneennn 437
Java-specific APl Changes: ..uieeiuiiriieeieiitteeiieeeeieeeeieeeeeneeeesneeesnnecesnnees 437

Java collections and bind APl Changes:civveiiiiiiiiiiiniieeeniieeenneeeanness 437
TCl-SpPecCific APl Changes: «iieuuiiieittieietieitereieteeeeeeenneerenaeeesneeeenneeeonns 438
RPC-specific Client/Server Changes:iieeeiiiieiieietiiiieeeereereneeeenneceennees 438
Replication Changes:uiiiieiiiiiiiiiitieiitieiitereitereneeeereeeenneerenneeennes 438

XA Resource Manager Changes: ti.uuiieeeeieieereneteeneeeenneerenaeeesnaseesneeeanns 439
Locking Subsystem Changes:cccuiieiiiiiiieirriuteeeieerenieeeenneeesnaeeennaeenns 439
Logging Subsystem Changes:cccuiiiiiiiiiiieiiiitireieeeenieeeenneeesnaeeennaeenns 439
Memory Pool Subsystem Changes:ccueeeiiiriieternieereneeeenneeesneeeenneeenns 440
Transaction Subsystem Changes:ccviiiieiiiiieiiiiitiiiieteenieerenneerenneeennes 440
UBilitY CNanges: «viieeiiiiitt it ieieeiteeeneeeeeneeeanneeeanaeeesnaesenneeeannneenns 441
Configuration, Documentation, Portability and Build Changes: 441
Berkeley DB 4.4.20 Change LOguuiiiieiiiitiiiitiniietieaieerenneeeenaeeesneesenneeeanns 442
Changes since Berkeley DB 4.4.16: ..ciiuiiiiiuiiiiieiieiieerenneereneeeeseeeenneeeanns 442

12/18/2009 DB Reference Guide Page xv

42. Upgrading Berkeley DB 4.4 applications to Berkeley DB 4.5civiiiiiiiiniiiiieinnnnnnn. 444

Release 4.5: INtrodUCtioncuiiieiiieiiiiii it er et e et eeaeeeneens 444
Release 4.5: deprecated iNterfaces ..ovvveiieeeiiiitiriiieiiereiteeeieeeenneerenneeeanns 444
Release 4.5: DB->Set_iSalive .ovuveiiiiiiiiiiiiiiiiiiiiiiiiiiiii i rienieeeneeeeees 444
Release 4.5: DB_ENV->rep_€leCt ..uiveiiiiiiiiiiiieiieniieeieeeeneeeeeneeeeeneeennnees 444
Release 4.5: Replication method Namingcccevviieiiiiiiiiiiiiiiiiiiiiiireieennneens 445
Release 4.5: Replication @VENTS ...civveiiiitiiiiiiiiiiiieereieeeeneerenaeerenaeeanneens 445
Release 4.5: Memory POOL APluiiiiiiiiiieiiiieiieeiiteeieeeenaeeaenaeeeaneeennnees 445
Release 4.5: DB_ENV->set_panicCall ...oueieieiiiiiiiiiiiiiiiiiiiiiiieereieeeenneeeannes 445
Release 4.5: DB->Set_PageSiZe .uuiviuiiiiieiieiietinieteeiteeeneeeeeneeeesneeesnneeesnneenns 446
Release 4.5: Collections APlcceiieiiieiiiiiiiiii it eeit et eeeeaees 446
Release 4.5: --enable-pthread_selfccoveiiiiiiiiiiiiiiiiiiiiii i rii e raeens 446
Release 4.5: Recno backing text source filescovveviieiiiiiiiiiiiiiiiieiieienneenanns 446
Release 4.5: Application-specific loggingcceeiiiieiiiiieiiiiiiiriiieiieeieieeenaneens 447
Release 4.5: Upgrade ReqQUIr€MENES . .uuiieetirieierieereietereneeennneeeenaeeeoneeennnees 447
Berkeley DB 4.5.20 Change LOguuiiiiiiiiiiiiiitiiiittieieerenneerenaeeesneesenneeeanns 447
Database or Log File On-Disk Format Changes:ccceieiieiiriieeienneeennneeannns 447

NEW FRATUIES: ettt i i e et eret e raesenas 447
Database Environment Changes:cveeiieieiiiieiieieeireieerereeeeneeeesneceennees 447
Concurrent Data Store Changes:iieeeiieietiriietieiittreieereneeeesneeeenneeeanns 448
General Access Method Changes:ccvueiiiieiiiiieiieitiriiteeiieeeeneerenneeennns 448
Btree Access Method Changes:uiiieiiiiiiiiiiiiiiii it ieeieeeieeeeneeeannees 449

Hash Access Method Changes:c.ueiiieiiiiiiiiiiiiiiiieiitreieereneeeenneeeannes 449
Queue Access Method Changes:viieiuiiiiiiiriitieiieeeiteeeineeeeneeeanneeenns 449
Recno Access Method Changes:eeueieeiiiiiiieiiiiiiiiiiereieeeeieeeenneeennnens 449
C++-SPeCifiCc APl Chan@es: .vvieentiiiitieeieteeeieteeateeenneeeeneeeesnseeesneeesnneennn 449
Java-specific APl Changes: ..viieietiriietieiiteeeieeeeineeeaieeeeeneeeesneeesnneeesnnees 450

Java collections and bind APl Changes:civvieiiiiiiiiiieriieeeniieeeeineeeenness 450
TCl-SpPeCific APl Changes: «iieuuiiiiietieiittieitereieteaeeeeenneereraeeesneeeenneeeanns 450
RPC-specific Client/Server Changes:iieeeiieieeieietiinieeeeieeereneeeenneceannens 450
Replication Changes:uuiiieiiiiitiiiiitiiiitieiietreieereneeeeaneerenneerenaeeennes 450

XA Resource Manager Changes: ti.uueieeeeierueereneteeeeeeenneerenneersnaseesneeeanns 451
Locking Subsystem Changes:ccceiieiiiiiiitiriintereieeeeneeeenneeeenaeeennaeenns 451
Logging Subsystem Changes:cccuiieiiiiiiiiiiiiitieiieeeerneeeenneeeenaeeennaeenns 451
Memory Pool Subsystem Changes:ccveeeitiriieteerieereneeeenneeeeneeeenneeenns 451
Transaction Subsystem Changes:cceiiiieiiiiieiiiiitiriiternieerenneerenneeennes 451
UBilitY CNanges: vuiieeiiiiittiiiitieitteeiteeeneeeeeneeeanneeeanaeeesnaesesneeeannneenns 452
Configuration, Documentation, Portability and Build Changes: 452

43. Upgrading Berkeley DB 4.5 applications to Berkeley DB 4.6cccccvveiiieiiiniinnnnes 454
Release 4.6: INtrodUCtioNncuiiieiiieiiieiii it er et e et eeaeeennaens 454
Release 4.6: C API cursor handle method namescceveiiiiieiiiiiiiiiiieieneeennnens 454
Release 4.6: DB_MPOOLFILE->PUL +eivutiiiieeireietieneereneeerenaeeenneeeesneesonaeennneens 454
Release 4.6: DB_MPOOLFILE->SET ...ccutiiuiiiniiiiiiiiieiiiiiieeiieeiieerieeineenneesneens 455
Release 4.6: Replication EVENTS ...civviiiiiiiiiiiiiiiiiieeniieeeaneerenaeereneeeanneens 455
Release 4.6: DB_REP_FULL_ELECTIONcuuiiniiiieneneneeneeeenteneeeeneeneeneenens 455
Release 4.6: Verbose OULPUL ...uiieretirrretieiittiiiteeeneteeneerenneerenneeesneesenneesanns 456
Release 4.6: DB_VERB_REPLICATIONcuutuuirniiniinieinenerenneaneeneeneeneeneenneness 456
Release 4.6: WINAOWS X .euuiiiniiiiiiiiiiiiiiiii i irtiietieeereetieesneeeieeeneeenses 456
Release 4.6: Upgrade ReqQUIr€MENTES ...uuiieietiriieeerieeieneeereneeeenneeeenaeeeoneeeannees 456

12/18/2009

DB Reference Guide Page xvi

Berkeley DB 4.6.21 Change LOguuiiiieiiiiitiiiitiiiittieiieeienneeeanneeeseesenneeeanns 457

4.6.21 PatChes: .uiieeiiiiiiii i e e e e 457
T L - Y ol 1 N 457
Database or Log File On-Disk Format Changes:ccceiviieiiiiieiieneerenneeannns 457

NEW FRATUIES: ettt i ittt rerat e raesenas 457
Database Environment Changes:cveiiieieiiiieiiiietireieerenneeeeneeeesneceennees 458
Concurrent Data Store Changes:iieeeiiiietiriietieiieereineereneeeesneeeenneeeanns 459
General Access Method Changes:cceueiiiieiiiiieiieitiriiteeiieerenneerenneeennns 459
Btree Access Method Changes: . ..uiiieiiiiiiiiiiiiiiiiii i i eeieeenneeeannees 460
Hash Access Method Changes:c.uviiieiiiiiiiiiiiiiiieiiereieeeeneeeenneeeannes 460
Queue Access Method Changes:viiiiiiiiiiiriiieiieeiieeeieeeeaneeeanneeenns 460
Recno Access Method Changes:cevueieeieiiiiiiiiiiiieiiieeeieeeeieeeenneeennnees 460
C++-SPeCific APl Chan@es: .vvieentiieitereieteeeieeeeaeeeenneeeaneeeesneeeesneeesnneennn 461
Java-specific APl Changes: ..uiieiuiiriitieiiteeeiieeeeieeeaieeeeeneeeesneeesnneeesnnees 461
Java collections and bind APl Changes:ccvvieiiiiiiiiiieiriieeeniieeeeneeeanness 461
TCl-SpPeCific APl Changes: «iiiuuiiieietieittieitereieteeaeeeenneerenaeeesneeeenneeeonns 461
RPC-specific Client/Server Changes:iieveiiiieiiiietirnieeeeieereneeeenneeeannees 462
Replication Changes:uiiiieiiiiitiiiiieiitieiitereneereneeeesneeranneeranneeennes 462

XA Resource Manager Changes: ti.uuiieeeeiereerereteeeeeeenneeresaeeeenaeeesneeeanns 463
Locking Subsystem Changes:ccceiieiiiiiiiieierietereieeeenieeeenneeeenaeeennaeenns 463
Logging Subsystem Changes:cccuiiieiiiiiiiiiiiitiriieeeenieeeenneeeenneeennaeenns 463
Memory Pool Subsystem Changes:ccceeeeieiriieterrieereneeeenneeesneeeenneeenns 463
Transaction Subsystem Changes:ccviiiieiiiiieiiiiitiriieteenieerenneerenneeennes 463
Bty CNanges: «uiieniiiiitt it it eeiteeeieeeeeneeeanneeeanaeeesnaesenneeeennneenns 464
Configuration, Documentation, Portability and Build Changes: 464

44. Upgrading Berkeley DB 4.6 applications to Berkeley DB 4.7ccoeeiviiiiniiiniinnennes 465
Release 4.7: INtrodUCtioncuiieiiieiiiiii ittt ei et e et eeaeeenaens 465
Release 4.7: Run-time configurationceeveiiiiiiriiiiiiiiriieeneieeeneneeennneens 465
Release 4.7: Replication APeiiiieiiiiiiiiii it ieiieeieereneeeneeeeannaans 465
Release 4.7: TCLAPI ...ttt e ee et e e e e e e eenees 465
Release 4.7: DB_ENV->set_intermediate_dircooviiiiiiiiiiiiiiiiiiiiiinieineennnn. 466
Release 4.7: Log cONfigUrationcccveeieieiiiiieieeieeierieeeeneeeenneeesneeeeoneeeannnees 466
Release 4.7: Upgrade ReqQUIr€MENTES ...uuiieietiriieierieeraieeereneeeenneeeenaeeeeneeennnees 466
Berkeley DB 4.7.25 Change LOguuiiiiniiiiiiiiiiitiiiittieeietienneeeenneeesneeeenneeeanns 466
Database or Log File On-Disk Format Changes:ccceiviieiieiieiiinneennnneeannns 466

NEW FRATUIES: ettt i ittt ert e raesenas 466
Database Environment Changes:cveiiiiieiiiieiiiietereieerenneeeeneeeesneceennees 467
Concurrent Data Store Changes:iieeeiiiitiriietieiieereieereneeeesneeeenneeeanns 467
General Access Method Changes:ccvueiieieiiiiietiiiitereieerireereneerenneeennns 467
Btree Access Method Changes:eiiieiiiiieiiiiiiiiii it ieeieeieeeeneeeannees 468

Hash Access Method Changes: ...c.uiiiieiiiiiiiiiiiiiiiieiiereieereneeeenneeeannes 468
Queue Access Method Changes:viiiiiiriiiiriitieiieeeieeeeieeeenneeeanneeenns 468
Recno Access Method Changes:ceueieiiiiiiiiiiiiiiiiiiireieeeeieeeenneeennnees 468
C-SpeCific APl Chang@es: «iuuueiieetieiietieiieteeieeeeaneeeaaeeeesneeesnaeeesnneeenneens 468
Java-specific APl Changes: ..vieeiuiiriieeieiiteeeieeeeneeeaieeeeeneeeesneeesnneeesnnees 468
Direct Persistence Layer (DPL), Bindings and Collections API:ccccvvnnne. 469
TCl-SpeCific APl Changes: «iiiuuiiieitiieietieitereieteaeeeeenneerenaeeesneeeenneeeanns 469
RPC-specific Client/Server Changes:iieeeiieiieiieietiriieerereeereneeeesneceannens 470
Replication Changes:uuiiieiiiiitiiiiiiiiitieiitereieereneeeeneerenneeranneeennes 470

12/18/2009

DB Reference Guide Page xvii

XA Resource Manager Changes: ti.uuiieeeeiereereneteeeieeeenneerenneeesnaeeesneeeanns 471

Locking Subsystem Changes:cccuiieiiiiiiitiiiietereieerenieeeenneeeenaeeennaeenns 471
Logging Subsystem Changes:cccuiiiiiiiiiiiiiiiitieiieeeerieeeeneeeenaeeennaeenns 471
Memory Pool Subsystem Changes:ccceeeeitiriieteerieerenneeeenneeesneeeenneeenns 472
Mutex Subsystem Changes:ccceiiiiiiiiiiiiiiiiiiieeieieeriieerenneerenaeeennens 472
Transaction Subsystem Changes:ccviiiieiiiiieiiiiitireieteenieerenneerenneeennns 472
UBilitY CNanges: «uiieniiiiittiiiit it eeiteeeneeeeaneeeanneeeanaeeesnaesesneecannneenns 472
Configuration, Documentation, Sample Application, Portability and Build
(63T Ty 1= S PP PP 473
45. Upgrading Berkeley DB 4.7 applications to Berkeley DB 4.8ccevveviiiieiinineiennnnnn. 474
Release 4.8: INtrodUCtioncuiieiiieiiiiiiii it ei et e et eeneeenneans 474
Release 4.8: Registering DPL Secondary KeYScieveeiiiieiiiieireneeennneeeenneeeennees 474
Release 4.8: Minor Change in Behavior of DB_MPOOLFILE->getccccvvvviineennnn... 474
Release 4.8: Dropped Support for fcntl System Calls vovvveiiiieiiiiiiiiieiiieennnnen. 475
Release 4.8: Upgrade ReqUIr€mMENES . .uuiiiietiriieiirieereietereneeeenneeeenaeeroneeennnees 475
Berkeley DB 4.8.26 Change LOguiiiieiiiiiiiiiiiieiittieieerenneeeenneeesneeeenneeeanns 475
Changes between 4.8.24 and 4.8.26: ...civieiiiiieiiiiiiiitiiiieeieiieerenneeannens 475
KNOWN DUZS 1N 4.8 1ottt ei ettt eeeeeeenaeeaanaeeenneeeanneens 476
Changes between 4.8.21 and 4.8.24: ...ciiriiiiiiiiiiiiiiiiiiiiiieireieerenaeeannens 476
Changes between 4.7 and 4.8.21: ..iiiriiiiiiiiiiii it eiieereneeeenneeannes 476
Database or Log File On-Disk Format Changes:ccceieiieiiriieeienneeennneeannns 476
NEW FRATUIES: ettt i ittt eet e eraesenas 476
Database Environment Changes:cveeiiiieiiiieiiiieeereieereneereneeeesneceennees 477
Concurrent Data Store Changes:iieeueiiiieiiriietieiittieieereneeeesneeeenneeeanns 477
General Access Method Changes:ccvueiieieiiriietiiitireieeriieeeeneerenneeennns 477
Btree Access Method Changes:uiiiieiiiiiiiiiiiiiiiiiiiiieieieeieeeeeneeeannees 478
Hash Access Method Changes: ...c.uiiiieiiiiiiiiiiiiiiieiiereieeeeneeeenneeeannes 478
Queue Access Method Changes:uiieiriiiiiiiriiieiieeieeeieeeenneeeanneeenns 478
Recno Access Method Changes:ceueieiiiiiiiiitiiiiiiiiieeieeeeieeeenneeennnees 479
C-SPeCific APl Chang@es: «iuueiiietieieteeiteeeieeeeaieeeaaneeeesneeesnaeeesnaesenneens 479
C++-SPeCifiC APl Chan@es: .viieetiiiiteeeieteeeieeeeeteeeineeeeneeeesneeeesneeesnneennn 479
Java-specific APl Changes: ..uieeiuiiiiietieiitereiieeeeineeeeieeeeeneeeesneeesnneeesnnees 479
Direct Persistence Layer (DPL), Bindings and Collections API:ccccvvnnne. 480
TCl-SpPecCific APl Changes: «iieuuiiieittieietieitereieteeeeeeenneerenaeeesneeeenneeeonns 481
RPC-specific Client/Server Changes:iieeeiiiieiiiietiriieerereeereneeeenneceannees 481
Replication Changes:uuiiieiiiiitiiiitiiiitieiitereieerenaeeeseeranneerenneeennes 481
XA Resource Manager Changes: ti.uuiieeeeieieereneteeneeeenneerenaeeesnaseesneeeanns 483
Locking Subsystem Changes:cccuiieiiiiiiiiiieieteeeieerenieeeenneeeenaeeennaeenns 483
Logging Subsystem Changes:cciuiieiiiiiiiiiiiitiriieeeenieeeenneeeenneeennaeenns 484
Memory Pool Subsystem Changes:cceeeeitiriieteenieeeeneeeenneeeeneeeenneeenns 484
Mutex Subsystem Changes:ccceiiiiiiiiiiiiiiieiieieieeeaieerenneerenneeennens 484
TSt SUTLE Changes «euutiiiiitieiit i et eeieeeeieeeeaeeearneeeanaeeesnneeenneenn 485
Transaction Subsystem Changes:cceiiiieiiiiieiiiiitireieteenieerenneerenneeennns 485
UBilitY CNanges: vuiieeiiiiittiiiitieitteeiteeeneeeeeneeeanneeeanaeeesnaesesneeeannneenns 486
Configuration, Documentation, Sample Application, Portability and Build
(63T Ty 1= S PP 486
TR I =) S U 488
RUNNING the teSt SUITE tivueiiiitiii i i it eeiteeeeerenneeeanaeeenneesanneesanns 488
Test SUTLE FAQ «iinniiiiiiiiiiiiii i ettt et aaeas 488

12/18/2009 DB Reference Guide Page xviii

R 0 1 oY1 e o T 489

Porting Berkeley DB to new archite@Cturesccceeeeieiiriieiiiieireieeniieeeenneenannens 489
SOUICE COAE LaYOUL tinnntiiietirietieiteeeieeeeaneerenaeeeenaeeesneeeenneeesnneessnneesnneens 491

48. Additional REfErENCES ...eiineiitiii ittt et et et e e eeaaaaas 494
Additional referEeNCES . .ovueiieiii it ee et etreaereanaens 494
Technical Papers on Berkeley DBceeiuiiiiiiiiiiiiiiieiiieeieeeeieeeaannees 494
Background on Berkeley DB FEAtUrescvuviiereiirieienieeeeieeeeereeeenecennnees 494

Database SyStems ThEOIYeieiueiiiitieiitieiieeeiieeeieeeeiaeeeanaeeesneeesnnees 495

12/18/2009

DB Reference Guide Page xix

Preface

Welcome to Berkeley DB (DB). This document provides an introduction and usage notes for
skilled programmers who wish to use the Berkeley DB APlIs.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Structure names are represented in monospaced font, as are net hod names. For example:
"DB- >open() is a method on a DB handle.”

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory.”

Program examples are displayed in a nonospaced font on a shaded background. For example:

[* File: gettingstarted common.h */
typedef struct stock_dbs {
DB *inventory dbp; /* Database containing inventory information */

DB *vendor _dbp; /* Database containing vendor information */
char *db_hone_dir; /* Directory containing the database files */
char *inventory db_name; /* Name of the inventory database */
char *vendor _db_nane; /* Name of the vendor database */
} STOCK_DBS;
|:| Finally, notes of interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when building
a DB application:

o Getting Started with Transaction Processing for C [http://www.oracle.com/technology/
documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf]

» Berkeley DB Getting Started with Replicated Applications for C [http://www.oracle.com/
technology/documentation/berkeley-db/db/gsg _db_rep/C/Replication_C_GSG.pdf]

» Berkeley DB C API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/C/BDB-C_APIReference.pdf]

» Berkeley DB C++ API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/CXX/BDB-CXX_APIReference.pdf]

» Berkeley DB STL API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/STL/BDB-STL_APIReference.pdf]

12/18/2009 DB Reference Guide Page xx

http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/CXX/BDB-CXX_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/CXX/BDB-CXX_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/CXX/BDB-CXX_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf

o Berkeley DB TCL API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/TCL/BDB-TCL_APIReference.pdf]

» Berkeley DB Programmer's Reference Guide [http://www.oracle.com/technology/
documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf]

12/18/2009 DB Reference Guide Page xxi

http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf

Chapter 1. Introduction

An introduction to data management

Cheap, powerful computing and networking have created countless new applications that could
not have existed a decade ago. The advent of the World-Wide Web, and its influence in driving
the Internet into homes and businesses, is one obvious example. Equally important, though, is
the shift from large, general-purpose desktop and server computers toward smaller,
special-purpose devices with built-in processing and communications services.

As computer hardware has spread into virtually every corner of our lives, of course, software
has followed. Software developers today are building applications not just for conventional
desktop and server environments, but also for handheld computers, home appliances, networking
hardware, cars and trucks, factory floor automation systems, and more.

While these operating environments are diverse, the problems that software engineers must
solve in them are often strikingly similar. Most systems must deal with the outside world,
whether that means communicating with users or controlling machinery. As a result, most need
some sort of I/0 system. Even a simple, single-function system generally needs to handle
multiple tasks, and so needs some kind of operating system to schedule and manage control
threads. Also, many computer systems must store and retrieve data to track history, record
configuration settings, or manage access.

Data management can be very simple. In some cases, just recording configuration in a flat text
file is enough. More often, though, programs need to store and search a large amount of data,
or structurally complex data. Database management systems are tools that programmers can
use to do this work quickly and efficiently using off-the-shelf software.

Of course, database management systems have been around for a long time. Data storage is a
problem dating back to the earliest days of computing. Software developers can choose from
hundreds of good, commercially-available database systems. The problem is selecting the one
that best solves the problems that their applications face.

Mapping the terrain: theory and practice

The first step in selecting a database system is figuring out what the choices are. Decades of
research and real-world deployment have produced countless systems. We need to organize
them somehow to reduce the number of options.

One obvious way to group systems is to use the common labels that vendors apply to them.
The buzzwords here include "network," "relational,” "object-oriented,” and "embedded,” with
some cross-fertilization like "object-relational” and "embedded network”. Understanding the
buzzwords is important. Each has some grounding in theory, but has also evolved into a practical
label for categorizing systems that work in a certain way.

All database systems, regardless of the buzzwords that apply to them, provide a few common
services. All of them store data, for example. We'll begin by exploring the common services
that all systems provide, and then examine the differences among the different kinds of systems.

12/18/2009

DB Reference Guide Page 1

Data access and data management

Fundamentally, database systems provide two services.

The first service is data access. Data access means adding new data to the database (inserting),
finding data of interest (searching), changing data already stored (updating), and removing
data from the database (deleting). All databases provide these services. How they work varies
from category to category, and depends on the record structure that the database supports.

Each record in a database is a collection of values. For example, the record for a Web site
customer might include a name, email address, shipping address, and payment information.
Records are usually stored in tables. Each table holds records of the same kind. For example,
the customer table at an e-commerce Web site might store the customer records for every
person who shopped at the site. Often, database records have a different structure from the
structures or instances supported by the programming language in which an application is
written. As a result, working with records can mean:

« using database operations like searches and updates on records; and

« converting between programming language structures and database record types in the
application.

The second service is data management. Data management is more complicated than data
access. Providing good data management services is the hard part of building a database system.
When you choose a database system to use in an application you build, making sure it supports
the data management services you need is critical.

Data management services include allowing multiple users to work on the database
simultaneously (concurrency), allowing multiple records to be changed instantaneously
(transactions), and surviving application and system crashes (recovery). Different database
systems offer different data management services. Data management services are entirely
independent of the data access services listed above. For example, nothing about relational
database theory requires that the system support transactions, but most commercial relational
systems do.

Concurrency means that multiple users can operate on the database at the same time. Support
for concurrency ranges from none (single-user access only) to complete (many readers and
writers working simultaneously).

Transactions permit users to make multiple changes appear at once. For example, a transfer
of funds between bank accounts needs to be a transaction because the balance in one account
is reduced and the balance in the other increases. If the reduction happened before the increase,
than a poorly-timed system crash could leave the customer poorer; if the bank used the opposite
order, then the same system crash could make the customer richer. Obviously, both the customer
and the bank are best served if both operations happen at the same instant.

Transactions have well-defined properties in database systems. They are atomic, so that the
changes happen all at once or not at all. They are consistent, so that the database is in a legal
state when the transaction begins and when it ends. They are typically isolated, which means
that any other users in the database cannot interfere with them while they are in progress.

12/18/2009

DB Reference Guide Page 2

And they are durable, so that if the system or application crashes after a transaction finishes,
the changes are not lost. Together, the properties of atomicity, consistency, isolation, and
durability are known as the ACID properties.

As is the case for concurrency, support for transactions varies among databases. Some offer
atomicity without making guarantees about durability. Some ignore isolatability, especially in
single-user systems; there's no need to isolate other users from the effects of changes when
there are no other users.

Another important data management service is recovery. Strictly speaking, recovery is a
procedure that the system carries out when it starts up. The purpose of recovery is to guarantee
that the database is complete and usable. This is most important after a system or application
crash, when the database may have been damaged. The recovery process guarantees that the
internal structure of the database is good. Recovery usually means that any completed
transactions are checked, and any lost changes are reapplied to the database. At the end of
the recovery process, applications can use the database as if there had been no interruption
in service.

Finally, there are a number of data management services that permit copying of data. For
example, most database systems are able to import data from other sources, and to export it
for use elsewhere. Also, most systems provide some way to back up databases and to restore
in the event of a system failure that damages the database. Many commercial systems allow
hot backups, so that users can back up databases while they are in use. Many applications must
run without interruption, and cannot be shut down for backups.

A particular database system may provide other data management services. Some provide
browsers that show database structure and contents. Some include tools that enforce data
integrity rules, such as the rule that no employee can have a negative salary. These data
management services are not common to all systems, however. Concurrency, recovery, and
transactions are the data management services that most database vendors support.

Deciding what kind of database to use means understanding the data access and data
management services that your application needs. Berkeley DB is an embedded database that
supports fairly simple data access with a rich set of data management services. To highlight
its strengths and weaknesses, we can compare it to other database system categories.

Relational databases

Relational databases are probably the best-known database variant, because of the success of
companies like Oracle. Relational databases are based on the mathematical field of set theory.
The term "relation” is really just a synonym for "set” -- a relation is just a set of records or, in
our terminology, a table. One of the main innovations in early relational systems was to insulate
the programmer from the physical organization of the database. Rather than walking through
arrays of records or traversing pointers, programmers make statements about tables in a
high-level language, and the system executes those statements.

Relational databases operate on tuples, or records, composed of values of several different
data types, including integers, character strings, and others. Operations include searching for
records whose values satisfy some criteria, updating records, and so on.

12/18/2009

DB Reference Guide Page 3

Virtually all relational databases use the Structured Query Language, or SQL. This language
permits people and computer programs to work with the database by writing simple statements.
The database engine reads those statements and determines how to satisfy them on the tables
in the database.

SQL is the main practical advantage of relational database systems. Rather than writing a
computer program to find records of interest, the relational system user can just type a query
in a simple syntax, and let the engine do the work. This gives users enormous flexibility; they
do not need to decide in advance what kind of searches they want to do, and they do not need
expensive programmers to find the data they need. Learning SQL requires some effort, but it's
much simpler than a full-blown high-level programming language for most purposes. And there
are a lot of programmers who have already learned SQL.

Object-oriented databases

Object-oriented databases are less common than relational systems, but are still fairly
widespread. Most object-oriented databases were originally conceived as persistent storage
systems closely wedded to particular high-level programming languages like C++. With the
spread of Java, most now support more than one programming language, but object-oriented
database systems fundamentally provide the same class and method abstractions as do
object-oriented programming languages.

Many object-oriented systems allow applications to operate on objects uniformly, whether
they are in memory or on disk. These systems create the illusion that all objects are in memory
all the time. The advantage to object-oriented programmers who simply want object storage
and retrieval is clear. They need never be aware of whether an object is in memory or not.
The application simply uses objects, and the database system moves them between disk and
memory transparently. All of the operations on an object, and all its behavior, are determined
by the programming language.

Object-oriented databases aren't nearly as widely deployed as relational systems. In order to
attract developers who understand relational systems, many of the object-oriented systems
have added support for query languages very much like SQL. In practice, though, object-oriented
databases are mostly used for persistent storage of objects in C++ and Java programs.

Network databases

The "network model” is a fairly old technique for managing and navigating application data.
Network databases are designed to make pointer traversal very fast. Every record stored in a
network database is allowed to contain pointers to other records. These pointers are generally
physical addresses, so fetching the record to which it refers just means reading it from disk by
its disk address.

Network database systems generally permit records to contain integers, floating point numbers,
and character strings, as well as references to other records. An application can search for
records of interest. After retrieving a record, the application can fetch any record to which it
refers, quickly.

Pointer traversal is fast because most network systems use physical disk addresses as pointers.
When the application wants to fetch a record, the database system uses the address to fetch

12/18/2009

DB Reference Guide Page 4

exactly the right string of bytes from the disk. This requires only a single disk access in all
cases. Other systems, by contrast, often must do more than one disk read to find a particular
record.

The key advantage of the network model is also its main drawback. The fact that pointer
traversal is so fast means that applications that do it will run well. On the other hand, storing
pointers all over the database makes it very hard to reorganize the database. In effect, once
you store a pointer to a record, it is difficult to move that record elsewhere. Some network
databases handle this by leaving forwarding pointers behind, but this defeats the speed
advantage of doing a single disk access in the first place. Other network databases find, and
fix, all the pointers to a record when it moves, but this makes reorganization very expensive.
Reorganization is often necessary in databases, since adding and deleting records over time
will consume space that cannot be reclaimed without reorganizing. Without periodic
reorganization to compact network databases, they can end up with a considerable amount of
wasted space.

Clients and servers

Database vendors have two choices for system architecture. They can build a server to which
remote clients connect, and do all the database management inside the server. Alternatively,
they can provide a module that links directly into the application, and does all database
management locally. In either case, the application developer needs some way of communicating
with the database (generally, an Application Programming Interface (API) that does work in
the process or that communicates with a server to get work done).

Almost all commercial database products are implemented as servers, and applications connect
to them as clients. Servers have several features that make them attractive.

First, because all of the data is managed by a separate process, and possibly on a separate
machine, it's easy to isolate the database server from bugs and crashes in the application.

Second, because some database products (particularly relational engines) are quite large,
splitting them off as separate server processes keeps applications small, which uses less disk
space and memory. Relational engines include code to parse SQL statements, to analyze them
and produce plans for execution, to optimize the plans, and to execute them.

Finally, by storing all the data in one place and managing it with a single server, it's easier for
organizations to back up, protect, and set policies on their databases. The enterprise databases
for large companies often have several full-time administrators caring for them, making certain
that applications run quickly, granting and denying access to users, and making backups.

However, centralized administration can be a disadvantage in some cases. In particular, if a
programmer wants to build an application that uses a database for storage of important
information, then shipping and supporting the application is much harder. The end user needs
to install and administer a separate database server, and the programmer must support not
just one product, but two. Adding a server process to the application creates new opportunity
for installation mistakes and run-time problems.

12/18/2009

DB Reference Guide Page 5

What is Berkeley DB?

So far, we've discussed database systems in general terms. It's time now to consider Berkeley
DB in particular and see how it fits into the framework we have introduced. The key question
is, what kinds of applications should use Berkeley DB?

Berkeley DB is an Open Source embedded database library that provides scalable,
high-performance, transaction-protected data management services to applications. Berkeley
DB provides a simple function-call API for data access and management.

By "Open Source,” we mean Berkeley DB is distributed under a license that conforms to the
Open Source Definition [http://www.opensource.org/osd.html]. This license guarantees Berkeley
DB is freely available for use and redistribution in other Open Source applications. Oracle
Corporation sells commercial licenses allowing the redistribution of Berkeley DB in proprietary
applications. In all cases the complete source code for Berkeley DB is freely available for
download and use.

Berkeley DB is "embedded” because it links directly into the application. It runs in the same
address space as the application. As a result, no inter-process communication, either over the
network or between processes on the same machine, is required for database operations.
Berkeley DB provides a simple function-call APl for a number of programming languages,
including C, C++, Java, Perl, Tcl, Python, and PHP. All database operations happen inside the
library. Multiple processes, or multiple threads in a single process, can all use the database at
the same time as each uses the Berkeley DB library. Low-level services like locking, transaction
logging, shared buffer management, memory management, and so on are all handled
transparently by the library.

The Berkeley DB library is extremely portable. It runs under almost all UNIX and Linux variants,
Windows, and a number of embedded real-time operating systems. It runs on both 32-bit and
64-bit systems. It has been deployed on high-end Internet servers, desktop machines, and on
palmtop computers, set-top boxes, in network switches, and elsewhere. Once Berkeley DB is
linked into the application, the end user generally does not know that there's a database present
at all.

Berkeley DB is scalable in a number of respects. The database library itself is quite compact
(under 300 kilobytes of text space on common architectures), but it can manage databases up
to 256 terabytes in size. It also supports high concurrency, with thousands of users operating
on the same database at the same time. Berkeley DB is small enough to run in tightly constrained
embedded systems, but can take advantage of gigabytes of memory and terabytes of disk on
high-end server machines.

Berkeley DB generally outperforms relational and object-oriented database systems in embedded
applications for a couple of reasons. First, because the library runs in the same address space,
no inter-process communication is required for database operations. The cost of communicating
between processes on a single machine, or among machines on a network, is much higher than
the cost of making a function call. Second, because Berkeley DB uses a simple function-call
interface for all operations, there is no query language to parse, and no execution plan to
produce.

12/18/2009

DB Reference Guide Page 6

http://www.opensource.org/osd.html
http://www.opensource.org/osd.html

Data Access Services

Berkeley DB applications can choose the storage structure that best suits the application.
Berkeley DB supports hash tables, Btrees, simple record-number-based storage, and persistent
queues. Programmers can create tables using any of these storage structures, and can mix
operations on different kinds of tables in a single application.

Hash tables are generally good for very large databases that need predictable search and update
times for random-access records. Hash tables allow users to ask, "Does this key exist?" or to
fetch a record with a known key. Hash tables do not allow users to ask for records with keys
that are close to a known key.

Btrees are better for range-based searches, as when the application needs to find all records
with keys between some starting and ending value. Btrees also do a better job of exploiting
locality of reference. If the application is likely to touch keys near each other at the same
time, the Btrees work well. The tree structure keeps keys that are close together near one
another in storage, so fetching nearby values usually doesn't require a disk access.

Record-number-based storage is natural for applications that need to store and fetch records,
but that do not have a simple way to generate keys of their own. In a record number table,
the record number is the key for the record. Berkeley DB will generate these record numbers
automatically.

Queues are well-suited for applications that create records, and then must deal with those
records in creation order. A good example is on-line purchasing systems. Orders can enter the
system at any time, but should generally be filled in the order in which they were placed.

Data management services

Berkeley DB offers important data management services, including concurrency, transactions,
and recovery. All of these services work on all of the storage structures.

Many users can work on the same database concurrently. Berkeley DB handles locking
transparently, ensuring that two users working on the same record do not interfere with one
another.

The library provides strict ACID transaction semantics, by default. However, applications are
allowed to relax the isolation guarantees the database system makes.

Multiple operations can be grouped into a single transaction, and can be committed or rolled
back atomically. Berkeley DB uses a technique called two-phase locking to be sure that
concurrent transactions are isolated from one another, and a technique called write-ahead
logging to guarantee that committed changes survive application, system, or hardware failures.

When an application starts up, it can ask Berkeley DB to run recovery. Recovery restores the

database to a clean state, with all committed changes present, even after a crash. The database
is guaranteed to be consistent and all committed changes are guaranteed to be present when
recovery completes.

12/18/2009

DB Reference Guide Page 7

Design

An application can specify, when it starts up, which data management services it will use.
Some applications need fast, single-user, non-transactional Btree data storage. In that case,
the application can disable the locking and transaction systems, and will not incur the overhead
of locking or logging. If an application needs to support multiple concurrent users, but doesn't
need transactions, it can turn on locking without transactions. Applications that need concurrent,
transaction-protected database access can enable all of the subsystems.

In all these cases, the application uses the same function-call API to fetch and update records.

Berkeley DB was designed to provide industrial-strength database services to application
developers, without requiring them to become database experts. It is a classic C-library style
toolkit, providing a broad base of functionality to application writers. Berkeley DB was designed
by programmers, for programmers: its modular design surfaces simple, orthogonal interfaces
to core services, and it provides mechanism (for example, good thread support) without imposing
policy (for example, the use of threads is not required). Just as importantly, Berkeley DB allows
developers to balance performance against the need for crash recovery and concurrent use.
An application can use the storage structure that provides the fastest access to its data and
can request only the degree of logging and locking that it needs.

Because of the tool-based approach and separate interfaces for each Berkeley DB subsystem,
you can support a complete transaction environment for other system operations. Berkeley DB
even allows you to wrap transactions around the standard UNIX file read and write operations!
Further, Berkeley DB was designed to interact correctly with the native system's toolset, a
feature no other database package offers. For example, Berkeley DB supports hot backups
(database backups while the database is in use), using standard UNIX system utilities, for
example, dump, tar, cpio, pax or even cp.

Finally, because scripting language interfaces are available for Berkeley DB (notably Tcl and
Perl), application writers can build incredibly powerful database engines with little effort. You
can build transaction-protected database applications using your favorite scripting languages,
an increasingly important feature in a world using CGl scripts to deliver HTML.

What Berkeley DB is not

In contrast to most other database systems, Berkeley DB provides relatively simple data access
services.

Records in Berkeley DB are (key, value) pairs. Berkeley DB supports only a few logical operations
on records. They are:

« Insert a record in a table.
e Delete a record from a table.
» Find a record in a table by looking up its key.

» Update a record that has already been found.

12/18/2009

DB Reference Guide Page 8

Notice that Berkeley DB never operates on the value part of a record. Values are simply payload,
to be stored with keys and reliably delivered back to the application on demand.

Both keys and values can be arbitrary byte strings, either fixed-length or variable-length. As
a result, programmers can put native programming language data structures into the database
without converting them to a foreign record format first. Storage and retrieval are very simple,
but the application needs to know what the structure of a key and a value is in advance. It
cannot ask Berkeley DB, because Berkeley DB doesn't know.

This is an important feature of Berkeley DB, and one worth considering more carefully. On the
one hand, Berkeley DB cannot provide the programmer with any information on the contents

or structure of the values that it stores. The application must understand the keys and values
that it uses. On the other hand, there is literally no limit to the data types that can be store

in a Berkeley DB database. The application never needs to convert its own program data into
the data types that Berkeley DB supports. Berkeley DB is able to operate on any data type the
application uses, no matter how complex.

Because both keys and values can be up to four gigabytes in length, a single record can store
images, audio streams, or other large data values. Large values are not treated specially in
Berkeley DB. They are simply broken into page-sized chunks, and reassembled on demand when
the application needs them. Unlike some other database systems, Berkeley DB offers no special
support for binary large objects (BLOBs).

Not a relational database

Berkeley DB is not a relational database.

First, Berkeley DB does not support SQL queries. All access to data is through the Berkeley DB
API. Developers must learn a new set of interfaces in order to work with Berkeley DB. Although
the interfaces are fairly simple, they are non-standard.

SQL support is a double-edged sword. One big advantage of relational databases is that they
allow users to write simple declarative queries in a high-level language. The database system
knows everything about the data and can carry out the command. This means that it's simple
to search for data in new ways, and to ask new questions of the database. No programming is
required.

On the other hand, if a programmer can predict in advance how an application will access
data, then writing a low-level program to get and store records can be faster. It eliminates
the overhead of query parsing, optimization, and execution. The programmer must understand
the data representation, and must write the code to do the work, but once that's done, the
application can be very fast.

Second, Berkeley DB has no notion of schema and data types in the way that relational systems
do. Schema is the structure of records in tables, and the relationships among the tables in the
database. For example, in a relational system the programmer can create a record from a fixed
menu of data types. Because the record types are declared to the system, the relational engine
can reach inside records and examine individual values in them. In addition, programmers can
use SQL to declare relationships among tables, and to create indices on tables. Relational
engines usually maintain these relationships and indices automatically.

12/18/2009

DB Reference Guide Page 9

In Berkeley DB, the key and value in a record are opaque to Berkeley DB. They may have a rich
internal structure, but the library is unaware of it. As a result, Berkeley DB cannot decompose
the value part of a record into its constituent parts, and cannot use those parts to find values
of interest. Only the application, which knows the data structure, can do that. Berkeley DB
does support indices on tables and automatically maintain those indices as their associated
tables are modified.

Berkeley DB is not a relational system. Relational database systems are semantically rich and
offer high-level database access. Compared to such systems, Berkeley DB is a high-performance,
transactional library for record storage. It's possible to build a relational system on top of
Berkeley DB. In fact, the popular MySQL relational system uses Berkeley DB for
transaction-protected table management, and takes care of all the SQL parsing and execution.
It uses Berkeley DB for the storage level, and provides the semantics and access tools.

Not an object-oriented database

Object-oriented databases are designed for very tight integration with object-oriented
programming languages. Berkeley DB is written entirely in the C programming language. It
includes language bindings for C++, Java, and other languages, but the library has no information
about the objects created in any object-oriented application. Berkeley DB never makes method
calls on any application object. It has no idea what methods are defined on user objects, and
cannot see the public or private members of any instance. The key and value part of all records
are opaque to Berkeley DB.

Berkeley DB cannot automatically page in objects as they are accessed, as some object-oriented
databases do. The object-oriented application programmer must decide what records are
required, and must fetch them by making method calls on Berkeley DB objects.

Not a network database

Berkeley DB does not support network-style navigation among records, as network databases
do. Records in a Berkeley DB table may move around over time, as new records are added to
the table and old ones are deleted. Berkeley DB is able to do fast searches for records based
on keys, but there is no way to create a persistent physical pointer to a record. Applications
can only refer to records by key, not by address.

Not a database server

Berkeley DB is not a standalone database server. It is a library, and runs in the address space
of the application that uses it. If more than one application links in Berkeley DB, then all can
use the same database at the same time; the library handles coordination among the
applications, and guarantees that they do not interfere with one another.

It is possible to build a server application that uses Berkeley DB for data management. For
example, many commercial and open source Lightweight Directory Access Protocol (LDAP)
servers use Berkeley DB for record storage. LDAP clients connect to these servers over the
network. Individual servers make calls through the Berkeley DB API to find records and return
them to clients. On its own, however, Berkeley DB is not a server.

12/18/2009

DB Reference Guide Page 10

Do you need Berkeley DB?

Berkeley DB is an ideal database system for applications that need fast, scalable, and reliable
embedded database management. For applications that need different services, however, it
can be a poor choice.

First, do you need the ability to access your data in ways you cannot predict in advance? If
your users want to be able to enter SQL queries to perform complicated searches that you
cannot program into your application to begin with, then you should consider a relational
engine instead. Berkeley DB requires a programmer to write code in order to run a new kind
of query.

On the other hand, if you can predict your data access patterns up front — and in particular if
you need fairly simple key/value lookups — then Berkeley DB is a good choice. The queries can
be coded up once, and will then run very quickly because there is no SQL to parse and execute.

Second, are there political arguments for or against a standalone relational server? If you're
building an application for your own use and have a relational system installed with
administrative support already, it may be simpler to use that than to build and learn Berkeley
DB. On the other hand, if you'll be shipping many copies of your application to customers, and
don't want your customers to have to buy, install, and manage a separate database system,
then Berkeley DB may be a better choice.

Third, are there any technical advantages to an embedded database? If you're building an
application that will run unattended for long periods of time, or for end users who are not
sophisticated administrators, then a separate server process may be too big a burden. It will
require separate installation and management, and if it creates new ways for the application
to fail, or new complexities to master in the field, then Berkeley DB may be a better choice.

The fundamental question is, how closely do your requirements match the Berkeley DB design?
Berkeley DB was conceived and built to provide fast, reliable, transaction-protected record
storage. The library itself was never intended to provide interactive query support, graphical
reporting tools, or similar services that some other database systems provide. We have tried
always to err on the side of minimalism and simplicity. By keeping the library small and simple,
we create fewer opportunities for bugs to creep in, and we guarantee that the database system
stays fast, because there is very little code to execute. If your application needs that set of
features, then Berkeley DB is almost certainly the best choice for you.

What other services does Berkeley DB provide?

Berkeley DB also provides core database services to developers. These services include:

Page cache management:

The page cache provides fast access to a cache of database pages, handling the 1/0
associated with the cache to ensure that dirty pages are written back to the file system
and that new pages are allocated on demand. Applications may use the Berkeley DB
shared memory buffer manager to serve their own files and pages.

12/18/2009

DB Reference Guide Page 11

Transactions and logging:

The transaction and logging systems provide recoverability and atomicity for multiple
database operations. The transaction system uses two-phase locking and write-ahead
logging protocols to ensure that database operations may be undone or redone in the
case of application or system failure. Applications may use Berkeley DB transaction
and logging subsystems to protect their own data structures and operations from
application or system failure.

Locking:
The locking system provides multiple reader or single writer access to objects. The
Berkeley DB access methods use the locking system to acquire the right to read or write

database pages. Applications may use the Berkeley DB locking subsystem to support
their own locking needs.

By combining the page cache, transaction, locking, and logging systems, Berkeley DB provides
the same services found in much larger, more complex and more expensive database systems.
Berkeley DB supports multiple simultaneous readers and writers and guarantees that all changes
are recoverable, even in the case of a catastrophic hardware failure during a database update.

Developers may select some or all of the core database services for any access method or
database. Therefore, it is possible to choose the appropriate storage structure and the right
degrees of concurrency and recoverability for any application. In addition, some of the
subsystems (for example, the Locking subsystem) can be called separately from the Berkeley
DB access method. As a result, developers can integrate non-database objects into their
transactional applications using Berkeley DB.

What does the Berkeley DB distribution include?

The Berkeley DB distribution includes complete source code for the Berkeley DB library, including
all three Berkeley DB products and their supporting utilities, as well as complete documentation
in HTML format. The distribution includes prebuilt binaries and libraries for a small number of
platforms. The distribution does not include hard-copy documentation.

Where does Berkeley DB run?

Berkeley DB requires only underlying IEEE/ANSI Std 1003.1 (POSIX) system calls and can be
ported easily to new architectures by adding stub routines to connect the native system
interfaces to the Berkeley DB POSIX-style system calls. See Porting Berkeley DB to new
architectures (page 489) for more information.

Berkeley DB will autoconfigure and run on almost any modern UNIX, POSIX or Linux systems,

and on most historical UNIX platforms. Berkeley DB will autoconfigure and run on almost any
GNU gcc toolchain-based embedded platform, including Cygwin, OpenLinux and others. See

Building for UNIX/POSIX (page 289) for more information.

The Berkeley DB distribution includes support for QNX Neutrino. See Building for
UNIX/POSIX (page 289) for more information.

12/18/2009

DB Reference Guide Page 12

The Berkeley DB distribution includes support for VxWorks. See Building for VxWorks
6.x (page 327) for more information.

The Berkeley DB distribution includes support for Windows/NT, Windows/2000 and Windows/XP,
via the Microsoft Visual C++ 6.0 and .NET development environments. See Building Berkeley
DB for Windows (page 311) for more information.

The Berkeley DB products

Oracle licenses four different products that use the Berkeley DB technology. Each product
offers a distinct level of database support. It is not possible to mix-and-match products, that
is, each application or group of applications must use the same Berkeley DB product.

All four products are included in the single Open Source distribution of Berkeley DB from Oracle,
and building that distribution automatically builds all four products. Each product adds new

interfaces and services to the product that precedes it in the list. As a result, developers can
download Berkeley DB and build an application that does only single-user, read-only database
access, and easily add support later for more users and more complex database access patterns.

Users who distribute Berkeley DB must ensure that they are licensed for the Berkeley DB
interfaces they use. Information on licensing is available from Oracle.

Berkeley DB Data Store

The Berkeley DB Data Store product is an embeddable, high-performance data store. It supports
multiple concurrent threads of control (including multiple processes and multiple threads of
control within a process) reading information managed by Berkeley DB. When updates are
required, only a single thread of control may be using the database. The Berkeley DB Data
Store does no locking, and so provides no guarantees of correct behavior if more than one
thread of control is updating the database at a time. The Berkeley DB Data Store is intended
for use in read-only applications or applications which can guarantee no more than one thread
of control will ever update the database at a time.

Berkeley DB Concurrent Data Store

The Berkeley DB Concurrent Data Store product adds multiple-reader, single writer capabilities
to the Berkeley DB Data Store product, supporting applications that need concurrent updates
and do not want to implement their own locking protocols. Berkeley DB Concurrent Data Store
is intended for applications that require occasional write access to a database that is largely
used for reading.

Berkeley DB Transactional Data Store

The Berkeley DB Transactional Data Store product adds full transactional support and
recoverability to the Berkeley DB Data Store product. Berkeley DB Transactional Data Store is
intended for applications that require industrial-strength database services, including excellent
performance under high-concurrency workloads with a mixture of readers and writers, the
ability to commit or roll back multiple changes to the database at a single instant, and the

12/18/2009

DB Reference Guide Page 13

guarantee that even in the event of a catastrophic system or hardware failure, any committed
database changes will be preserved.

Berkeley DB High Availability

The Berkeley DB High Availability product support for data replication. A single master system
handles all updates, and distributes them to as many replicas as the application requires. All
replicas can handle read requests during normal processing. If the master system fails for any

reason, one of the replicas takes over as the new master system, and distributes updates to
the remaining replicas.

12/18/2009

DB Reference Guide Page 14

Chapter 2. Access Method Configuration

What are the available access methods?

Btree

Hash

Queue

Recno

Berkeley DB currently offers four access methods: Btree, Hash, Queue and Recno.

The Btree access method is an implementation of a sorted, balanced tree structure. Searches,
insertions, and deletions in the tree all take O(log base_b N) time, where base_b is the average
number of keys per page, and N is the total number of keys stored. Often, inserting ordered
data into Btree implementations results in pages that are only half-full. Berkeley DB makes
ordered (or inverse ordered) insertion the best case, resulting in nearly full-page space
utilization.

The Hash access method data structure is an implementation of Extended Linear Hashing, as
described in "Linear Hashing: A New Tool for File and Table Addressing”, Witold Litwin,
Proceedings of the 6th International Conference on Very Large Databases (VLDB), 1980.

The Queue access method stores fixed-length records with logical record numbers as keys. It
is designed for fast inserts at the tail and has a special cursor consume operation that deletes
and returns a record from the head of the queue. The Queue access method uses record level
locking.

The Recno access method stores both fixed and variable-length records with logical record
numbers as keys, optionally backed by a flat text (byte stream) file.

Selecting an access method

The Berkeley DB access method implementation unavoidably interacts with each application’s
data set, locking requirements and data access patterns. For this reason, one access method
may result in dramatically better performance for an application than another one. Applications
whose data could be stored using more than one access method may want to benchmark their
performance using the different candidates.

One of the strengths of Berkeley DB is that it provides multiple access methods with nearly

identical interfaces to the different access methods. This means that it is simple to modify an
application to use a different access method. Applications can easily benchmark the different
Berkeley DB access methods against each other for their particular data set and access pattern.

Most applications choose between using the Btree or Hash access methods or between using
the Queue and Recno access methods, because each of the two pairs offer similar functionality.

12/18/2009

DB Reference Guide Page 15

Hash or Btree?

The Hash and Btree access methods should be used when logical record numbers are not the

primary key used for data access. (If logical record numbers are a secondary key used for data
access, the Btree access method is a possible choice, as it supports simultaneous access by a
key and a record number.)

Keys in Btrees are stored in sorted order and the relationship between them is defined by that
sort order. For this reason, the Btree access method should be used when there is any locality
of reference among keys. Locality of reference means that accessing one particular key in the
Btree implies that the application is more likely to access keys near to the key being accessed,
where "near” is defined by the sort order. For example, if keys are timestamps, and it is likely
that a request for an 8AM timestamp will be followed by a request for a 9AM timestamp, the

Btree access method is generally the right choice. Or, for example, if the keys are names, and
the application will want to review all entries with the same last name, the Btree access method
is again a good choice.

There is little difference in performance between the Hash and Btree access methods on small
data sets, where all, or most of, the data set fits into the cache. However, when a data set is
large enough that significant numbers of data pages no longer fit into the cache, then the Btree
locality of reference described previously becomes important for performance reasons. For
example, there is no locality of reference for the Hash access method, and so key "AAAAA" is
as likely to be stored on the same database page with key "ZZZZZ" as with key "AAAAB". In the
Btree access method, because items are sorted, key "AAAAA" is far more likely to be near key
"AAAAB" than key "ZZZ77". So, if the application exhibits locality of reference in its data
requests, then the Btree page read into the cache to satisfy a request for key "AAAAA" is much
more likely to be useful to satisfy subsequent requests from the application than the Hash page
read into the cache to satisfy the same request. This means that for applications with locality
of reference, the cache is generally much more effective for the Btree access method than
the Hash access method, and the Btree access method will make many fewer 1/0 calls.

However, when a data set becomes even larger, the Hash access method can outperform the
Btree access method. The reason for this is that Btrees contain more metadata pages than
Hash databases. The data set can grow so large that metadata pages begin to dominate the
cache for the Btree access method. If this happens, the Btree can be forced to do an 1/0 for
each data request because the probability that any particular data page is already in the cache
becomes quite small. Because the Hash access method has fewer metadata pages, its cache
stays "hotter” longer in the presence of large data sets. In addition, once the data set is so
large that both the Btree and Hash access methods are almost certainly doing an /0 for each
random data request, the fact that Hash does not have to walk several internal pages as part
of a key search becomes a performance advantage for the Hash access method as well.

Application data access patterns strongly affect all of these behaviors, for example, accessing
the data by walking a cursor through the database will greatly mitigate the large data set
behavior describe above because each |/0 into the cache will satisfy a fairly large number of
subsequent data requests.

In the absence of information on application data and data access patterns, for small data sets
either the Btree or Hash access methods will suffice. For data sets larger than the cache, we
normally recommend using the Btree access method. If you have truly large data, then the

12/18/2009

DB Reference Guide Page 16

Hash access method may be a better choice. The db_stat utility is a useful tool for monitoring
how well your cache is performing.

Queue or Recno?

The Queue or Recno access methods should be used when logical record numbers are the
primary key used for data access. The advantage of the Queue access method is that it performs
record level locking and for this reason supports significantly higher levels of concurrency than
the Recno access method. The advantage of the Recno access method is that it supports a
number of additional features beyond those supported by the Queue access method, such as
variable-length records and support for backing flat-text files.

Logical record numbers can be mutable or fixed: mutable, where logical record numbers can
change as records are deleted or inserted, and fixed, where record numbers never change
regardless of the database operation. It is possible to store and retrieve records based on logical
record numbers in the Btree access method. However, those record numbers are always mutable,
and as records are deleted or inserted, the logical record number for other records in the
database will change. The Queue access method always runs in fixed mode, and logical record
numbers never change regardless of the database operation. The Recno access method can be
configured to run in either mutable or fixed mode.

In addition, the Recno access method provides support for databases whose permanent storage
is a flat text file and the database is used as a fast, temporary storage area while the data is
being read or modified.

Logical record numbers

The Berkeley DB Btree, Queue and Recno access methods can operate on logical record numbers.
Record numbers are 1-based, not 0-based, that is, the first record in a database is record
number 1.

In all cases for the Queue and Recno access methods, and when calling the Btree access method
using the DB->get() and DBC->get() methods with the DB_SET_RECNO flag specified, the data
field of the key DBT must be a pointer to a memory location of type db_recno_t, as typedef'd
in the standard Berkeley DB include file. The size field of the key DBT should be the size of
that type (for example, "sizeof(db_recno_t)" in the C programming language). The db_recno_t
type is a 32-bit unsigned type, which limits the number of logical records in a Queue or Recno
database, and the maximum logical record which may be directly retrieved from a Btree
database, to 4,294,967,295.

Record numbers in Recno databases can be configured to run in either mutable or fixed mode:
mutable, where logical record numbers change as records are deleted or inserted, and fixed,
where record numbers never change regardless of the database operation. Record numbers in
Queue databases are always fixed, and never change regardless of the database operation.
Record numbers in Btree databases are always mutable, and as records are deleted or inserted,
the logical record number for other records in the database can change. See Logically
renumbering records (page 36) for more information.

When appending new data items into Queue databases, record numbers wrap around. When
the tail of the queue reaches the maximum record number, the next record appended will be

12/18/2009

DB Reference Guide Page 17

../api_reference/C/db_stat.html
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbget.html#dbget_DB_SET_RECNO
../api_reference/C/dbt.html
../api_reference/C/dbt.html

given record number 1. If the head of the queue ever catches up to the tail of the queue,
Berkeley DB will return the system error EFBIG. Record numbers do not wrap around when
appending new data items into Recno databases.

Configuring Btree databases to support record numbers can severely limit the throughput of
applications with multiple concurrent threads writing the database, because locations used to
store record counts often become hot spots that many different threads all need to update.
In the case of a Btree supporting duplicate data items, the logical record number refers to a
key and all of its data items, as duplicate data items are not individually numbered.

The following is an example function that reads records from standard input and stores them
into a Recno database. The function then uses a cursor to step through the database and display
the stored records.

i nt

recno_bui | d(dbp)
DB *dbp;

{

DBC *dbcp;

DBT key, data;
db_recno_t recno;
u_int32_t len;
int ret;

char buf[1024];

/* Insert records into the database. */
menset (&key, 0, sizeof (DBT));

menset (&ata, 0, sizeof (DBT));

for (recno = 1;; ++recno) {

printf("record #%u> ", (u_long)recno);
fflush(stdout);

if (fgets(buf, sizeof(buf), stdin) == NULL)

br eak;

if ((len = strlien(buf)) <= 1)
continue;

key.data = & ecno;

key. size = sizeof (recno);

data.data = buf;
data.size = len - 1;

switch (ret = dbp->put(dbp, NULL, &key, &data, 0)) {
case 0:

br eak;

defaul t:

dbp->err(dbp, ret, "DB->put");

br eak;

}

}
printf("\n");

12/18/2009 DB Reference Guide Page 18

/* Acquire a cursor for the database. */

if ((ret = dbp->cursor(dbp, NULL, &dbcp, 0)) !=0) {
dbp->err(dbp, ret, "DB->cursor");

return (1);

}

/* Re-initialize the key/data pair. */
menset (&key, 0, sizeof (key));
menset (&data, 0, sizeof(data));

/* Wal k through the database and print out the key/data pairs. */
while ((ret = dbcp->c_get (dbcp, &key, &data, DB NEXT)) == 0)
printf("%u: %*s\n",

*(u_long *)key.data, (int)data.size,

(char *)data.data);
if (ret !'= DB_NOTFOUND)
dbp->err(dbp, ret, "DBcursor->get");

/* Cose the cursor. */

if ((ret = dbcp->c_close(dbcp)) !'=0) {
dbp->err(dbp, ret, "DBcursor->close");
return (1);

}

return (0);

}

General access method configuration

There are a series of configuration tasks which are common to all access methods. They are
described in the following sections.

Selecting a page size

The size of the pages used in the underlying database can be specified by calling the
DB->set_pagesize() method. The minimum page size is 512 bytes and the maximum page size
is 64K bytes, and must be a power of two. If no page size is specified by the application, a
page size is selected based on the underlying filesystem [/0 block size. (A page size selected
in this way has a lower limit of 512 bytes and an upper limit of 16K bytes.)

There are several issues to consider when selecting a pagesize: overflow record sizes, locking,
I/0 efficiency, and recoverability.

First, the page size implicitly sets the size of an overflow record. Overflow records are key or
data items that are too large to fit on a normal database page because of their size, and are

therefore stored in overflow pages. Overflow pages are pages that exist outside of the normal
database structure. For this reason, there is often a significant performance penalty associated
with retrieving or modifying overflow records. Selecting a page size that is too small, and which

12/18/2009

DB Reference Guide Page 19

../api_reference/C/dbset_pagesize.html

forces the creation of large numbers of overflow pages, can seriously impact the performance
of an application.

Second, in the Btree, Hash and Recno access methods, the finest-grained lock that Berkeley
DB acquires is for a page. (The Queue access method generally acquires record-level locks
rather than page-level locks.) Selecting a page size that is too large, and which causes threads
or processes to wait because other threads of control are accessing or modifying records on
the same page, can impact the performance of your application.

Third, the page size specifies the granularity of 1/0 from the database to the operating system.
Berkeley DB will give a page-sized unit of bytes to the operating system to be scheduled for
reading/writing from/to the disk. For many operating systems, there is an internal block size
which is used as the granularity of I/0 from the operating system to the disk. Generally, it will
be more efficient for Berkeley DB to write filesystem-sized blocks to the operating system and
for the operating system to write those same blocks to the disk.

Selecting a database page size smaller than the filesystem block size may cause the operating
system to coalesce or otherwise manipulate Berkeley DB pages and can impact the performance
of your application. When the page size is smaller than the filesystem block size and a page
written by Berkeley DB is not found in the operating system's cache, the operating system may
be forced to read a block from the disk, copy the page into the block it read, and then write
out the block to disk, rather than simply writing the page to disk. Additionally, as the operating
system is reading more data into its buffer cache than is strictly necessary to satisfy each
Berkeley DB request for a page, the operating system buffer cache may be wasting memory.

Alternatively, selecting a page size larger than the filesystem block size may cause the operating
system to read more data than necessary. On some systems, reading filesystem blocks
sequentially may cause the operating system to begin performing read-ahead. If requesting a
single database page implies reading enough filesystem blocks to satisfy the operating system's
criteria for read-ahead, the operating system may do more 1/0 than is required.

Fourth, when using the Berkeley DB Transactional Data Store product, the page size may affect
the errors from which your database can recover See Berkeley DB recoverability (page 180) for
more information.

Selecting a cache size

The size of the cache used for the underlying database can be specified by calling the
DB->set_cachesize() method. Choosing a cache size is, unfortunately, an art. Your cache must
be at least large enough for your working set plus some overlap for unexpected situations.

When using the Btree access method, you must have a cache big enough for the minimum
working set for a single access. This will include a root page, one or more internal pages
(depending on the depth of your tree), and a leaf page. If your cache is any smaller than that,
each new page will force out the least-recently-used page, and Berkeley DB will re-read the
root page of the tree anew on each database request.

If your keys are of moderate size (a few tens of bytes) and your pages are on the order of 4KB
to 8KB, most Btree applications will be only three levels. For example, using 20 byte keys with
20 bytes of data associated with each key, a 8KB page can hold roughly 400 keys (or 200 key/data

12/18/2009

DB Reference Guide Page 20

../api_reference/C/dbset_cachesize.html

pairs), so a fully populated three-level Btree will hold 32 million key/data pairs, and a tree
with only a 50% page-fill factor will still hold 16 million key/data pairs. We rarely expect trees
to exceed five levels, although Berkeley DB will support trees up to 255 levels.

The rule-of-thumb is that cache is good, and more cache is better. Generally, applications
benefit from increasing the cache size up to a point, at which the performance will stop
improving as the cache size increases. When this point is reached, one of two things have
happened: either the cache is large enough that the application is almost never having to
retrieve information from disk, or, your application is doing truly random accesses, and therefore
increasing size of the cache doesn't significantly increase the odds of finding the next requested
information in the cache. The latter is fairly rare -- almost all applications show some form of
locality of reference.

That said, it is important not to increase your cache size beyond the capabilities of your system,
as that will result in reduced performance. Under many operating systems, tying down enough
virtual memory will cause your memory and potentially your program to be swapped. This is
especially likely on systems without unified OS buffer caches and virtual memory spaces, as
the buffer cache was allocated at boot time and so cannot be adjusted based on application
requests for large amounts of virtual memory.

For example, even if accesses are truly random within a Btree, your access pattern will favor
internal pages to leaf pages, so your cache should be large enough to hold all internal pages.
In the steady state, this requires at most one 1/0 per operation to retrieve the appropriate
leaf page.

You can use the db_stat utility to monitor the effectiveness of your cache. The following output
is excerpted from the output of that utility's -m option:

prompt: db_stat -m
131072 Cache size (128K).
4273 Request ed pages found in the cache (97%.

134 Request ed pages not found in the cache.

18 Pages created in the cache.

116 Pages read into the cache.

93 Pages witten fromthe cache to the backing file.
5 Cl ean pages forced fromthe cache.

13 Dirty pages forced fromthe cache.

0 Dirty buffers witten by trickle-sync thread.
130 Current clean buffer count.

4 Current dirty buffer count.

The statistics for this cache say that there have been 4,273 requests of the cache, and only
116 of those requests required an 1/0 from disk. This means that the cache is working well,
yielding a 97% cache hit rate. The db_stat utility will present these statistics both for the cache
as a whole and for each file within the cache separately.

Selecting a byte order

Database files created by Berkeley DB can be created in either little- or big-endian formats.
The byte order used for the underlying database is specified by calling the DB->set_lorder()

12/18/2009 DB Reference Guide Page 21

../api_reference/C/db_stat.html
../api_reference/C/db_stat.html
../api_reference/C/dbset_lorder.html

method. If no order is selected, the native format of the machine on which the database is
created will be used.

Berkeley DB databases are architecture independent, and any format database can be used on
a machine with a different native format. In this case, as each page that is read into or written
from the cache must be converted to or from the host format, and databases with non-native
formats will incur a performance penalty for the run-time conversion.

It is important to note that the Berkeley DB access methods do no data conversion for
application specified data. Key/data pairs written on a little-endian format architecture
will be returned to the application exactly as they were written when retrieved on a
big-endian format architecture.

Duplicate data items

The Btree and Hash access methods support the creation of multiple data items for a single
key item. By default, multiple data items are not permitted, and each database store operation
will overwrite any previous data item for that key. To configure Berkeley DB for duplicate data
items, call the DB->set_flags() method with the DB_DUP flag. Only one copy of the key will be
stored for each set of duplicate data items. If the Btree access method comparison routine
returns that two keys compare equally, it is undefined which of the two keys will be stored
and returned from future database operations.

By default, Berkeley DB stores duplicates in the order in which they were added, that is, each
new duplicate data item will be stored after any already existing data items. This default
behavior can be overridden by using the DBC->put() method and one of the DB_AFTER,
DB_BEFORE, DB_KEYFIRST or DB_KEYLAST flags. Alternatively, Berkeley DB may be configured
to sort duplicate data items.

When stepping through the database sequentially, duplicate data items will be returned
individually, as a key/data pair, where the key item only changes after the last duplicate data
item has been returned. For this reason, duplicate data items cannot be accessed using the
DB->get() method, as it always returns the first of the duplicate data items. Duplicate data
items should be retrieved using a Berkeley DB cursor interface such as the DBC->get() method.

There is a flag that permits applications to request the following data item only if it is a
duplicate data item of the current entry, see DB_NEXT_DUP for more information. There is a
flag that permits applications to request the following data item only if it is not a duplicate
data item of the current entry, see DB_NEXT_NODUP and DB_PREV_NODUP for more information.

It is also possible to maintain duplicate records in sorted order. Sorting duplicates will
significantly increase performance when searching them and performing equality joins, common
operations when using secondary indices. To configure Berkeley DB to sort duplicate data items,
the application must call the DB->set_flags() method with the DB_DUPSORT flag (in addition
to the DB_DUP flag). In addition, a custom comparison function may be specified using the
DB->set_dup_compare() method. If the DB_DUPSORT flag is given, but no comparison routine
is specified, then Berkeley DB defaults to the same lexicographical sorting used for Btree keys,
with shorter items collating before longer items.

12/18/2009

DB Reference Guide Page 22

../api_reference/C/dbset_flags.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUP
../api_reference/C/dbcput.html
../api_reference/C/dbcput.html#put_DB_AFTER
../api_reference/C/dbcput.html#put_DB_BEFORE
../api_reference/C/dbcput.html#put_DB_KEYFIRST
../api_reference/C/dbcput.html#put_DB_KEYLAST
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html#dbcget_DB_NEXT_DUP
../api_reference/C/dbcget.html#dbcget_DB_NEXT_NODUP
../api_reference/C/dbcget.html#dbcget_DB_PREV_NODUP
../api_reference/C/dbset_flags.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUPSORT
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUP
../api_reference/C/dbset_dup_compare.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUPSORT

If the duplicate data items are unsorted, applications may store identical duplicate data items,
or, for those that just like the way it sounds, duplicate duplicates.

In this release it is an error to attempt to store identical duplicate data items when
duplicates are being stored in a sorted order. This restriction is expected to be lifted in a
future release. There is a flag that permits applications to disallow storing duplicate data items
when the database has been configured for sorted duplicates, see DB_NODUPDATA for more
information. Applications not wanting to permit duplicate duplicates in databases configured
for sorted duplicates should begin using the DB_NODUPDATA flag immediately.

For further information on how searching and insertion behaves in the presence of duplicates
(sorted or not), see the DB->get() DB->put(), DBC->get() and DBC->put() documentation.

Non-local memory allocation

Berkeley DB allocates memory for returning key/data pairs and statistical information which
becomes the responsibility of the application. There are also interfaces where an application
will allocate memory which becomes the responsibility of Berkeley DB.

On systems in which there may be multiple library versions of the standard allocation routines
(notably Windows NT), transferring memory between the library and the application will fail
because the Berkeley DB library allocates memory from a different heap than the application
uses to free it, or vice versa. To avoid this problem, the DB_ENV->set_alloc() and DB->set_alloc()
methods can be used to give Berkeley DB references to the application’s allocation routines.

Btree access method specific configuration

There are a series of configuration tasks which you can perform when using the Btree access
method. They are described in the following sections.

Btree comparison

The Btree data structure is a sorted, balanced tree structure storing associated key/data pairs.
By default, the sort order is lexicographical, with shorter keys collating before longer keys.
The user can specify the sort order for the Btree by using the DB->set_bt_compare() method.

Sort routines are passed pointers to keys as arguments. The keys are represented as DBT
structures. The routine must return an integer less than, equal to, or greater than zero if the
first argument is considered to be respectively less than, equal to, or greater than the second
argument. The only fields that the routines may examine in the DBT structures are data and
size fields.

An example routine that might be used to sort integer keys in the database is as follows:
i nt
conpare_i nt(dbp, a, b)
DB *dbp;
const DBT *a, *b;
{

int ai, bi;

12/18/2009 DB Reference Guide Page 23

../api_reference/C/dbput.html#put_DB_NODUPDATA
../api_reference/C/dbput.html#put_DB_NODUPDATA
../api_reference/C/dbget.html
../api_reference/C/dbput.html
../api_reference/C/dbcget.html
../api_reference/C/dbcput.html
../api_reference/C/envset_alloc.html
../api_reference/C/dbset_alloc.html
../api_reference/C/dbset_bt_compare.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html

<para />
/*

* Returns:

*<0if a<hb
*=0if a=b
*>0if a>b

*/
mencpy(&ai, a->data, sizeof(int));
mencpy(&bi, b->data, sizeof(int));
return (ai - bi);

}

Note that the data must first be copied into memory that is appropriately aligned, as Berkeley
DB does not guarantee any kind of alighment of the underlying data, including for comparison
routines. When writing comparison routines, remember that databases created on machines
of different architectures may have different integer byte orders, for which your code may
need to compensate.

An example routine that might be used to sort keys based on the first five bytes of the key
(ignoring any subsequent bytes) is as follows:

i nt

conpare_dbt (dbp, a, b)
DB *dbp;

const DBT *a, *b;

{

int len;

u_char *pl, *p2;

<para />

/*

* Returns:
*<0if a<b
*=0if a=b
*>0if a>b

*|
for (pl = a->data, p2 = b->data, len =5; len--; ++pl, ++p2)

if (*pl != *p2)
return ((long)*pl - (Iong)*p2);
return (0);

}

All comparison functions must cause the keys in the database to be well-ordered. The most
important implication of being well-ordered is that the key relations must be transitive, that
is, if key A is less than key B, and key B is less than key C, then the comparison routine must
also return that key A is less than key C.

It is reasonable for a comparison function to not examine an entire key in some applications,
which implies partial keys may be specified to the Berkeley DB interfaces. When partial keys
are specified to Berkeley DB, interfaces which retrieve data items based on a user-specified

12/18/2009

DB Reference Guide Page 24

key (for example, DB->get() and DBC->get() with the DB_SET flag), will modify the user-specified
key by returning the actual key stored in the database.

Btree prefix comparison

The Berkeley DB Btree implementation maximizes the number of keys that can be stored on
an internal page by storing only as many bytes of each key as are necessary to distinguish it
from adjacent keys. The prefix comparison routine is what determines this minimum number
of bytes (that is, the length of the unique prefix), that must be stored. A prefix comparison
function for the Btree can be specified by calling DB->set_bt_prefix().

The prefix comparison routine must be compatible with the overall comparison function of the
Btree, since what distinguishes any two keys depends entirely on the function used to compare
them. This means that if a prefix comparison routine is specified by the application, a compatible
overall comparison routine must also have been specified.

Prefix comparison routines are passed pointers to keys as arguments. The keys are represented
as DBT structures. The only fields the routines may examine in the DBT structures are data
and size fields.

The prefix comparison function must return the number of bytes necessary to distinguish the
two keys. If the keys are identical (equal and equal in length), the length should be returned.
If the keys are equal up to the smaller of the two lengths, then the length of the smaller key
plus 1 should be returned.

An example prefix comparison routine follows:

u_int32_t
conpare_prefix(dbp, a, b)
DB *dbp;

const DBT *a, *D;

{

size t cnt, len;
u_int8 t *pl, *p2;

cnt = 1,

len = a->size > b->size ? b->size : a->size;

for (pl =

a->data, p2 = b->data; len--; ++pl, ++p2, ++cnt)
if (*pl != *p2)

return (cnt);
/*
* They match up to the smaller of the two sizes.
* Collate the longer after the shorter.
*/
if (a->size < b->size)
return (a->size + 1);
if (b->size < a->size)
return (b->size + 1);

12/18/2009

DB Reference Guide Page 25

../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html#dbcget_DB_SET
../api_reference/C/dbset_bt_prefix.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html

return (b->size);

}

The usefulness of this functionality is data-dependent, but in some data sets can produce
significantly reduced tree sizes and faster search times.

Minimum keys per page

The number of keys stored on each page affects the size of a Btree and how it is maintained.
Therefore, it also affects the retrieval and search performance of the tree. For each Btree,
Berkeley DB computes a maximum key and data size. This size is a function of the page size
and the fact that at least two key/data pairs must fit on any Btree page. Whenever key or data
items exceed the calculated size, they are stored on overflow pages instead of in the standard
Btree leaf pages.

Applications may use the DB->set_bt_minkey() method to change the minimum number of keys
that must fit on a Btree page from two to another value. Altering this value in turn alters the
on-page maximum size, and can be used to force key and data items which would normally be
stored in the Btree leaf pages onto overflow pages.

Some data sets can benefit from this tuning. For example, consider an application using large
page sizes, with a data set almost entirely consisting of small key and data items, but with a
few large items. By setting the minimum number of keys that must fit on a page, the application
can force the outsized items to be stored on overflow pages. That in turn can potentially keep
the tree more compact, that is, with fewer internal levels to traverse during searches.

The following calculation is similar to the one performed by the Btree implementation. (The
minimum_keys value is multiplied by 2 because each key/data pair requires 2 slots on a Btree

page.)
maxi mum Si ze = page_size / (mni mumkeys * 2)

Using this calculation, if the page size is 8KB and the default minimum_keys value of 2 is used,
then any key or data items larger than 2KB will be forced to an overflow page. If an application
were to specify a minimum_key value of 100, then any key or data items larger than roughly
40 bytes would be forced to overflow pages.

It is important to remember that accesses to overflow pages do not perform as well as accesses
to the standard Btree leaf pages, and so setting the value incorrectly can result in overusing
overflow pages and decreasing the application's overall performance.

Retrieving Btree records by logical record number

The Btree access method optionally supports retrieval by logical record numbers. To configure
a Btree to support record numbers, call the DB->set_flags() method with the DB_RECNUM flag.

Configuring a Btree for record numbers should not be done lightly. While often useful, it may
significantly slow down the speed at which items can be stored into the database, and can
severely impact application throughput. Generally it should be avoided in trees with a need
for high write concurrency.

12/18/2009

DB Reference Guide Page 26

../api_reference/C/dbset_bt_minkey.html
../api_reference/C/dbset_flags.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_RECNUM

To retrieve by record number, use the DB_SET_RECNO flag to the DB->get() and DBC->get()
methods. The following is an example of a routine that displays the data item for a Btree
database created with the DB_RECNUM option.
i nt
rec_di spl ay(dbp, recno)
DB *dbp;
db_recno_t recno;
{
DBT key, data;
int ret;

menset (&key, 0, sizeof (key));
key.data = é&recno;

key. size = sizeof(recno);
menset (&data, 0, sizeof(data));

if ((ret = dbp->get(dbp, NULL, &key, &data, DB_SET RECNO)) != 0)
return (ret);
printf("data for %u: %*s\n",
(u_long)recno, (int)data.size, (char *)data.data);
return (0);

}

To determine a key's record number, use the DB_GET_RECNO flag to the DBC->get() method.
The following is an example of a routine that displays the record number associated with a
specific key.
int
recno_di spl ay(dbp, keyval ue)
DB *dbp;
char *keyval ue;
{
DBC *dbcp;
DBT key, data;
db_recno_t recno;
int ret, t ret;

/* Acquire a cursor for the database. */

if ((ret = dbp->cursor(dbp, NULL, &dbcp, 0)) !'=0) {
dbp->err(dbp, ret, "DB->cursor");

goto err;

}

/* Position the cursor. */

menset (&key, 0, sizeof (key));

key. data = keyval ue;

key. size = strlen(keyval ue);

menset (&data, 0, sizeof(data));

if ((ret = dbcp->c_get(dbcp, &key, &data, DB SET)) !'= 0) {

12/18/2009

DB Reference Guide Page 27

../api_reference/C/dbget.html#dbget_DB_SET_RECNO
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_RECNUM
../api_reference/C/dbcget.html#dbcget_DB_GET_RECNO
../api_reference/C/dbcget.html

dbp->err(dbp, ret, "DBC->c_get(DB SET): %", keyval ue);
goto err;

}

/*

* Request the record nunber, and store it into appropriately
* sized and aligned |ocal nenory.

*/

menset (&data, 0, sizeof(data));

data.data = &recno;

data.ul en = sizeof (recno);

data.flags = DB _DBT USERVEM

if ((ret = dbcp->c_get(dbcp, &key, &data, DB GET RECNO)) !'= 0) {
dbp->err(dbp, ret, "DBC >c_get (DB GET_RECNO)");

goto err;

}

printf("key for requested key was % u\n", (u_long)recno);

err: /* Cose the cursor. */

if ((t_ret = dbcp->c_close(dbcp)) = 0) {
if (ret == 0)
ret =t_ret;

dbp->err(dbp, ret, "DBC >close");

}

return (ret);

}

Compression

The Btree access method supports the automatic compression of key/data pairs upon their
insertion into the database. The key/data pairs are decompressed before they are returned to
the application, making an application’s interaction with a compressed database identical to
that for a non-compressed database. To configure Berkeley DB for compression, call the
DB->set_bt_compress() method and specify custom compression and decompression functions.
If DB->set_bt_compress() is called with NULL compression and decompression functions, Berkeley
DB will use its default compression functions.

|:| Compression only works with the Btree access method, and then only so long as your
database is not configured for unsorted duplicates.

The default compression function performs prefix compression on each key added to the
database. This means that, for a key n bytes in length, the first i bytes that match the first i
bytes of the previous key exactly are omitted and only the final n-i bytes are stored in the
database. If the bytes of key being stored match the bytes of the previous key exactly, then
the same prefix compression algorithm is applied to the data value being stored. To use Berkeley
DB's default compression behavior, both the default compression and decompression functions
must be used.

For example, to configure your database for default compression:

12/18/2009

DB Reference Guide Page 28

../api_reference/C/dbset_bt_compress.html
../api_reference/C/dbset_bt_compress.html

DB *dbp = NULL;

DB_ENV *envp = NULL;

u_int32_t db_flags;

const char *file_name = "nydb. db";
int ret;

[* Ski ppi ng environnent open to shorten this exanple */

[* Initialize the DB handle */

ret = db_create(&dbp, envp, 0);

if (ret 1=20) {
fprintf(stderr, "%\n", db_strerror(ret));
return (EXI T_FAI LURE);

}

[* Turn on default data conpression */
dbp- >set bt _conpress(dbp, NULL, NULL);

/* Now open the database */

db_flags = DB_CREATE; /* Al ow database creation */
ret = dbp->open(dbp, [* Pointer to the database */
NULL, [* Txn pointer */
file_name, [/* File name */
NULL, /* Logical db nane */

DB BTREE, /* Database type (using btree) */
db_flags, /* QOpen flags */

0); [* File node. Using defaults */
if (ret 1=20) {
dbp->err(dbp, ret, "Database '%' open failed",
file_name);

return (EXI T_FAI LURE);
}

Custom compression

An application wishing to perform it's own compression may supply a compression and
decompression function which will be called instead of Berkeley DB's default functions. The
compression function is passed five DBT structures:

» The key and data immediately preceeding the key/data pair that is being stored.
» The key and data being stored in the tree.

« The buffer where the compressed data should be written.

12/18/2009 DB Reference Guide Page 29

../api_reference/C/dbt.html

The total size of the buffer used to store the compressed data is identified in the DBT's ul en
field. If the compressed data cannot fit in the buffer, the compression function should store
the amount of space needed in DBT's si ze field and then return DB_BUFFER_SMALL. Berkeley DB
will subsequently re-call the compression function with the required amount of space allocated
in the compression data buffer.

Multiple compressed key/data pairs will likely be written to the same buffer and the compression
function should take steps to ensure it does not overwrite data.

For example, the following code fragments illustrate the use of a custom compression routine.
This code is actually a much simplified example of the default compression provided by Berkeley
DB. It does simple prefix compression on the key part of the data.

int conpress(DB *dbp, const DBT *prevKey, const DBT *prevDat a,

{

const DBT *key, const DBT *data, DBT *dest)

u_int8 t *dest data ptr;
const u_int8 t *key data, *prevKey data;
size t len, prefix, suffix;

key data = (const u_int8_ t*)key->dat a;
prevKey data = (const u_int8 t*)prevKey->data;
I en = key->size > prevKey->size ? prevKey->size : key->size;
for (; len-- && *key data == *prevKey data; ++key dat a,
++pr evKey dat a)
continue;

prefix
suffix

= (size t)(key data - (u_int8 t*)key->data);

= key->size - prefix;

/* Check that we have enough space in dest */

dest->size = (u_int32_t)(__db conpress count int(prefix) +
__db_conpress_count _int(suffix) +
__db_conpress_count _i nt (data->size) + suffix + data->size);

if (dest->size > dest->ul en)
return (DB_BUFFER_SMALL)

[* prefix length */
dest data ptr = (u_int8 t*)dest->data,
dest data ptr += _db_conpress_int(dest _data ptr, prefix);

[* suffix length */
dest data ptr += _db_conpress_int(dest _data ptr, suffix);

/* data | ength */
dest data ptr += _db_conpress_int(dest _data ptr, data->size);

[* suffix */
mencpy(dest data ptr, key data, suffix);

12/18/2009

DB Reference Guide

Page 30

../api_reference/C/dbt.html
../api_reference/C/dbt.html

dest _data ptr += suffix;

[* data */
mencpy(dest _data ptr, data->data, data->size);

return (0);

}

The corresponding decompression function is likewise passed five DBT structures:
« The key and data DBTs immediately preceding the decompressed key and data.
o The compressed data from the database.

» One to store the decompressed key and another one for the decompressed data.

Because the compression of record Xrelies upon record X- 1, the decompression function can
be called repeatedly to linearally decompress a set of records stored in the compressed buffer.

The total size of the buffer available to store the decompressed data is identified in the
destination DBT's ul en field. If the decompressed data cannot fit in the buffer, the
decompression function should store the amount of space needed in the destination DBT's si ze
field and then return DB_BUFFER SMALL. Berkeley DB will subsequently re-call the decompression
function with the required amount of space allocated in the decompression data buffer.

For example, the decompression routine that corresponds to the example compression routine
provided above is:

int deconpress(DB *dbp, const DBT *prevKey, const DBT *prevData,
DBT *conpressed, DBT *destKey, DBT *dest Dat a)
{

u_int8 t *conp_data, *dest data;
u_int32_t prefix, suffix, size;

/* Unmarshal prefix, suffix and data | ength */
conp_data = (u_int8 t*)conpressed->dat a;
size = __db_deconpress_count _int(conp_data);
if (size > conpressed->size)
return (EINVAL);
conp_data += __db_deconpress_int32(conp_data, &prefix);

size += _db_deconpress_count int(conp_data);
if (size > conpressed->size)
return (EINVAL);
conp_data += __db_deconpress_int32(conp_data, &suffix);

size += _db_deconpress_count int(conp_data);
if (size > conpressed->size)
return (EINVAL);
conp_data += __db_deconpress_int32(conp_data, &destData->size);

12/18/2009

DB Reference Guide Page 31

../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html

[* Check destination |engths */
dest Key->size = prefix + suffix;
if (destKey->size > destKey->ulen ||
dest Dat a- >si ze > dest Dat a- >ul en)
return (DB_BUFFER_SMALL);

[* Wite the prefix */
if (prefix > prevKey->size)

return (EINVAL);
dest _data = (u_int8_t*)destKey->dat a;
mencpy(dest _data, prevKey->data, prefix);
dest _data += prefix;

/* Wite the suffix */
size += suffix;
if (size > conpressed->size)
return (EINVAL);
mentpy(dest _data, conp_data, suffix);
conp_data += suffix;

/* Wite the data */
size += destDat a->si ze;
if (size > conpressed->size)
return (EINVAL);
menctpy(dest Dat a- >data, conp_data, dest Data- >si ze);
conp_data += dest Dat a- >si ze;

[* Return bytes read */
conpr essed- >si ze =

(u_int32_t)(conp_data - (u_int8 t*)conpressed->data);
return (0);

}

Programmer Notes

As you use compression with your databases, be aware of the following:

» Compression works by placing key/data pairs from a single database page into a single block
of compressed data. This is true whether you use DB's default compression, or you write your
own compression. Because all of key/data data is placed in a single block of memory, you
cannot decompress data unless you have decompressed everything that came before it in
the block. That is, you cannot decompress item n in the data block, unless you also decompress
items O through n-1.

« If you increase the minimum number of key/data pairs placed on a Btree leaf page (using
DB->set_bt_minkey()), you will decrease your seek times on a compressed database. However,
this will also decrease the effectiveness of the compression.

12/18/2009

DB Reference Guide Page 32

../api_reference/C/dbset_bt_minkey.html

» Compressed databases are fastest if bulk load is used to add data to them. See Retrieving
and updating records in bulk (page 67) for information on using bulk load.

Hash access method specific configuration

There are a series of configuration tasks which you can perform when using the Hash access
method. They are described in the following sections.

Page fill factor

The density, or page fill factor, is an approximation of the number of keys allowed to accumulate
in any one bucket, determining when the hash table grows or shrinks. If you know the average
sizes of the keys and data in your data set, setting the fill factor can enhance performance. A
reasonable rule to use to compute fill factor is:

(pagesi ze - 32) | (average key size + average data size + 8)

The desired density within the hash table can be specified by calling the DB->set_h_ffactor()
method. If no density is specified, one will be selected dynamically as pages are filled.

Specifying a database hash

The database hash determines in which bucket a particular key will reside. The goal of hashing
keys is to distribute keys equally across the database pages, therefore it is important that the
hash function work well with the specified keys so that the resulting bucket usage is relatively
uniform. A hash function that does not work well can effectively turn into a sequential list.

No hash performs equally well on all possible data sets. It is possible that applications may find
that the default hash function performs poorly with a particular set of keys. The distribution
resulting from the hash function can be checked using the db_stat utility. By comparing the
number of hash buckets and the number of keys, one can decide if the entries are hashing in
a well-distributed manner.

The hash function for the hash table can be specified by calling the DB->set_h_hash() method.
If no hash function is specified, a default function will be used. Any application-specified hash
function must take a reference to a DB object, a pointer to a byte string and its length, as
arguments and return an unsigned, 32-bit hash value.

Hash table size

When setting up the hash database, knowing the expected number of elements that will be
stored in the hash table is useful. This value can be used by the Hash access method
implementation to more accurately construct the necessary number of buckets that the database
will eventually require.

The anticipated number of elements in the hash table can be specified by calling the
DB->set_h_nelem() method. If not specified, or set too low, hash tables will expand gracefully
as keys are entered, although a slight performance degradation may be noticed. In order for
the estimated number of elements to be a useful value to Berkeley DB, the DB->set_h_ffactor()
method must also be called to set the page fill factor.

12/18/2009

DB Reference Guide Page 33

../api_reference/C/dbset_h_ffactor.html
../api_reference/C/db_stat.html
../api_reference/C/dbset_h_hash.html
../api_reference/C/db.html
../api_reference/C/dbset_h_nelem.html
../api_reference/C/dbset_h_ffactor.html

Queue and Recno access method specific configuration

There are a series of configuration tasks which you can perform when using the Queue and
Recno access methods. They are described in the following sections.

Managing record-based databases

When using fixed- or variable-length record-based databases, particularly with flat-text backing
files, there are several items that the user can control. The Recno access method can be used
to store either variable- or fixed-length data items. By default, the Recno access method stores
variable-length data items. The Queue access method can only store fixed-length data items.

Record Delimiters

Record Length

When using the Recno access method to store variable-length records, records read from any
backing source file are separated by a specific byte value which marks the end of one record
and the beginning of the next. This delimiting value is ignored except when reading records
from a backing source file, that is, records may be stored into the database that include the
delimiter byte. However, if such records are written out to the backing source file and the
backing source file is subsequently read into a database, the records will be split where
delimiting bytes were found.

For example, UNIX text files can usually be interpreted as a sequence of variable-length records
separated by ASCIl newline characters. This byte value (ASCIl 0x0a) is the default delimiter.
Applications may specify a different delimiting byte using the DB->set_re_delim() method. If
no backing source file is being used, there is no reason to set the delimiting byte value.

When using the Recno or Queue access methods to store fixed-length records, the record length
must be specified. Since the Queue access method always uses fixed-length records, the user
must always set the record length prior to creating the database. Setting the record length is
what causes the Recno access method to store fixed-length, not variable-length, records.

The length of the records is specified by calling the DB->set_re_len() method. The default
length of the records is 0 bytes. Any record read from a backing source file or otherwise stored
in the database that is shorter than the declared length will automatically be padded as
described for the DB->set_re_pad() method. Any record stored that is longer than the declared
length results in an error. For further information on backing source files, see Flat-text backing
files (page 35).

Record Padding Byte Value

When storing fixed-length records in a Queue or Recno database, a pad character may be
specified by calling the DB->set_re_pad() method. Any record read from the backing source
file or otherwise stored in the database that is shorter than the expected length will
automatically be padded with this byte value. If fixed-length records are specified but no pad
value is specified, a space character (0x20 in the ASCIlI character set) will be used. For further
information on backing source files, see Flat-text backing files (page 35).

12/18/2009

DB Reference Guide Page 34

../api_reference/C/dbset_re_delim.html
../api_reference/C/dbset_re_len.html
../api_reference/C/dbset_re_pad.html
../api_reference/C/dbset_re_pad.html

Selecting a Queue extent size

In Queue databases, records are allocated sequentially and directly mapped to an offset within
the file storage for the database. As records are deleted from the Queue, pages will become
empty and will not be reused in normal queue operations. To facilitate the reclamation of disk
space a Queue may be partitioned into extents. Each extent is kept in a separate physical file.

Extent files are automatically created as needed and marked for deletion when the head of
the queue moves off the extent. The extent will not be deleted until all processes close the
extent. In addition, Berkeley DB caches a small number of extents that have been recently
used; this may delay when an extent will be deleted. The number of extents left open depends
on queue activity.

The extent size specifies the number of pages that make up each extent. By default, if no
extent size is specified, the Queue resides in a single file and disk space is not reclaimed. In
choosing an extent size there is a tradeoff between the amount of disk space used and the
overhead of creating and deleting files. If the extent size is too small, the system will pay a
performance penalty, creating and deleting files frequently. In addition, if the active part of
the queue spans many files, all those files will need to be open at the same time, consuming
system and process file resources.

Flat-text backing files

It is possible to back any Recno database (either fixed or variable length) with a flat-text source
file. This provides fast read (and potentially write) access to databases that are normally
created and stored as flat-text files. The backing source file may be specified by calling the
DB->set_re_source() method.

The backing source file will be read to initialize the database. In the case of variable length
records, the records are assumed to be separated as described for the DB->set_re_delim()
method. For example, standard UNIX byte stream files can be interpreted as a sequence of
variable length records separated by ASCIl newline characters. This is the default.

When cached data would normally be written back to the underlying database file (for example,
when the DB->close() or DB->sync() methods are called), the in-memory copy of the database
will be written back to the backing source file.

The backing source file must already exist (but may be zero-length) when DB->open() is called.
By default, the backing source file is read lazily, that is, records are not read from the backing
source file until they are requested by the application. If multiple processes (not threads) are
accessing a Recno database concurrently and either inserting or deleting records, the backing
source file must be read in its entirety before more than a single process accesses the database,
and only that process should specify the backing source file as part of the DB->open() call. This
can be accomplished by calling the DB->set_flags() method with the DB_SNAPSHOT flag.

Reading and writing the backing source file cannot be transactionally protected because it
involves filesystem operations that are not part of the Berkeley DB transaction methodology.
For this reason, if a temporary database is used to hold the records (a NULL was specified as
the file argument to DB->open()), it is possible to lose the contents of the backing source
file if the system crashes at the right instant. If a permanent file is used to hold the database

12/18/2009

DB Reference Guide Page 35

../api_reference/C/dbset_re_source.html
../api_reference/C/dbset_re_delim.html
../api_reference/C/dbclose.html
../api_reference/C/dbsync.html
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html
../api_reference/C/dbset_flags.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_SNAPSHOT
../api_reference/C/dbopen.html

(a filename was specified as the file argument to DB->open()), normal database recovery on
that file can be used to prevent information loss. It is still possible that the contents of the
backing source file itself will be corrupted or lost if the system crashes.

For all of the above reasons, the backing source file is generally used to specify databases that
are read-only for Berkeley DB applications, and that are either generated on the fly by software
tools, or modified using a different mechanism such as a text editor.

Logically renumbering records

Records stored in the Queue and Recno access methods are accessed by logical record number.
In all cases in Btree databases, and optionally in Recno databases (see the DB->set_flags()
method and the DB_RENUMBER flag for more information), record numbers are mutable. This
means that the record numbers may change as records are added to and deleted from the
database. The deletion of record number 4 causes any records numbered 5 and higher to be
renumbered downward by 1; the addition of a new record after record number 4 causes any
records numbered 5 and higher to be renumbered upward by 1. In all cases in Queue databases,
and by default in Recno databases, record numbers are not mutable, and the addition or
deletion of records to the database will not cause already-existing record numbers to change.
For this reason, new records cannot be inserted between already-existing records in databases
with immutable record numbers.

Cursors pointing into a Btree database or a Recno database with mutable record numbers
maintain a reference to a specific record, rather than a record number, that is, the record
they reference does not change as other records are added or deleted. For example, if a
database contains three records with the record numbers 1, 2, and 3, and the data items "A",
"B", and "C", respectively, the deletion of record number 2 ("B") will cause the record "C" to be
renumbered downward to record number 2. A cursor positioned at record number 3 ("C") will
be adjusted and continue to point to "C" after the deletion. Similarly, a cursor previously
referring to the now deleted record number 2 will be positioned between the new record
numbers 1 and 2, and an insertion using that cursor will appear between those records. In this
manner records can be added and deleted to a database without disrupting the sequential

traversal of the database by a cursor.

Only cursors created using a single DB handle can adjust each other's position in this way,
however. If multiple DB handles have a renumbering Recno database open simultaneously (as
when multiple processes share a single database environment), a record referred to by one
cursor could change underfoot if a cursor created using another DB handle inserts or deletes
records into the database. For this reason, applications using Recno databases with mutable
record numbers will usually make all accesses to the database using a single DB handle and
cursors created from that handle, or will otherwise single-thread access to the database, for
example, by using the Berkeley DB Concurrent Data Store product.

In any Queue or Recno databases, creating new records will cause the creation of multiple
records if the record number being created is more than one greater than the largest record
currently in the database. For example, creating record number 28, when record 25 was
previously the last record in the database, will implicitly create records 26 and 27 as well as
28. All first, last, next and previous cursor operations will automatically skip over these implicitly
created records. So, if record number 5 is the only record the application has created, implicitly
creating records 1 through 4, the DBC->get() method with the DB_FIRST flag will return record

12/18/2009

DB Reference Guide Page 36

../api_reference/C/dbopen.html
../api_reference/C/dbset_flags.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html#dbcget_DB_FIRST

number 5, not record number 1. Attempts to explicitly retrieve implicitly created records by
their record number will result in a special error return, DB_KEYEMPTY (page 230).

In any Berkeley DB database, attempting to retrieve a deleted record, using a cursor positioned
on the record, results in a special error return, DB_KEYEMPTY (page 230). In addition, when
using Queue databases or Recno databases with immutable record numbers, attempting to
retrieve a deleted record by its record number will also result in the DB_KEYEMPTY (page 230)
return.

12/18/2009

DB Reference Guide Page 37

Chapter 3. Access Method Operations

Once a database handle has been created using db_create(), there are several standard access
method operations. Each of these operations is performed using a method referred to by the
returned handle. Generally, the database will be opened using DB->open(). If the database is
from an old release of Berkeley DB, it may need to be upgraded to the current release before
it is opened using DB->upgrade().

Once a database has been opened, records may be retrieved (DB->get()), stored (DB->put()),

and deleted (DB->del()).

Additional operations supported by the database handle include statistics (DB->stat()), truncation
(DB->truncate()), version upgrade (DB->upgrade()), verification and salvage (DB->verify()),
flushing to a backing file (DB->sync()), and association of secondary indices (DB->associate()).
Database handles are eventually closed using DB->close().

Database Operations

Description

db_create()

Create a database handle

DB->associate()

Associate a secondary index

DB->associate_foreign()

Associate a foreign index

DB->close()

Close a database

DB->compact()

Compact a database

DB->cursor()

Create a cursor

DB->del() Delete items from a database

DB->err() Error message

DB->existis() Return if an item appears in a database
DB->fd() Return a file descriptor from a database
DB->get() Get items from a database

DB->get_byteswapped()

Return if the underlying database is in host
order

DB->get_type()

Return the database type

DB->join()

Perform a database join on cursors

DB->key_range()

Return estimate of key location

DB->open()

Open a database

DB->put()

Store items into a database

DB->remove()

Remove a database

DB->rename()

Rename a database

DB->set_priority()

Set cache page priority

DB->stat()

Database statistics

DB->sync()

Flush a database to stable storage

12/18/2009

DB Reference Guide

Page 38

../api_reference/C/dbcreate.html
../api_reference/C/dbopen.html
../api_reference/C/dbupgrade.html
../api_reference/C/dbget.html
../api_reference/C/dbput.html
../api_reference/C/dbdel.html
../api_reference/C/dbstat.html
../api_reference/C/dbtruncate.html
../api_reference/C/dbupgrade.html
../api_reference/C/dbverify.html
../api_reference/C/dbsync.html
../api_reference/C/dbassociate.html
../api_reference/C/dbclose.html
../api_reference/C/dbcreate.html
../api_reference/C/dbassociate.html
../api_reference/C/dbassociate_foreign.html
../api_reference/C/dbclose.html
../api_reference/C/dbcompact.html
../api_reference/C/dbcursor.html
../api_reference/C/dbdel.html
../api_reference/C/dberr.html
../api_reference/C/dbexists.html
../api_reference/C/dbfd.html
../api_reference/C/dbget.html
../api_reference/C/dbget_byteswapped.html
../api_reference/C/dbget_type.html
../api_reference/C/dbjoin.html
../api_reference/C/dbkey_range.html
../api_reference/C/dbopen.html
../api_reference/C/dbput.html
../api_reference/C/dbremove.html
../api_reference/C/dbrename.html
../api_reference/C/dbset_priority.html
../api_reference/C/dbstat.html
../api_reference/C/dbsync.html

Database Operations

Description

DB->truncate()

Empty a database

DB->upgrade()

Upgrade a database

DB->verify()

Verify/salvage a database

Database Configuration

DB->set_alloc()

Set local space allocation functions

DB->set_cachesize()

Set the database cache size

DB->set_dup_compare()

Set a duplicate comparison function

DB->set_encrypt()

Set the database cryptographic key

DB->set_errcall()

Set error and informational message callback

DB->set_errfile()

Set error and informational message FILE

DB->set_errpfx()

Set error message prefix

DB->set_feedback()

Set feedback callback

DB->set_flags()

General database configuration

DB->set_lorder()

Set the database byte order

DB->set_pagesize()

Set the underlying database page size

Btree/Recno Configuration

DB->set_append_recno()

Set record append callback

DB->set_bt_compare()

Set a Btree comparison function

DB->set_bt_minkey()

Set the minimum number of keys per Btree
page

DB->set_bt_prefix()

Set a Btree prefix comparison function

DB->set_re_delim()

Set the variable-length record delimiter

DB->set_re_len()

Set the fixed-length record length

DB->set_re_pad()

Set the fixed-length record pad byte

DB->set_re_source()

Set the backing Recno text file

Hash Configuration

DB->set_h_compare()

Set a Hash comparison function

DB->set_h_ffactor()

Set the Hash table density

DB->set_h_hash()

Set a hashing function

DB->set_h_nelem()

Set the Hash table size

Queue Configuration

DB->set_q_extentsize()

Set Queue database extent size

Database open

The DB->open() method opens a database, and takes five arguments:

12/18/2009

DB Reference Guide

Page 39

../api_reference/C/dbtruncate.html
../api_reference/C/dbupgrade.html
../api_reference/C/dbverify.html
../api_reference/C/dbset_alloc.html
../api_reference/C/dbset_cachesize.html
../api_reference/C/dbset_dup_compare.html
../api_reference/C/dbset_encrypt.html
../api_reference/C/dbset_errcall.html
../api_reference/C/dbset_errfile.html
../api_reference/C/dbset_errpfx.html
../api_reference/C/dbset_feedback.html
../api_reference/C/dbset_flags.html
../api_reference/C/dbset_lorder.html
../api_reference/C/dbset_pagesize.html
../api_reference/C/dbset_append_recno.html
../api_reference/C/dbset_bt_compare.html
../api_reference/C/dbset_bt_minkey.html
../api_reference/C/dbset_bt_prefix.html
../api_reference/C/dbset_re_delim.html
../api_reference/C/dbset_re_len.html
../api_reference/C/dbset_re_pad.html
../api_reference/C/dbset_re_source.html
../api_reference/C/dbset_h_compare.html
../api_reference/C/dbset_h_ffactor.html
../api_reference/C/dbset_h_hash.html
../api_reference/C/dbset_h_nelem.html
../api_reference/C/dbset_q_extentsize.html
../api_reference/C/dbopen.html

file
The name of the file to be opened.

database
An optional database name.

type
The type of database to open. This value will be one of the four access methods Berkeley
DB supports: DB_BTREE, DB_HASH, DB_QUEUE or DB_RECNO, or the special value
DB_UNKNOWN, which allows you to open an existing file without knowing its type.
mode

The permissions to give to any created file.

There are a few flags that you can set to customize open:
DB_CREATE
Create the underlying database and any necessary physical files.
DB_NOMMAP
Do not map this database into process memory.
DB_RDONLY
Treat the data base as read-only.
DB_THREAD

The returned handle is free-threaded, that is, it can be used simultaneously by multiple
threads within the process.

DB_TRUNCATE

Physically truncate the underlying database file, discarding all databases it contained.
Underlying filesystem primitives are used to implement this flag. For this reason it is
only applicable to the physical file and cannot be used to discard individual databases
from within physical files.

DB_UPGRADE
Upgrade the database format as necessary.

Opening multiple databases in a single file

Applications may create multiple databases within a single physical file. This is useful when
the databases are both numerous and reasonably small, in order to avoid creating a large
number of underlying files, or when it is desirable to include secondary index databases in the
same file as the primary index database. Putting multiple databases in a single physical file is
an administrative convenience and unlikely to affect database performance.

To open or create a file that will include more than a single database, specify a database name
when calling the DB->open() method.

Physical files do not need to be comprised of a single type of database, and databases in a file
may be of any mixture of types, except for Queue databases. Queue databases must be created
one per file and cannot share a file with any other database type. There is no limit on the

12/18/2009

DB Reference Guide Page 40

../api_reference/C/dbopen.html#open_DB_CREATE
../api_reference/C/dbopen.html#open_DB_NOMMAP
../api_reference/C/dbopen.html#dbopen_DB_RDONLY
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/dbopen.html#open_DB_TRUNCATE
../api_reference/C/dbset_feedback.html#set_feedback_DB_UPGRADE
../api_reference/C/dbopen.html

number of databases that may be created in a single file other than the standard Berkeley DB
file size and disk space limitations.

It is an error to attempt to open a second database in a file that was not initially created using
a database name, that is, the file must initially be specified as capable of containing multiple
databases for a second database to be created in it.

It is not an error to open a file that contains multiple databases without specifying a database
name, however the database type should be specified as DB_UNKNOWN and the database must
be opened read-only. The handle that is returned from such a call is a handle on a database
whose key values are the names of the databases stored in the database file and whose data
values are opaque objects. No keys or data values may be modified or stored using this database
handle.

Configuring databases sharing a file

There are four pieces of configuration information which must be specified consistently for all
databases in a file, rather than differing on a per-database basis. They are: byte order, checksum
and encryption behavior, and page size. When creating additional databases in a file, any of
these configuration values specified must be consistent with the existing databases in the file
or an error will be returned.

Caching databases sharing a file

When storing multiple databases in a single physical file rather than in separate files, if any
of the databases in a file is opened for update, all of the databases in the file must share a
memory pool. In other words, they must be opened in the same database environment. This
is so per-physical-file information common between the two databases is updated correctly.

Locking in databases based on sharing a file

If databases are in separate files (and access to each separate database is single-threaded),
there is no reason to perform any locking of any kind, and the two databases may be read and
written simultaneously. Further, there would be no requirement to create a shared database
environment in which to open those two databases.

However, since multiple databases in a file exist in a single physical file, opening two databases
in the same file simultaneously requires locking be enabled, unless all of the databases are
read-only. As the locks for the two databases can only conflict during page allocation, this
additional locking is unlikely to affect performance. The exception is when Berkeley DB
Concurrent Data Store is configured; a single lock is used for all databases in the file when
Berkeley DB Concurrent Data Store is configured, and a write to one database will block all
accesses to all databases.

In summary, programmers writing applications that open multiple databases in a single file
will almost certainly need to create a shared database environment in the application as well.
For more information on database environments, see Database environment

introduction (page 122)

12/18/2009

DB Reference Guide Page 41

Partitioning databases

You can improve concurrency on your database reads and writes by splitting access to a single
database into multiple databases. This helps to avoid contention for internal database pages,
as well as allowing you to spread your databases across multiple disks, which can help to
improve disk /0.

While you can manually do this by creating and using more than one database for your data,
DB is capable of partitioning your database for you. When you use DB's built-in database
partitioning feature, your access to your data is performed in exactly the same way as if you
were only using one database; all the work of knowing which database to use to access a
particular record is handled for you under the hood.

Only the BTree and Hash access methods are supported for partitioned databases.

You indicate that you want your database to be partitioned by calling DB->set_partition() before
opening your database the first time. You can indicate the directory in which each partition
is contained using the DB->set_partition_dirs() method.

Once you have partitioned a database, you cannot change your partitioning scheme.

There are two ways to indicate what key/data pairs should go on which partition. The first is
by specifying an array of DBTs that indicate the minimum key value for a given partition. The
second is by providing a callback that returns the number of the partition on which a specified
key is placed.

Specifying partition keys

For simple cases, you can partition your database by providing an array of DBTs, each element
of which provides the minimum key value to be placed on a partition. There must be one fewer
elements in this array than you have partitions. The first element of the array indicates the
minimum key value for the second partition in your database. Key values that are less than
the first key value provided in this array are placed on the first partition (partition 0).

|:| You can use partition keys only if you are using the Btree access method.

For example, suppose you had a database of fruit, and you want three partitions for your
database. Then you need a DBT array of size two. The first element in this array indicates the
minimum keys that should be placed on partition 1. The second element in this array indicates
the minimum key value placed on partition 2. Keys that compare less than the first DBT in the
array are placed on partition 0.

All comparisons are performed according to the lexicographic comparison used by your platform.
For example, suppose you want all fruits whose names begin with:
» 'a' - 'f' to go on partition 0

e 'g'-'p' to go on partition 1

12/18/2009

DB Reference Guide Page 42

../api_reference/C/dbset_partition.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html

e 'q - 'Z' to go on partition 2.

Then you would accomplish this with the following code fragment:

[]

The DB->set_partition() partition callback parameter must be NULL if you are using an array

of DBTs to partition your database.

DB *dbp = NULL;

DB _ENV *envp = NULL,;

DBT partKeys[2];

u_int32_t db_flags;

const char *file_name = "nydb. db";
int ret;

/* Skippi ng environnent open to shorten this exanple */

[* Initialize the DB handle */

ret = db_create(&dbp, envp, 0);

if (ret 1=0) {
fprintf(stderr, "%\n", db_strerror(ret));
return (EXIT_FAI LURE);

}

[* Setup the partition keys */

menset (&part Keys[0], 0, sizeof (DBT));
partKeys[0].data = "g";
partKeys[0].size = sizeof ("g") - 1;

menset (&part Keys[1], 0, sizeof (DBT));
partKeys[1].data = "q";
partKeys[1].size = sizeof ("q") - 1;

dbp->set _partition(dbp, 3, partKeys, NULL);

/* Now open the database */

db_flags = DB _CREATE; /* Al'l ow dat abase creation */
ret = dbp->open(dbp, /* Pointer to the database */
NULL, [* Txn pointer */

file_ nanme, /* File nane */

NULL, /* Logical db nane */
DB BTREE, /* Database type (using btree) */

db _flags, /* Qpen flags */

0); [* File node. Using defaults */

if (ret 1=0) {

dbp->err(dbp, ret, "Database '%' open failed",

file_name);

12/18/2009

DB Reference Guide

Page 43

../api_reference/C/dbset_partition.html
../api_reference/C/dbt.html

return (EXI T_FAI LURE);
}

Partitioning callback

In some cases, a simple lexicographical comparison of key data will not sufficiently support a
partitioning scheme. For those situations, you should write a partitioning function. This function
accepts a pointer to the DB and the DBT, and it returns the number of the partition on which
the key belongs.

Note that DB actually places the key on the partition calculated by:

returned_partition modul o number _of partitions

Also, remember that if you use a partitioning function when you create your database, then
you must use the same partitioning function every time you open that database in the future.

The following code fragment illustrates a partition callback:

u_int32_t db_partition_fn(DB *db, DBT *key) {
char *key_dat a;
u_int32_t ret_nunber;
[* Cbtain your key data, unpacking it as necessary
* Here, we do the very sinple thing just for illustrative purposes.
*|

key data = (char *)key->data;

/* Here you woul d perform whatever conparison you require to determne
* what partition the key belongs on. If you return either 0 or the

* nunber of partitions in the database, the key is placed in the first
* database partition. Else, it is placed on:

*

* returned_nunber mod number _of partitions

*/

ret _nunber = 0;

return ret_nunber;

}

You then cause your partition callback to be used by providing it to the DB->set_partition()
method, as illustrated by the following code fragment.

|:| The DB->set_partition() DBT array parameter must be NULL if you are using a partition call
back to partition your database.

DB *dbp = NULL;

DB_ENV *envp = NULL;

u_int32_t db_flags;

const char *file_name = "nydb. db";
int ret;

12/18/2009

DB Reference Guide Page 44

../api_reference/C/db.html
../api_reference/C/dbt.html
../api_reference/C/db.html
../api_reference/C/dbset_partition.html
../api_reference/C/dbset_partition.html
../api_reference/C/dbt.html

[* Ski ppi ng environnent open to shorten this exanple */

[* Initialize the DB handle */

ret = db_create(&dbp, envp, 0);

if (ret 1=20) {
fprintf(stderr, "%\n", db_strerror(ret));
return (EXI T_FAI LURE);

dbp->set _partition(dbp, 3, NULL, db_partition_fn);

/* Now open the database */

db_flags = DB_CREATE; /* Al ow database creation */
ret = dbp->open(dbp, [* Pointer to the database */
NULL, [* Txn pointer */
file_name, [/* File name */
NULL, /* Logical db nane */

DB BTREE, /* Database type (using btree) */
db_flags, /* QOpen flags */

0); [* File node. Using defaults */
if (ret 1=20) {
dbp->err(dbp, ret, "Database '%' open failed",
file_name);

return (EXI T_FAI LURE);
}

Placing partition files

When you partition a database, a database file is created on disk in the same way as if you
were not partitioning the database. That is, this file uses the name you provide to the DB->open()
fil e parameter.

However, DB then also creates a series of database files on disk, one for each partition that
you want to use. These partition files share the same name as the database file name, but are
also number sequentially. So if you create a database named nydb. db, and you create 3 partitions
for it, then you will see the following database files on disk:

mydb. db

__dbp. nydb. db. 000
~_dbp. nydb. db. 001
~_dbp. nydb. db. 002

All of the database's contents go into the numbered database files. You can cause these files
to be placed in different directories (and, hence, different disk partitions or even disks) by
using the DB->set_partition_dirs() method.

12/18/2009

DB Reference Guide Page 45

../api_reference/C/dbopen.html
../api_reference/C/dbset_partition_dirs.html

DB->set_partition_dirs() takes a NULL-terminated array of strings, each one of which should
represent an existing filesystem directory.

If you are using an environment, the directories specified using DB->set_partition_dirs() must
also be included in the environment list specified by DB_ENV->add_data_dir().

If you are not using an environment, then the the directories specified to DB->set_partition_dirs()
can be either complete paths to currently existing directories, or paths relative to the
application's current working directory.

Ideally, you will provide DB->set_partition_dirs() with an array that is the same size as the
number of partitions you are creating for your database. Partition files are then placed according
to the order that directories are contained in the array; partition 0 is placed in
directory_array[0], partition 1 in directory_array[1], and so forth. However, if you provide an
array of directories that is smaller than the number of database partitions, then the directories
are used on a round-robin fashion.

You must call DB->set_partition_dirs() before you create your database, and before you open
your database each time thereafter. The array provided to DB->set_partition_dirs() must not
change after the database has been created.

Retrieving records

The DB->get() method retrieves records from the database. In general, DB->get() takes a key
and returns the associated data from the database.

There are a few flags that you can set to customize retrieval:

DB_GET_BOTH

Search for a matching key and data item, that is, only return success if both the key
and the data items match those stored in the database.

DB_RMW

Read-modify-write: acquire write locks instead of read locks during retrieval. This can
enhance performance in threaded applications by reducing the chance of deadlock.

DB_SET_RECNO

If the underlying database is a Btree, and was configured so that it is possible to search
it by logical record number, retrieve a specific record.

If the database has been configured to support duplicate records, DB->get() will always return
the first data item in the duplicate set.

Storing records

The DB->put() method stores records into the database. In general, DB->put() takes a key and
stores the associated data into the database.

There are a few flags that you can set to customize storage:

12/18/2009 DB Reference Guide Page 46

../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/envadd_data_dir.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbget.html
../api_reference/C/dbget.html
../api_reference/C/dbget.html#get_DB_GET_BOTH
../api_reference/C/dbcget.html#dbcget_DB_RMW
../api_reference/C/dbget.html#dbget_DB_SET_RECNO
../api_reference/C/dbget.html
../api_reference/C/dbput.html
../api_reference/C/dbput.html

DB_APPEND

Simply append the data to the end of the database, treating the database much like
a simple log. This flag is only valid for the Queue and Recno access methods.

DB_NOOVERWRITE
Only store the data item if the key does not already appear in the database.

If the database has been configured to support duplicate records, the DB->put() method will
add the new data value at the end of the duplicate set. If the database supports sorted
duplicates, the new data value is inserted at the correct sorted location.

Deleting records

The DB->del() method deletes records from the database. In general, DB->del() takes a key
and deletes the data item associated with it from the database.

If the database has been configured to support duplicate records, the DB->del() method will
remove all of the duplicate records. To remove individual duplicate records, you must use a
Berkeley DB cursor interface.

Database statistics

The DB->stat() method returns a set of statistics about the underlying database, for example,
the number of key/data pairs in the database, how the database was originally configured,
and so on.

There is a flag you can set to avoid time-consuming operations:
DB_FAST_STAT
Return only information that can be acquired without traversing the entire database.

Database truncation

The DB->truncate() method empties a database of all records.

Database upgrade

When upgrading to a new release of Berkeley DB, it may be necessary to upgrade the on-disk
format of already-created database files. Berkeley DB database upgrades are done in place,
and so are potentially destructive. This means that if the system crashes during the upgrade
procedure, or if the upgrade procedure runs out of disk space, the databases may be left in
an inconsistent and unrecoverable state. To guard against failure, the procedures outlined in
Upgrading Berkeley DB installations (page 332) should be carefully followed. If you are not
performing catastrophic archival as part of your application upgrade process, you should at
least copy your database to archival media, verify that your archival media is error-free and
readable, and that copies of your backups are stored offsite!

12/18/2009

DB Reference Guide Page 47

../api_reference/C/dbput.html#dbput_DB_APPEND
../api_reference/C/dbput.html#put_DB_NOOVERWRITE
../api_reference/C/dbput.html
../api_reference/C/dbdel.html
../api_reference/C/dbdel.html
../api_reference/C/dbdel.html
../api_reference/C/dbstat.html
../api_reference/C/dbstat.html#stat_DB_FAST_STAT
../api_reference/C/dbtruncate.html

The actual database upgrade is done using the DB->upgrade() method, or by dumping the
database using the old version of the Berkeley DB software and reloading it using the current
version.

After an upgrade, Berkeley DB applications must be recompiled to use the new Berkeley DB
library before they can access an upgraded database. There is no guarantee that applications
compiled against previous releases of Berkeley DB will work correctly with an upgraded
database format. Nor is there any guarantee that applications compiled against newer
releases of Berkeley DB will work correctly with the previous database format. We do
guarantee that any archived database may be upgraded using a current Berkeley DB software
release and the DB->upgrade() method, and there is no need to step-wise upgrade the database
using intermediate releases of Berkeley DB. Sites should consider archiving appropriate copies
of their application or application sources if they may need to access archived databases without
first upgrading them.

Database verification and salvage

The DB->verify() method verifies that a file, and any databases it may contain, are uncorrupted.
In addition, the method may optionally be called with a file stream argument to which all
key/data pairs found in the database are output. There are two modes for finding key/data
pairs to be output:

1. If the DB_SALVAGE flag is specified, the key/data pairs in the database are output. When
run in this mode, the database is assumed to be largely uncorrupted. For example, the
DB->verify() method will search for pages that are no longer linked into the database, and
will output key/data pairs from such pages. However, key/data items that have been marked
as deleted in the database will not be output, as the page structures are generally trusted
in this mode.

2. If both the DB_SALVAGE and DB_AGGRESSIVE flags are specified, all possible key/data pairs
are output. When run in this mode, the database is assumed to be seriously corrupted. For
example, key/data pairs that have been deleted will re-appear in the output. In addition,
because pages may have been subsequently reused and modified during normal database
operations after the key/data pairs were deleted, it is not uncommon for apparently corrupted
key/data pairs to be output in this mode, even when there is no corruption in the underlying
database. The output will almost always have to be edited by hand or other means before
the data is ready for reload into another database. We recommend that DB_SALVAGE be
tried first, and DB_AGGRESSIVE only tried if the output from that first attempt is obviously
missing data items or the data is sufficiently valuable that human review of the output is
preferable to any kind of data loss.

Flushing the database cache

The DB->sync() method flushes all modified records from the database cache to disk.

It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data, it does not eliminate the possibility.

12/18/2009 DB Reference Guide Page 48

../api_reference/C/dbupgrade.html
../api_reference/C/dbupgrade.html
../api_reference/C/dbverify.html
../api_reference/C/dbverify.html#verify_DB_SALVAGE
../api_reference/C/dbverify.html
../api_reference/C/dbverify.html#verify_DB_SALVAGE
../api_reference/C/dbverify.html#verify_DB_AGGRESSIVE
../api_reference/C/dbverify.html#verify_DB_SALVAGE
../api_reference/C/dbverify.html#verify_DB_AGGRESSIVE
../api_reference/C/dbsync.html

While unlikely, it is possible for database corruption to happen if a system or application crash
occurs while writing data to the database. To ensure that database corruption never occurs,
applications must either:

» Use transactions and logging with automatic recovery.
« Use logging and application-specific recovery.

« Edit a copy of the database, and, once all applications using the database have successfully
called DB->close(), use system operations (for example, the POSIX rename system call) to
atomically replace the original database with the updated copy.

Database close

The DB->close() database handle closes the DB handle. By default, DB->close() also flushes all
modified records from the database cache to disk.
There is one flag that you can set to customize DB->close():
DB_NOSYNC

Do not flush cached information to disk.
It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data, it does not eliminate the possibility.

While unlikely, it is possible for database corruption to happen if a system or application crash
occurs while writing data to the database. To ensure that database corruption never occurs,
applications must either:

» Use transactions and logging with automatic recovery.
« Use logging and application-specific recovery.

« Edit a copy of the database, and, once all applications using the database have successfully
called DB->close(), use system operations (for example, the POSIX rename system call) to
atomically replace the original database with the updated copy.

Secondary indexes

A secondary index, put simply, is a way to efficiently access records in a database (the primary)
by means of some piece of information other than the usual (primary) key. In Berkeley DB, this
index is simply another database whose keys are these pieces of information (the secondary
keys), and whose data are the primary keys. Secondary indexes can be created manually by
the application; there is no disadvantage, other than complexity, to doing so. However, when
the secondary key can be mechanically derived from the primary key and datum that it points
to, as is frequently the case, Berkeley DB can automatically and transparently manage secondary
indexes.

As an example of how secondary indexes might be used, consider a database containing a list
of students at a college, each of whom has a unique student ID number. A typical database
would use the student ID number as the key; however, one might also reasonably want to be

12/18/2009

DB Reference Guide Page 49

../api_reference/C/dbclose.html
../api_reference/C/dbclose.html
../api_reference/C/db.html
../api_reference/C/dbclose.html
../api_reference/C/dbclose.html
../api_reference/C/dbclose.html#dbclose_DB_NOSYNC
../api_reference/C/dbclose.html

able to look up students by last name. To do this, one would construct a secondary index in
which the secondary key was this last name.

In SQL, this would be done by executing something like the following:

CREATE TABLE st udent s(student id CHAR(4) NOT NULL,
| ast name CHAR(15), firstname CHAR(15), PRI MARY KEY(student id));
CREATE | NDEX | name ON students(!| astnane);

In Berkeley DB, this would work as follows (a Java APl example is also available [second.javas]):

struct student_record {
char student _id[4];
char |ast_nane[15];

char first_nane[15];

I

voi d

second()

{

DB *dbp, *sdbp;
int ret;

/* Open/create primry */
if ((ret = db_create(&dbp, dbenv, 0)) !'= 0)
handl e_error(ret);
if ((ret = dbp->open(dbp, NULL,
"students.db", NULL, DB BTREE, DB CREATE, 0600)) !'= 0)
handl e_error(ret);

/*
* (Qpen/create secondary. Note that it supports duplicate data
* items, since |ast names mght not be unique.
*|
if ((ret = db_create(&sdbp, dbenv, 0)) != 0)
handl e_error(ret);
if ((ret = sdbp->set_flags(sdbp, DB_DUP | DB _DUPSORT)) != 0)
handl e_error(ret);
if ((ret = sdbp->open(sdbp, NULL,
"l astnane. db", NULL, DB BTREE, DB CREATE, 0600)) !'= 0)
handl e_error(ret);

/* Associate the secondary with the primry. */

if ((ret = dbp->associate(dbp, NULL, sdbp, getnanme, 0)) != 0)
handl e_error(ret);

}

/*
* getname -- extracts a secondary key (the last nane) froma primary
* Kkey/data pair

12/18/2009

DB Reference Guide Page 50

second.javas
second.javas

*/

int

get name(secondary, pkey, pdata, skey)
DB *secondary;

const DBT *pkey, *pdat a;

DBT *skey;

{

/*
* Since the secondary key is a sinple structure menber of the
* record, we don't have to do anything fancy to returnit. If
* we have conposite keys that need to be constructed fromthe
* record, rather than sinply pointing into it, then the user's
* function might need to allocate space and copy data. In
* this case, the DB_DBT_APPMALLCC flag should be set in the
*

secondary key DBT.

*/

menset (skey, 0, sizeof (DBT));

skey->data = ((struct student_record *)pdata->data)->l ast _nane;
skey->size = sizeof ((struct student record *)pdata->data)->l ast_name;
return (0);

}

From the application’s perspective, putting things into the database works exactly as it does
without a secondary index; one can simply insert records into the primary database. In SQL
one would do the following:

I NSERT | NTO st udent
VALUES ("Wc42", "Churchill ", "Wnston ");

and in Berkeley DB, one does:

struct student record s;
DBT data, key;

menset (&key, 0, sizeof (DBT));

menset (&data, 0, sizeof (DBT));

menset (&, 0, sizeof(struct student _record));

key.data = "WCA2";

key.size = 4,

mencpy(&s. student _id, "WCA2", sizeof(s.student id));
mencpy(&s. | ast_nane, "Churchill ", sizeof (s.last_nane));
mencpy(&s. first _name, "Wnston ", sizeof(s.first_nane));
data.data = &s;

data.size = sizeof(s);

if ((ret = dbp->put(dbp, txn, &key, &data, 0)) '= 0)

handl e_error(ret);

Internally, a record with secondary key "Churchill” is inserted into the secondary database (in
addition to the insertion of "W(C42" into the primary, of course).

12/18/2009 DB Reference Guide Page 51

Deletes are similar. The SQL clause:
DELETE FROM student WHERE (student id = "WCA2");

looks like:
DBT key;

menset (&key, 0, sizeof (DBT));

key.data = "WCA2";

key. size = 4;

if ((ret = dbp->del (dbp, txn, &key, 0)) != 0)
handl e_error(ret);

Deletes can also be performed on the secondary index directly; a delete done this way will
delete the "real” record in the primary as well. If the secondary supports duplicates and there
are duplicate occurrences of the secondary key, then all records with that secondary key are
removed from both the secondary index and the primary database. In SQL:

DELETE FROM | nane WHERE (Il astname = "Churchill "),

In Berkeley DB:
DBT skey;

menset (&skey, 0, sizeof (DBT));

skey.data = "Churchill

skey.size = 15;

if ((ret = sdbp->del (sdbp, txn, é&skey, 0)) !'=0)
handl e_error(ret);

Gets on a secondary automatically return the primary datum. If DB->pget() or DBC->pget() is
used in lieu of DB->get() or DBC->get(), the primary key is returned as well. Thus, the equivalent
of:

SELECT * from | nane WHERE (I astnane = "Churchill ");

would be:

DBT data, pkey, skey;

<para />

menset (&skey, 0, sizeof (DBT));
menset (&pkey, 0, sizeof (DBT));
menset (&data, 0, sizeof (DBT));
skey.data = "Churchill "

skey.size = 15;

if ((ret = sdbp->pget(sdbp, txn, &skey, &pkey, &data, 0)) != Q)
handl e_error(ret);

/*

* Now pkey contains "WCA2" and data contains Wnston's record.
*/

12/18/2009 DB Reference Guide Page 52

../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbget.html
../api_reference/C/dbcget.html

To create a secondary index to a Berkeley DB database, open the database that is to become
a secondary index normally, then pass it as the "secondary” argument to the DB->associate()
method for some primary database.

After a DB->associate() call is made, the secondary indexes become alternate interfaces to the
primary database. All updates to the primary will be automatically reflected in each secondary
index that has been associated with it. All get operations using the DB->get() or DBC->get()
methods on the secondary index return the primary datum associated with the specified (or
otherwise current, in the case of cursor operations) secondary key. The DB->pget() and
DBC->pget() methods also become usable; these behave just like DB->get() and DBC->get(),
but return the primary key in addition to the primary datum, for those applications that need
it as well.

Cursor get operations on a secondary index perform as expected; although the data returned
will by default be those of the primary database, a position in the secondary index is maintained
normally, and records will appear in the order determined by the secondary key and the
comparison function or other structure of the secondary database.

Delete operations on a secondary index delete the item from the primary database and all
relevant secondaries, including the current one.

Put operations of any kind are forbidden on secondary indexes, as there is no way to specify
a primary key for a newly put item. Instead, the application should use the DB->put() or
DBC->put() methods on the primary database.

Any number of secondary indexes may be associated with a given primary database, up to
limitations on available memory and the number of open file descriptors.

Note that although Berkeley DB guarantees that updates made using any DB handle with an
associated secondary will be reflected in the that secondary, associating each primary handle
with all the appropriate secondaries is the responsibility of the application and is not enforced
by Berkeley DB. It is generally unsafe, but not forbidden by Berkeley DB, to modify a database
that has secondary indexes without having those indexes open and associated. Similarly, it is
generally unsafe, but not forbidden, to modify a secondary index directly. Applications that
violate these rules face the possibility of outdated or incorrect results if the secondary indexes
are later used.

If a secondary index becomes outdated for any reason, it should be discarded using the
DB->remove() method and a new one created using the DB->associate() method. If a secondary
index is no longer needed, all of its handles should be closed using the DB->close() method,
and then the database should be removed using a new database handle and the DB->remove()
method.

Closing a primary database handle automatically dis-associates all secondary database handles
associated with it.

Foreign key indexes

Foreign keys are used to ensure a level of consistency between two different databases in
terms of the keys that the databases use. In a foreign key relationship, one database is the

12/18/2009 DB Reference Guide Page 53

../api_reference/C/dbassociate.html
../api_reference/C/dbassociate.html
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbput.html
../api_reference/C/dbcput.html
../api_reference/C/db.html
../api_reference/C/dbremove.html
../api_reference/C/dbassociate.html
../api_reference/C/dbclose.html
../api_reference/C/dbremove.html

constrained database. This database is actually a secondary database which is associated with
a primary database. The other database in this relationship is the foreign key database. Once
this relationship has been established between a constrained database and a foreign key
database, then:

1. Key/data items cannot be added to the constrained database unless that same key already
exists in the foreign key database.

2. A key/data pair cannot be deleted from the foreign key database unless some action is also
taken to keep the constrained database consistent with the foreign key database.

Because the constrained database is a secondary database, by ensuring it's consistency with a
foreign key database you are actually ensuring that a primary database (the one to which the
secondary database is associated) is consistent with the foreign key database.

Deletions of keys in the foreign key database affect the constrained database in one of three
ways, as specified by the application:

o Abort

The deletion of a record from the foreign database will not proceed if that key exists in the
constrained primary database. Transactions must be used to prevent the aborted delete from
corrupting either of the databases.

e Cascade

The deletion of a record from the foreign database will also cause any records in the
constrained primary database that use that key to also be automatically deleted.

o Nullify

The deletion of a record from the foreign database will cause a user specified callback
function to be called, in order to alter or nullify any records using that key in the constrained
primary database.

Note that it is possible to delete a key from the constrained database, but not from the foreign
key database. For this reason, if you want the keys used in both databases to be 100% accurate,
then you will have to write code to ensure that when a key is removed from the constrained
database, it is also removed from the foreign key database.

As an example of how foreign key indexes might be used, consider a database of customer
information and a database of order information. A typical customer database would use a
customer ID as the key and those keys would also appear in the order database. To ensure an
order is not booked for a non-existent customer, the customer database can be associated with
the order database as a foreign index.

In order to do this, you create a secondary index of the order database, which uses customer
IDs as the key for its key/data pairs. This secondary index is, then, the constrained database.
But because the secondary index is constrained, so too is the order database because the

contents of the secondary index are programmatically tied to the contents of the order database.

12/18/2009

DB Reference Guide Page 54

The customer database, then, is the foreign key database. It is associated to the order database’s
secondary index using the DB->associate_foreign() method. In this way, an order cannot be
added to the order database unless the customer ID already exists in the customer database.

Note that this relationship can also be configured to delete any outstanding orders for a customer
when that customer is deleted from the customer database.

In SQL, this would be done by executing something like the following:

CREATE TABLE cust onmers(cust _id CHAR(4) NOT NULL,
[astname CHAR(15), firstname CHAR(15), PRI MARY KEY(cust_id));
CREATE TABLE orders(order _id CHAR(4) NOT NULL, order_numint NOT NULL,
cust _id CHAR(4), PRIMARY KEY (order_id),
FOREI GN KEY (cust_id) REFERENCES custoners(cust_id)
ON DELETE CASCADE) ;

In Berkeley DB, this would work as follows:

struct customer {
char cust_id[4];
char |ast_name[15] ;
char first_nanme[15];
}i
struct order {
char order_id[4];
i nt order_nunber;
char cust_id[4];
}i

voi d

foreign()

{
DB *dbp, *sdbp, *fdbp;
int ret;

/* Open/create order database */
if ((ret = db_create(&dbp, dbenv, 0)) != 0)
handl e_error(ret);
if ((ret = dbp->open(dbp, NULL,
"orders.db", NULL, DB BTREE, DB CREATE, 0600)) != 0)
handl e_error(ret);

/*
* (Qpen/create secondary index on custoner id. Note that it
* supports duplicates because a customer may have multiple
* orders.
*/
if ((ret = db_create(&sdbp, dbenv, 0)) != 0)
handl e_error(ret);
if ((ret = sdbp->set_flags(sdbp, DB DUP | DB DUPSORT)) != 0)

12/18/2009

DB Reference Guide Page 55

../api_reference/C/dbassociate_foreign.html

handl e_error(ret);
if ((ret = sdbp->open(sdbp, NULL, "orders_cust _ids.db",
NULL, DB_BTREE, DB_CREATE, 0600)) != 0)
handl e_error(ret);

/* Associate the secondary with the primry. */
if ((ret = dbp->associate(dbp, NULL, sdbp, getcustid, 0)) != 0)
handl e_error(ret);

/* Open/create custoner database */
if ((ret = db_create(& dbp, dbenv, 0)) != 0)
handl e_error(ret);
if ((ret = fdbp->open(fdbp, NULL,
"custoners.db", NULL, DB _BTREE, DB_CREATE, 0600)) != 0)
handl e_error(ret);

/* Associate the foreign with the secondary. */
if ((ret = fdbp->associate foreign(
fdbp, sdbp, NULL, DB_FOREI GN_CASCADE)) != 0)
handl e_error(ret);

}

/*

* getcustid -- extracts a secondary key (the customer id) froma primry
* key/ data pair

*|

int

get name(secondary, pkey, pdata, skey)
DB *secondary;
const DBT *pkey, *pdat a;

DBT *skey;

{
/*
* Since the secondary key is a sinple structure menber of the
* record, we don't have to do anything fancy to returnit. If
* we have conposite keys that need to be constructed fromthe
* record, rather than sinply pointing into it, then the user's
* function might need to allocate space and copy data. In
* this case, the DB_DBT_APPMALLCC flag should be set in the
* secondary key DBT.
*/
menset (skey, 0, sizeof (DBT));
skey->data = ((struct order *)pdata->data)->cust_id,;
skey->size = 4;
return (0);

}

12/18/2009 DB Reference Guide Page 56

Cursor operations

A database cursor refers to a single key/data pair in the database. It supports traversal of the
database and is the only way to access individual duplicate data items. Cursors are used for
operating on collections of records, for iterating over a database, and for saving handles to
individual records, so that they can be modified after they have been read.

The DB->cursor() method opens a cursor into a database. Upon return the cursor is uninitialized,
cursor positioning occurs as part of the first cursor operation.

Once a database cursor has been opened, records may be retrieved (DBC->get()), stored
(DBC->put()), and deleted (DBC->del()).

Additional operations supported by the cursor handle include duplication (DBC->dup()), equality
join (DB->join()), and a count of duplicate data items (DBC->count()). Cursors are eventually
closed using DBC->close().

Database Cursors and Related Methods Description

DB->cursor() Create a cursor

DBC->close()

Close a cursor

DBC->count()

Return count of duplicates

DBC->del() Delete by cursor
DBC->dup() Duplicate a cursor
DBC->get() Retrieve by cursor
DBC->put() Store by cursor

DBC->set_priority()

Set the cursor's cache priority

Retrieving records with a cursor

The DBC->get() method retrieves records from the database using a cursor. The DBC->get()
method takes a flag which controls how the cursor is positioned within the database and returns
the key/data item associated with that positioning. Similar to DB->get(), DBC->get() may also
take a supplied key and retrieve the data associated with that key from the database. There
are several flags that you can set to customize retrieval.

Cursor position flags
DB_FIRST, DB_LAST
Return the first (last) record in the database.

DB_NEXT, DB_PREV
Return the next (previous) record in the database.

DB_NEXT_DUP

Return the next record in the database, if it is a duplicate data item for the current
key.

12/18/2009 DB Reference Guide Page 57

../api_reference/C/dbcursor.html
../api_reference/C/dbcget.html
../api_reference/C/dbcput.html
../api_reference/C/dbcdel.html
../api_reference/C/dbcdup.html
../api_reference/C/dbjoin.html
../api_reference/C/dbccount.html
../api_reference/C/dbcclose.html
../api_reference/C/dbcursor.html
../api_reference/C/dbcclose.html
../api_reference/C/dbccount.html
../api_reference/C/dbcdel.html
../api_reference/C/dbcdup.html
../api_reference/C/dbcget.html
../api_reference/C/dbcput.html
../api_reference/C/dbcset_priority.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html#dbcget_DB_FIRST
../api_reference/C/dbcget.html#dbcget_DB_LAST
../api_reference/C/dbcget.html#dbcget_DB_NEXT
../api_reference/C/dbcget.html#dbcget_DB_PREV
../api_reference/C/dbcget.html#dbcget_DB_NEXT_DUP

DB_NEXT_NODUP, DB_PREV_NODUP
Return the next (previous) record in the database that is not a duplicate data item for
the current key.

DB_CURRENT
Return the record from the database to which the cursor currently refers.

Retrieving specific key/data pairs

DB_SET
Return the record from the database that matches the supplied key. In the case of
duplicates the first duplicate is returned and the cursor is positioned at the beginning
of the duplicate list. The user can then traverse the duplicate entries for the key.

DB_SET_RANGE
Return the smallest record in the database greater than or equal to the supplied key.
This functionality permits partial key matches and range searches in the Btree access
method.

DB_GET_BOTH
Return the record from the database that matches both the supplied key and data
items. This is particularly useful when there are large numbers of duplicate records
for a key, as it allows the cursor to easily be positioned at the correct place for traversal
of some part of a large set of duplicate records.

DB_GET_BOTH_RANGE

Return the smallest record in the database greater than or equal to the supplied key
and data items.

Retrieving based on record numbers

DB_SET_RECNO
If the underlying database is a Btree, and was configured so that it is possible to search
it by logical record number, retrieve a specific record based on a record number
argument.

DB_GET_RECNO

If the underlying database is a Btree, and was configured so that it is possible to search
it by logical record number, return the record number for the record to which the
cursor refers.

Special-purpose flags
DB_CONSUME
Read-and-delete: the first record (the head) of the queue is returned and deleted. The
underlying database must be a Queue.
DB_RMW

Read-modify-write: acquire write locks instead of read locks during retrieval. This can
enhance performance in threaded applications by reducing the chance of deadlock.

12/18/2009 DB Reference Guide Page 58

../api_reference/C/dbcget.html#dbcget_DB_NEXT_NODUP
../api_reference/C/dbcget.html#dbcget_DB_PREV_NODUP
../api_reference/C/dbcget.html#dbcget_DB_CURRENT
../api_reference/C/dbcget.html#dbcget_DB_SET
../api_reference/C/dbcget.html#dbcget_DB_SET_RANGE
../api_reference/C/dbcget.html#dbcget_DB_GET_BOTH
../api_reference/C/dbcget.html#dbcget_DB_GET_BOTH_RANGE
../api_reference/C/dbcget.html#dbcget_DB_SET_RECNO
../api_reference/C/dbcget.html#dbcget_DB_GET_RECNO
../api_reference/C/dbget.html#dbget_DB_CONSUME
../api_reference/C/dbcget.html#dbcget_DB_RMW

In all cases, the cursor is repositioned by a DBC->get() operation to point to the newly-returned
key/data pair in the database.

The following is a code example showing a cursor walking through a database and displaying
the records it contains to the standard output:

int
di spl ay(dat abase)

char *dat abase;
{

DB *dbp;

DBC *dbcp;

DBT key, data;

int close _db, close dbc, ret;

close_db = close dbc = 0;

/* Open the database. */
if ((ret = db_create(&bp, NULL, 0)) !'=0) {
fprintf(stderr,

"0: db_create: 9%\n", prognane, db _strerror(ret));
return (1);

close db = 1;

[* Turn on additional error output. */
dbp->set _errfile(dbp, stderr);
dbp->set _errpfx(dbp, prognane);

/* Open the database. */

if ((ret = dbp->open(dbp, NULL, database, NULL,
DB_UNKNOAWN, DB _RDONLY, 0)) !'=0) {

dbp->err(dbp, ret, "%: DB->open", database);

goto err;

}

/* Acquire a cursor for the database. */

if ((ret = dbp->cursor(dbp, NULL, &dbcp, 0)) !'=0) {
dbp->err(dbp, ret, "DB->cursor");

goto err;

cl ose_dbc = 1;
/* Initialize the key/data return pair. */
menset (&key, 0, sizeof (key));

menset (&data, 0, sizeof(data));

/* Wal k through the database and print out the key/data pairs. */
while ((ret = dbcp->c_get (dbcp, &key, &data, DB NEXT)) == 0)

12/18/2009

DB Reference Guide Page 59

../api_reference/C/dbcget.html

printf("%*s : %*s\n",
(int)key.size, (char *)key.data,
(int)data.size, (char *)data.data);
if (ret !'= DB_NOTFOUND) {
dbp->err(dbp, ret, "DBcursor->get");
goto err;

}

err: if (close_dbc & (ret = dbcp->c_close(dbcp)) !'= 0)
dbp->err(dbp, ret, "DBcursor->close");
if (close_db && (ret = dbp->close(dbp, 0)) !'= 0)
fprintf(stderr,
"0: DB->close: 9%\n", prognane, db_strerror(ret));
return (0);

}
Storing records with a cursor

The DBC->put() method stores records into the database using a cursor. In general, DBC->put()
takes a key and inserts the associated data into the database, at a location controlled by a
specified flag.

There are several flags that you can set to customize storage:
DB_AFTER

Create a new record, immediately after the record to which the cursor refers.
DB_BEFORE

Create a new record, immediately before the record to which the cursor refers.
DB_CURRENT

Replace the data part of the record to which the cursor refers.
DB_KEYFIRST

Create a new record as the first of the duplicate records for the supplied key.
DB_KEYLAST

Create a new record, as the last of the duplicate records for the supplied key.

In all cases, the cursor is repositioned by a DBC->put() operation to point to the newly inserted
key/data pair in the database.

The following is a code example showing a cursor storing two data items in a database that
supports duplicate data items:
int
st ore(dbp)
DB *dbp;
{
DBC *dbcp;
DBT key, data;
int ret;

12/18/2009 DB Reference Guide Page 60

../api_reference/C/dbcput.html
../api_reference/C/dbcput.html
../api_reference/C/dbcput.html#put_DB_AFTER
../api_reference/C/dbcput.html#put_DB_BEFORE
../api_reference/C/dbcget.html#dbcget_DB_CURRENT
../api_reference/C/dbcput.html#put_DB_KEYFIRST
../api_reference/C/dbcput.html#put_DB_KEYLAST
../api_reference/C/dbcput.html

/*

* The DB handl e for a Btree database supporting duplicate data
* items is the argunent; acquire a cursor for the database.

*/

if ((ret = dbp->cursor(dbp, NULL, &dbcp, 0)) !'=0) {
dbp->err(dbp, ret, "DB->cursor");

goto err;

}

[* Initialize the key. */

menset (&key, 0, sizeof (key));
key.data = "new key";

key.size = strlen(key.data) + 1;

[* Initialize the data to be the first of two duplicate records. */
menset (&data, 0, sizeof(data));

data.data = "new key's data: entry #1";

data.size = strlen(data.data) + 1;

/* Store the first of the two duplicate records. */
if ((ret = dbcp->c_put(dbcp, &key, &data, DB KEYFIRST)) != 0)
dbp->err(dbp, ret, "DB->cursor");

[* Initialize the data to be the second of two duplicate records. */
data.data = "new key's data: entry #2";
data.size = strlen(data.data) + 1;

/*

* Store the second of the two duplicate records. No duplicate
* record sort function has been specified, so we explicitly

* store the record as the |ast of the duplicate set.

*/

if ((ret = dbcp->c_put(dbcp, &key, &data, DB KEYLAST)) != Q)
dbp->err(dbp, ret, "DB->cursor");

err; if ((ret = dbcp->c_close(dbcp)) !'= 0)
dbp->err(dbp, ret, "DBcursor->close");

return (0);
}

Deleting records with a cursor
The DBC->del() method deletes records from the database using a cursor. The DBC->del()

method deletes the record to which the cursor currently refers. In all cases, the cursor position
is unchanged after a delete.

12/18/2009 DB Reference Guide Page 61

../api_reference/C/dbcdel.html
../api_reference/C/dbcdel.html

Duplicating a cursor

Once a cursor has been initialized (for example, by a call to DBC->get()), it can be thought of
as identifying a particular location in a database. The DBC->dup() method permits an application
to create a new cursor that has the same locking and transactional information as the cursor

from which it is copied, and which optionally refers to the same position in the database.

In order to maintain a cursor position when an application is using locking, locks are maintained
on behalf of the cursor until the cursor is closed. In cases when an application is using locking
without transactions, cursor duplication is often required to avoid self-deadlocks. For further
details, refer to Berkeley DB Transactional Data Store locking conventions (page 253).

Equality Join

Berkeley DB supports "equality” (also known as "natural”), joins on secondary indices. An equality
join is a method of retrieving data from a primary database using criteria stored in a set of
secondary indices. It requires the data be organized as a primary database which contains the
primary key and primary data field, and a set of secondary indices. Each of the secondary
indices is indexed by a different secondary key, and, for each key in a secondary index, there
is a set of duplicate data items that match the primary keys in the primary database.

For example, let's assume the need for an application that will return the names of stores in
which one can buy fruit of a given color. We would first construct a primary database that lists
types of fruit as the key item, and the store where you can buy them as the data item:

Primary key: Primary data:
apple Convenience Store
blueberry Farmer's Market
peach Shopway

pear Farmer's Market
raspberry Shopway
strawberry Farmer's Market

We would then create a secondary index with the key color, and, as the data items, the names

of fruits of different colors.

Secondary key: Secondary data:
blue blueberry

red apple

red raspberry

red strawberry
yellow peach

yellow pear

12/18/2009

DB Reference Guide

Page 62

../api_reference/C/dbcget.html
../api_reference/C/dbcdup.html

Example

This secondary index would allow an application to look up a color, and then use the data items
to look up the stores where the colored fruit could be purchased. For example, by first looking
up blue, the data item blueberry could be used as the lookup key in the primary database,
returning Farmer's Market.

Your data must be organized in the following manner in order to use the DB->join() method:

1. The actual data should be stored in the database represented by the DB object used to
invoke this method. Generally, this DB object is called the primary.

2. Secondary indices should be stored in separate databases, whose keys are the values of the
secondary indices and whose data items are the primary keys corresponding to the records
having the desighated secondary key value. It is acceptable (and expected) that there may
be duplicate entries in the secondary indices.

These duplicate entries should be sorted for performance reasons, although it is not required.
For more information see the DB_DUPSORT flag to the DB->set_flags() method.

What the DB->join() method does is review a list of secondary keys, and, when it finds a data
item that appears as a data item for all of the secondary keys, it uses that data item as a lookup
into the primary database, and returns the associated data item.

If there were another secondary index that had as its key the cost of the fruit, a similar lookup
could be done on stores where inexpensive fruit could be purchased:

Secondary key: Secondary data:
expensive blueberry
expensive peach

expensive pear

expensive strawberry
inexpensive apple
inexpensive pear
inexpensive raspberry

The DB->join() method provides equality join functionality. While not strictly cursor
functionality, in that it is not a method off a cursor handle, it is more closely related to the
cursor operations than to the standard DB operations.

It is also possible to do lookups based on multiple criteria in a single operation. For example,
it is possible to look up fruits that are both red and expensive in a single operation. If the same
fruit appeared as a data item in both the color and expense indices, then that fruit name would
be used as the key for retrieval from the primary index, and would then return the store where
expensive, red fruit could be purchased.

Consider the following three databases:

12/18/2009

DB Reference Guide Page 63

../api_reference/C/dbjoin.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUPSORT
../api_reference/C/dbset_flags.html
../api_reference/C/dbjoin.html
../api_reference/C/dbjoin.html
../api_reference/C/db.html

personnel
» key = SSN

« data = record containing name, address, phone number, job title

lastname
» key = lastname

« data = SSN
jobs

» key = job title

» data = SSN

Consider the following query:

Return the personnel records of all people named smth with the job
title manager.

This query finds are all the records in the primary database (personnel) for whom the criteria
lastname=smith and job title=manager is true.

Assume that all databases have been properly opened and have the handles: pers_db, name_db,
job_db. We also assume that we have an active transaction to which the handle txn refers.

DBC *name_curs, *job _curs, *join_curs;
DBC *carray| 3];
DBT key, data;
int ret, tret;

name_curs = NULL;

job_curs = NULL;

menset (&key, 0, sizeof (key));
menset (&data, 0, sizeof(data));

if ((ret =
name_db- >cur sor (nane_db, txn, &nane_curs, 0)) != 0)
goto err;
key.data = "smith";
key. size = sizeof ("snith");
if ((ret =
nane_curs->c_get (name_curs, &key, &data, DB SET)) != 0)
goto err;
if ((ret =job_db->cursor(job_db, txn, & ob curs, 0)) !=0)
goto err;
key.data = "manager";
key.size = sizeof ("manager");

12/18/2009

DB Reference Guide Page 64

if ((ret =
job_curs->c_get(job_curs, &key, &data, DB SET)) != 0)
goto err;

carray[0] = nane_curs;
carray[1] = job_curs;
carray[2] = NULL;

if ((ret =

pers_db->j oi n(pers_db, carray, & oin_curs, 0)) !=0)
goto err;
while ((ret =

join_curs->c_get(join_curs, &ey, &data, 0)) == 0) {
/* Process record returned in key/data. */
}
/*

* If we exited the | oop because we ran out of records,
* then it has conpleted successfully.

*/

if (ret == DB_NOTFOUND)

ret = 0;

err:
if (join_curs !'= NULL &&

(tret =join_curs->c_close(join_curs)) !'=0 & ret == 0)
ret = tret;
if (name_curs !'= NULL &&

(tret = name_curs->c_cl ose(name_curs)) !'= 0 & ret == 0)

ret = tret;
if (job_curs != NULL &&

(tret =job_curs->c_close(job_curs)) !=0 & ret == 0)
ret = tret;

return (ret);

The name cursor is positioned at the beginning of the duplicate list for smith and the job cursor
is placed at the beginning of the duplicate list for manager. The join cursor is returned from
the join method. This code then loops over the join cursor getting the personnel records of
each one until there are no more.

Data item count

Once a cursor has been initialized to refer to a particular key in the database, it can be used
to determine the number of data items that are stored for any particular key. The DBC->count()
method returns this number of data items. The returned value is always one, unless the database
supports duplicate data items, in which case it may be any number of items.

12/18/2009

DB Reference Guide Page 65

../api_reference/C/dbccount.html

Cursor close

The DBC->close() method closes the DBC cursor, after which the cursor may no longer be used.
Although cursors are implicitly closed when the database they point to are closed, it is good
programming practice to explicitly close cursors. In addition, in transactional systems, cursors
may not exist outside of a transaction and so must be explicitly closed.

12/18/2009 DB Reference Guide Page 66

../api_reference/C/dbcclose.html
../api_reference/C/dbc.html

Chapter 4. Access Method Wrapup

Data alignment

The Berkeley DB access methods provide no guarantees about byte alignment for returned
key/data pairs, or callback functions which take DBT references as arguments, and applications
are responsible for arranging any necessary alignment. The DB_DBT_MALLOC, DB_DBT_REALLOC,
and DB_DBT_USERMEM flags may be used to store returned items in memory of arbitrary
alignment.

Retrieving and updating records in bulk

When retrieving or modifying large numbers of records, the number of method calls can often
dominate performance. Berkeley DB offers bulk get, put and delete interfaces which can
significantly increase performance for some applications.

Bulk retrieval

To retrieve records in bulk, an application buffer must be specified to the DB->get() or
DBC->get() methods. This is done in the C API by setting the data and ulen fields of the data
DBT to reference an application buffer, and the flags field of that structure to
DB_DBT_USERMEM. In the Berkeley DB C++ and Java APIs, the actions are similar, although
there are API-specific methods to set the DBT values. Then, the DB_MULTIPLE or
DB_MULTIPLE_KEY flags are specified to the DB->get() or DBC->get() methods, which cause
multiple records to be returned in the specified buffer.

The difference between DB_MULTIPLE and DB_MULTIPLE_KEY is as follows: DB_MULTIPLE returns
multiple data items for a single key. For example, the DB_MULTIPLE flag would be used to
retrieve all of the duplicate data items for a single key in a single call. The DB_MULTIPLE_KEY
flag is used to retrieve multiple key/data pairs, where each returned key may or may not have
duplicate data items.

Once the DB->get() or DBC->get() method has returned, the application will walk through the
buffer handling the returned records. This is implemented for the C and C++ APIs using four
macros: DB_MULTIPLE_INIT, DB_MULTIPLE_NEXT, DB_MULTIPLE_KEY_NEXT, and
DB_MULTIPLE_RECNO_NEXT. For the Java API, this is implemented as three iterator classes:
MultipleDataEntry [../java/com/sleepycat/db/MultipleDataEntry.html], MultipleKeyDataEntry
[../java/com/sleepycat/db/MultipleKeyDataEntry.html], and MultipleRecnoDataEntry [../java/
com/sleepycat/db/MultipleRecnoDataEntry.html].

The DB_MULTIPLE_INIT macro is always called first. It initializes a local application variable
and the data DBT for stepping through the set of returned records. Then, the application calls
one of the remaining three macros: DB_MULTIPLE_NEXT, DB_MULTIPLE_KEY_NEXT, and
DB_MULTIPLE_RECNO_NEXT.

If the DB_MULTIPLE flag was specified to the DB->get() or DBC->get() method, the application
will always call the DB_MULTIPLE_NEXT macro. If the DB_MULTIPLE_KEY flag was specified to
the DB->get() or DBC->get() method, and the underlying database is a Btree or Hash database,

12/18/2009

DB Reference Guide Page 67

../api_reference/C/dbt.html
../api_reference/C/dbt.html#dbt_DB_DBT_MALLOC
../api_reference/C/dbt.html#dbt_DB_DBT_REALLOC
../api_reference/C/dbt.html#dbt_DB_DBT_USERMEM
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html#dbt_DB_DBT_USERMEM
../api_reference/C/dbt.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/DB_MULTIPLE_INIT.html
../api_reference/C/DB_MULTIPLE_NEXT.html
../api_reference/C/DB_MULTIPLE_KEY_NEXT.html
../api_reference/C/DB_MULTIPLE_RECNO_NEXT.html
../java/com/sleepycat/db/MultipleDataEntry.html
../java/com/sleepycat/db/MultipleDataEntry.html
../java/com/sleepycat/db/MultipleKeyDataEntry.html
../java/com/sleepycat/db/MultipleKeyDataEntry.html
../java/com/sleepycat/db/MultipleRecnoDataEntry.html
../java/com/sleepycat/db/MultipleRecnoDataEntry.html
../java/com/sleepycat/db/MultipleRecnoDataEntry.html
../api_reference/C/DB_MULTIPLE_INIT.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_NEXT.html
../api_reference/C/DB_MULTIPLE_KEY_NEXT.html
../api_reference/C/DB_MULTIPLE_RECNO_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/DB_MULTIPLE_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbget.html
../api_reference/C/dbcget.html

the application will always call the DB_MULTIPLE_KEY_NEXT macro. If the DB_MULTIPLE_KEY
flag was specified to the DB->get() or DBC->get() method, and the underlying database is a
Queue or Recno database, the application will always call the DB_MULTIPLE_RECNO_NEXT
macro. The DB_MULTIPLE_NEXT, DB_MULTIPLE_KEY_NEXT, and DB_MULTIPLE_RECNO_NEXT
macros are called repeatedly, until the end of the returned records is reached. The end of the
returned records is detected by the application’s local pointer variable being set to NULL.

The following is an example of a routine that displays the contents of a Btree database using
the bulk return interfaces.
int
rec_di spl ay(dbp)
DB *dbp;
{
DBC *dbcp;
DBT key, data;
size t retklen, retdlen;
char *retkey, *retdata;
int ret, t ret;
void *p;

menset (&key, 0, sizeof (key));
menset (&data, 0, sizeof(data));

/* Review the database in 5MB chunks. */

#define BUFFER LENGTH (5 * 1024 * 1024)

if ((data.data = malloc(BUFFER LENGTH)) == NULL)
return (errno);

dat a. ul en = BUFFER LENGTH,

data.flags = DB DBT USERVEM

/* Acquire a cursor for the database. */

if ((ret = dbp->cursor(dbp, NULL, &dbcp, 0)) !'=0) {
dbp->err(dbp, ret, "DB->cursor");

free(data.data);

return (ret);

1
for (57) {
/*
* Acquire the next set of key/data pairs. This code
* does not handl e single key/data pairs that won't fit
* in a BUFFER LENGTH size buffer, instead returning
* DB BUFFER SMALL to our caller.
*
/

if ((ret = dbcp->c_get (dbcp,
&key, &data, DB _MULTIPLE_KEY | DB_NEXT)) != 0) {
if (ret !'= DB NOTFOUND)
dbp->err(dbp, ret, "DBcursor->c _get");

12/18/2009 DB Reference Guide Page 68

../api_reference/C/DB_MULTIPLE_KEY_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/DB_MULTIPLE_RECNO_NEXT.html
../api_reference/C/DB_MULTIPLE_NEXT.html
../api_reference/C/DB_MULTIPLE_KEY_NEXT.html
../api_reference/C/DB_MULTIPLE_RECNO_NEXT.html

br eak;

}

for (DB_MILTIPLE INIT(p, &data);;) {
DB_MULTI PLE_KEY_NEXT(p,
&data, retkey, retklen, retdata, retdlen);
if (p == NULL)
br eak;
printf("key: %*s, data: %*s\n",
(int)retklen, retkey, (int)retdlen, retdata);
}

}

if ((t_ret = dbcp->c_close(dbcp)) = 0) {
dbp->err(dbp, ret, "DBcursor->close");
if (ret == 0)

ret =t_ret;

}

free(data.data);

return (ret);

}

Bulk updates

Bulk deletes

To put records in bulk with the btree or hash access methods, construct bulk buffers in the
key and data DBT using DB_MULTIPLE_WRITE_INIT and DB_MULTIPLE_WRITE_NEXT. To put
records in bulk with the recno or queue access methods, construct bulk buffers in the data
DBT as before, but construct the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT and
DB_MULTIPLE_RECNO_WRITE_NEXT with a data size of zero;. In both cases, set the DB_MULTIPLE
flag to DB->put().

Alternatively, for btree and hash access methods, construct a single bulk buffer in the key DBT
using DB_MULTIPLE_WRITE_INIT and DB_MULTIPLE_KEY_WRITE_NEXT. For recno and queue
access methods, construct a bulk buffer in the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT
and DB_MULTIPLE_RECNO_WRITE_NEXT. In both cases, set the DB_MULTIPLE_KEY flag to
DB->put().

A successful bulk operation is logically equivalent to a loop through each key/data pair,
performing a DB->put() for each one.

To delete all records with a specified set of keys with the btree or hash access methods,
construct a bulk buffer in the key DBT using DB_MULTIPLE_WRITE_INIT and
DB_MULTIPLE_WRITE_NEXT. To delete a set of records with the recno or queue access methods,
construct the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT and
DB_MULTIPLE_RECNO_WRITE_NEXT with a data size of zero. In both cases, set the DB_MULTIPLE

12/18/2009

DB Reference Guide Page 69

../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_WRITE_NEXT.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbput.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_KEY_WRITE_NEXT.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbput.html
../api_reference/C/dbput.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_WRITE_NEXT.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE

flag to DB->del(). This is equivalent to calling DB->del() for each key in the bulk buffer. In
particular, if the database supports duplicates, all records with the matching key are deleted.

Alternatively, to delete a specific set of key/data pairs, which may be items within a set of
duplicates, there are also two cases depending on whether the access method uses record
numbers for keys. For btree and hash access methods, construct a single bulk buffer in the key
DBT using DB_MULTIPLE_WRITE_INIT and DB_MULTIPLE_KEY_WRITE_NEXT. For recno and queue
access methods, construct a bulk buffer in the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT
and DB_MULTIPLE_RECNO_WRITE_NEXT. In both cases, set the DB_MULTIPLE_KEY flag to
DB->del().

A successful bulk operation is logically equivalent to a loop through each key/data pair,
performing a DB->del() for each one.

Partial record storage and retrieval

It is possible to both store and retrieve parts of data items in all Berkeley DB access methods.
This is done by setting the DB_DBT_PARTIAL flag DBT structure passed to the Berkeley DB
method.

The DB_DBT_PARTIAL flag is based on the values of two fields of the DBT structure: dlen and
doff. The value of dlen is the number of bytes of the record in which the application is
interested. The value of doff is the offset from the beginning of the data item where those
bytes start.

For example, if the data item were ABCDEFGHIJKL, a doff value of 3 would indicate that the
bytes of interest started at D, and a dlen value of 4 would indicate that the bytes of interest
were DEFG.

When retrieving a data item from a database, the dlen bytes starting doff bytes from the
beginning of the record are returned, as if they comprised the entire record. If any or all of
the specified bytes do not exist in the record, the retrieval is still successful and any existing
bytes are returned.

When storing a data item into the database, the dlen bytes starting doff bytes from the
beginning of the specified key's data record are replaced by the data specified by the data and
size fields. If dlen is smaller than size, the record will grow, and if dlen is larger than size,
the record will shrink. If the specified bytes do not exist, the record will be extended using
nul bytes as necessary, and the store call will still succeed.

The following are various examples of the put case for the DB_DBT_PARTIAL flag. In all examples,
the initial data item is 20 bytes in length:

ABCDEFGHIJ0123456789
1. size = 20
doff =0
dlen = 20
data = abcdef ghij abcdef ghi |

12/18/2009

DB Reference Guide Page 70

../api_reference/C/dbdel.html
../api_reference/C/dbdel.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_KEY_WRITE_NEXT.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbdel.html
../api_reference/C/dbdel.html
../api_reference/C/dbt.html#dbt_DB_DBT_PARTIAL
../api_reference/C/dbt.html
../api_reference/C/dbt.html#dbt_DB_DBT_PARTIAL
../api_reference/C/dbt.html
../api_reference/C/dbt.html#dbt_DB_DBT_PARTIAL

Result: The 20 bytes at offset 0 are replaced by the 20 bytes of
data; that is, the entire record is replaced.

ABCDEFGHI J0123456789 - > abcdef ghi j abcdef ghi j

size = 10
doff = 20
dlen = 0
data = abcdef ghi |

Result: The 0 bytes at offset 20 are replaced by the 10 bytes of
data; that is, the record is extended by 10 bytes.

ABCDEFGH J0123456789 -> ABCDEFCHI J0123456789abcdef ghi |

size = 10
doff = 10
dlen =5
data = abcdef ghi j

Result: The 5 bytes at offset 10 are replaced by the 10 bytes of
dat a.

ABCDEFGH J0123456789 -> ABCDEFCHI Jabcdef ghi j 56789

size = 10
doff = 10
dlen = 0
data = abcdef ghi |

Result: The 0 bytes at offset 10 are replaced by the 10 bytes of
data; that is, 10 bytes are inserted into the record.

ABCDEFGHI J0123456789 -> ABCDEFGHI Jabcdef ghi j 0123456789

size = 10
doff =2
dlen = 15
data = abcdef ghi |

Result: The 15 bytes at offset 2 are replaced by the 10 bytes of
dat a.

ABCDEFGHI J0123456789 - > ABabcdef ghi j 789

si ze
dof f

12/18/2009

DB Reference Guide

Page 71

0
abcdef ghi |

dl en
data

Result: The 0 bytes at offset 0 are replaced by the 10 bytes of
data; that is, the 10 bytes are inserted at the beginning of the
record.

ABCDEFGHI J0123456789 -> abcdef ghi j ABCDEFGH J0123456789

7. size =0
doff =0
dlen = 10
data = ""

Result: The 10 bytes at offset 0 are replaced by the 0 bytes of
data; that is, the first 10 bytes of the record are discarded.

ABCDEFGH J0123456789 -> 0123456789

8. size =10
doff = 25
dlen = 0
data = abcdef ghi j

Result: The 0 bytes at offset 25 are replaced by the 10 bytes of
data; that is, 10 bytes are inserted into the record past the end
of the current data (\0 represents a nul byte).

ABCDEFGH J0123456789 -> ABCDEFGHI J0123456789\ 0\ 0\ 0\ 0\ Oabcdef ghi j

Storing C/C++ structures/objects

Berkeley DB can store any kind of data, that is, it is entirely 8-bit clean. How you use this
depends, to some extent, on the application language you are using. In the C/C++ languages,
there are a couple of different ways to store structures and objects.

First, you can do some form of run-length encoding and copy your structure into another piece
of memory before storing it:

struct {
char *datal;
u_int32_t dataz;

} info;
size t len;
u_int8 t *p, data_buffer[1024];

p = &data_buffer[0];

12/18/2009

DB Reference Guide Page 72

len = strlen(info.datal);

mencpy(p, & en, sizeof(len));

p += sizeof(len);

mencpy(p, info.datal, len);

p += len;

mencpy(p, & nfo.data2, sizeof(info.data2));
p += sizeof (info.data2);

and so on, until all the fields of the structure have been loaded into the byte array. If you want
more examples, see the Berkeley DB logging routines (for example,
btree/btree_auto.c:__bam_split_log()). This technique is generally known as "marshalling”. If
you use this technique, you must then un-marshall the data when you read it back:

struct {
char *datal;
u_int32_t dataz;

} info;
size t len;
u_int8t *p;

p = &ata buffer[0];

mencpy(& en, p, sizeof(len));

p += sizeof (len);

info.datal = malloc(len);
mencpy(info.datal, p, len);

p += len;

mencpy(& nfo.data2, p, sizeof(info.data2));
p += sizeof (info.data2);

and so on.

The second way to solve this problem only works if you have just one variable length field in
the structure. In that case, you can declare the structure as follows:

struct {

int a, b, c;
u_int8 t buf[1];
} info;

Then, let's say you have a string you want to store in this structure. When you allocate the
structure, you allocate it as:

mal | oc(si zeof (struct info) + strlen(string));

Since the allocated memory is contiguous, you can the initialize the structure as:

1
2;

info.a
info.b

12/18/2009 DB Reference Guide Page 73

Retrieved

info.c = 3;
mencpy(& nfo.buf[0], string, strlen(string) + 1);

and give it to Berkeley DB to store, with a length of:

si zeof (struct info) + strlen(string);

In this case, the structure can be copied out of the database and used without any additional
work.

key/data permanence for C/C++

When using the non-cursor Berkeley DB calls to retrieve key/data items under the C/C++ APIs
(for example, DB->get()), the memory to which the pointer stored into the DBT refers is only
valid until the next call to Berkeley DB using the DB handle. (This includes any use of the
returned DB handle, including by another thread of control within the process. For this reason,
when multiple threads are using the returned DB handle concurrently, one of the
DB_DBT_MALLOC, DB_DBT_REALLOC or DB_DBT_USERMEM flags must be specified with any
non-cursor DBT used for key or data retrieval.)

When using the cursor Berkeley DB calls to retrieve key/data items under the C/C++ APIs (for
example, DBC->get()), the memory to which the pointer stored into the DBT refers is only valid
until the next call to Berkeley DB using the DBC returned by DB->cursor().

Error support

Berkeley DB offers programmatic support for displaying error return values.

The db_strerror() function returns a pointer to the error message corresponding to any Berkeley
DB error return, similar to the ANSI C strerror function, but is able to handle both system error
returns and Berkeley DB specific return values.

For example:

int ret;

if ((ret = dbp->put(dbp, NULL, &key, &data, 0)) != 0) {
fprintf(stderr, "put failed: %\n", db_strerror(ret));
return (1);

}

There are also two additional error methods, DB->err() and DB- >errx() . These methods work
like the ANSI C X3.159-1989 (ANSI C) printf function, taking a printf-style format string and
argument list, and writing a message constructed from the format string and arguments.

The DB->err() method appends the standard error string to the constructed message; the
DB->errx() method does not. These methods provide simpler ways of displaying Berkeley DB
error messages. For example, if your application tracks session IDs in a variable called session_id,
it can include that information in its error messages:

Error messages can additionally be configured to always include a prefix (for example, the
program name) using the DB->set_errpfx() method.

12/18/2009

DB Reference Guide Page 74

../api_reference/C/dbget.html
../api_reference/C/dbt.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbt.html#dbt_DB_DBT_MALLOC
../api_reference/C/dbt.html#dbt_DB_DBT_REALLOC
../api_reference/C/dbt.html#dbt_DB_DBT_USERMEM
../api_reference/C/dbt.html
../api_reference/C/dbcget.html
../api_reference/C/dbt.html
../api_reference/C/dbc.html
../api_reference/C/dbcursor.html
../api_reference/C/envstrerror.html
../api_reference/C/dberr.html
../api_reference/C/dberr.html
../api_reference/C/dbset_errpfx.html

#define DATABASE "access. db"
int ret;
(voi d) dop->set _errpfx(dbp, program nane);

if ((ret = dbp->open(dbp,
NULL, DATABASE, NULL, DB BTREE, DB CREATE, 0664)) != 0) {
dbp->err(dbp, ret, "%", DATABASE);
dbp->errx(dbp,
"contact your systemadministrator: session ID was %",
session_id);
return (1);

}

For example, if the program were called my_app and the open call returned an EACCESS system
error, the error messages shown would appear as follows:

my_app: access. db: Perm ssion deni ed.
my_app: contact your system administrator: session ID was 14

Cursor stability

In the absence of locking, no guarantees are made about the stability of cursors in different
threads of control. However, the Btree, Queue and Recno access methods guarantee that cursor
operations, interspersed with any other operation in the same thread of control will always
return keys in order and will return each non-deleted key/data pair exactly once. Because the
Hash access method uses a dynamic hashing algorithm, it cannot guarantee any form of stability
in the presence of inserts and deletes unless transactional locking is performed.

If locking was specified when the Berkeley DB environment was opened, but transactions are
not in effect, the access methods provide repeatable reads with respect to the cursor. That
is, a DB_CURRENT call on the cursor is guaranteed to return the same record as was returned
on the last call to the cursor.

In the presence of transactions, the Btree, Hash and Recno access methods provide degree 3
isolation (serializable transactions). The Queue access method provides degree 3 isolation with
the exception that it permits phantom records to appear between calls. That is, deleted records
are not locked, therefore another transaction may replace a deleted record between two calls
to retrieve it. The record would not appear in the first call but would be seen by the second
call. For readers not enclosed in transactions, all access method calls provide degree 2 isolation,
that is, reads are not repeatable. A transaction may be declared to run with degree 2 isolation
by specifying the DB_READ_COMMITTED flag. Finally, Berkeley DB provides degree 1 isolation
when the DB_READ_UNCOMMITTED flag is specified; that is, reads may see data modified in
transactions which have not yet committed.

For all access methods, a cursor scan of the database performed within the context of a
transaction is guaranteed to return each key/data pair once and only once, except in the
following case. If, while performing a cursor scan using the Hash access method, the transaction

12/18/2009

DB Reference Guide Page 75

../api_reference/C/dbcget.html#dbcget_DB_CURRENT
../api_reference/C/dbcget.html#dbcget_DB_READ_COMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED

performing the scan inserts a new pair into the database, it is possible that duplicate key/data
pairs will be returned.

Database limits

The largest database file that Berkeley DB can handle depends on the page size selected by
the application. Berkeley DB stores database file page numbers as unsigned 32-bit humbers
and database file page sizes as unsigned 16-bit numbers. Using the maximum database page

size of 65536, this results in a maximum database file size of 2% (256 terabytes). The minimum

database page size is 512 bytes, which results in a minimum maximum database size of 24 (2
terabytes).

The largest database file Berkeley DB can support is potentially further limited if the host

system does not have filesystem support for files larger than 232, including the ability to seek
to absolute offsets within those files.

The largest key or data item that Berkeley DB can support is 232, or more likely limited by
available memory. Specifically, while key and data byte strings may be of essentially unlimited
length, any one of them must fit into available memory so that it can be returned to the
application. As some of the Berkeley DB interfaces return both key and data items to the
application, those interfaces will require that any key/data pair fit simultaneously into memory.
Further, as the access methods may need to compare key and data items with other key and
data items, it may be a requirement that any two key or two data items fit into available
memory. Finally, when writing applications supporting transactions, it may be necessary to
have an additional copy of any data item in memory for logging purposes.

The maximum Btree depth is 255.

Disk space requirements

It is possible to estimate the total database size based on the size of the data. The following
calculations are an estimate of how many bytes you will need to hold a set of data and then
how many pages it will take to actually store it on disk.

Space freed by deleting key/data pairs from a Btree or Hash database is never returned to the
filesystem, although it is reused where possible. This means that the Btree and Hash databases
are grow-only. If enough keys are deleted from a database that shrinking the underlying file

is desirable, you should create a new database and copy the records from the old one into it.

These are rough estimates at best. For example, they do not take into account overflow records,
filesystem metadata information, large sets of duplicate data items (where the key is only
stored once), or real-life situations where the sizes of key and data items are wildly variable,
and the page-fill factor changes over time.

Btree
The formulas for the Btree access method are as follows:
usef ul - byt es- per-page = (page-size - page-overhead) * page-fill-factor
12/18/2009 DB Reference Guide Page 76

Hash

bytes-of-data = n-records *
(bytes-per-entry + page-overhead-for-two-entries)

n- pages- of -data = bytes-of-data / useful - bytes- per-page

tot al - byt es-on-di sk = n-pages-of-data * page-size

The useful-bytes-per-page is a measure of the bytes on each page that will actually hold the
application data. It is computed as the total number of bytes on the page that are available
to hold application data, corrected by the percentage of the page that is likely to contain data.
The reason for this correction is that the percentage of a page that contains application data
can vary from close to 50% after a page split to almost 100% if the entries in the database were
inserted in sorted order. Obviously, the page-fill-factor can drastically alter the amount of
disk space required to hold any particular data set. The page-fill factor of any existing database
can be displayed using the db_stat utility.

The page-overhead for Btree databases is 26 bytes. As an example, using an 8K page size, with
an 85% page-fill factor, there are 6941 bytes of useful space on each page:

6941 = (8192 - 26) * .85
The total bytes-of-data is an easy calculation: It is the number of key or data items plus the
overhead required to store each item on a page. The overhead to store a key or data item on

a Btree page is 5 bytes. So, it would take 1560000000 bytes, or roughly 1.34GB of total data
to store 60,000,000 key/data pairs, assuming each key or data item was 8 bytes long:

1560000000 = 60000000 * ((8 + 5) * 2)
The total pages of data, n-pages-of-data, is the bytes-of-data divided by the
useful-bytes-per-page. In the example, there are 224751 pages of data.
224751 = 1560000000 / 6941

The total bytes of disk space for the database is n-pages-of-data multiplied by the page-size.
In the example, the result is 1841160192 bytes, or roughly 1.71GB.

1841160192 = 224751 * 8192

The formulas for the Hash access method are as follows:

usef ul - byt es- per-page = (page-size - page-overhead)

bytes-of-data = n-records *
(bytes-per-entry + page-overhead-for-two-entries)

n- pages- of -data = bytes-of-data / useful - bytes-per-page

12/18/2009

DB Reference Guide Page 77

../api_reference/C/db_stat.html

tot al - byt es-on-di sk = n-pages-of -data * page-size

The useful-bytes-per-page is a measure of the bytes on each page that will actually hold the
application data. It is computed as the total number of bytes on the page that are available
to hold application data. If the application has explicitly set a page-fill factor, pages will not
necessarily be kept full. For databases with a preset fill factor, see the calculation below. The
page-overhead for Hash databases is 26 bytes and the page-overhead-for-two-entries is 6 bytes.
As an example, using an 8K page size, there are 8166 bytes of useful space on each page:
8166 = (8192 - 26)

The total bytes-of-data is an easy calculation: it is the number of key/data pairs plus the
overhead required to store each pair on a page. In this case that's 6 bytes per pair. So, assuming

60,000,000 key/data pairs, each of which is 8 bytes long, there are 1320000000 bytes, or roughly
1.23GB of total data:

1320000000 = 60000000 * (16 + 6)
The total pages of data, n-pages-of-data, is the bytes-of-data divided by the
useful-bytes-per-page. In this example, there are 161646 pages of data.

161646 = 1320000000 / 8166
The total bytes of disk space for the database is n-pages-of-data multiplied by the page-size.
In the example, the result is 1324204032 bytes, or roughly 1.23GB.

1324204032 = 161646 * 8192
Now, let's assume that the application specified a fill factor explicitly. The fill factor indicates
the target number of items to place on a single page (a fill factor might reduce the utilization
of each page, but it can be useful in avoiding splits and preventing buckets from becoming too

large). Using our estimates above, each item is 22 bytes (16 + 6), and there are 8166 useful
bytes on a page (8192 - 26). That means that, on average, you can fit 371 pairs per page.

371 = 8166 / 22

However, let's assume that the application designer knows that although most items are 8
bytes, they can sometimes be as large as 10, and it's very important to avoid overflowing
buckets and splitting. Then, the application might specify a fill factor of 314.

314 = 8166 / 26

With a fill factor of 314, then the formula for computing database size is
n- pages-of -data = npairs / pairs-per-page

or 191082.
191082 = 60000000 / 314

At 191082 pages, the total database size would be 1565343744, or 1.46GB.
1565343744 = 191082 * 8192

12/18/2009

DB Reference Guide Page 78

There are a few additional caveats with respect to Hash databases. This discussion assumes
that the hash function does a good job of evenly distributing keys among hash buckets. If the
function does not do this, you may find your table growing significantly larger than you expected.
Secondly, in order to provide support for Hash databases coexisting with other databases in a
single file, pages within a Hash database are allocated in power-of-two chunks. That means
that a Hash database with 65 buckets will take up as much space as a Hash database with 128
buckets; each time the Hash database grows beyond its current power-of-two number of
buckets, it allocates space for the next power-of-two buckets. This space may be sparsely
allocated in the file system, but the files will appear to be their full size. Finally, because of
this need for contiguous allocation, overflow pages and duplicate pages can be allocated only
at specific points in the file, and this too can lead to sparse hash tables.

Specifying a Berkeley DB schema using SQL DDL

When starting a new Berkeley DB project, much of the code that you must write is dedicated
to defining the BDB environment: what databases it contains, the types of the databases, and
so forth. Also, since records in BDB are just byte arrays, you must write code that assembles
and interprets these byte arrays.

Much of this code can be written automatically (in C) by the db_sql utility. To use it, you first
specify the schema of your Berkeley DB environment in SQL Data Definition Language (DDL).
Then you invoke the db_sql command, giving the DDL as input. db_sql reads the DDL, and
writes C code that implements a storage-layer API suggested by the DDL.

The generated API includes a general-purpose initialization function, which sets up the
environment and the databases (creating them if they don't already exist). It also includes C
structure declarations for each record type, and numerous specialized functions for storing
and retrieving those records.

db_sql can also produce a simple test program that exercises the generated API. This program
is useful as an example of how to use the API. It contains calls to all of the interface functions,
along with commentary explaining what the code is doing.

Once the storage layer APl is produced, your application may use it as is, or you may customize
it as much as you like by editing the generated source code. Be warned, however: db_sql is a
one-way process; there is no way to automatically incorporate customizations into newly
generated code, if you decide to run db_sql again.

To learn more about db_sql, please consult the db_sql utility manual page in the Berkeley DB
C API guide.

Access method tuning

There are a few different issues to consider when tuning the performance of Berkeley DB access
method applications.

access method

An application’s choice of a database access method can significantly affect
performance. Applications using fixed-length records and integer keys are likely to get
better performance from the Queue access method. Applications using variable-length

12/18/2009

DB Reference Guide Page 79

../api_reference/C/db_sql.html
../api_reference/C/db_sql.html

records are likely to get better performance from the Btree access method, as it tends
to be faster for most applications than either the Hash or Recno access methods.
Because the access method APIs are largely identical between the Berkeley DB access
methods, it is easy for applications to benchmark the different access methods against
each other. See Selecting an access method (page 15) for more information.

cache size

The Berkeley DB database cache defaults to a fairly small size, and most applications
concerned with performance will want to set it explicitly. Using a too-small cache will
result in horrible performance. The first step in tuning the cache size is to use the
db_stat utility (or the statistics returned by the DB->stat() function) to measure the
effectiveness of the cache. The goal is to maximize the cache's hit rate. Typically,
increasing the size of the cache until the hit rate reaches 100% or levels off will yield
the best performance. However, if your working set is sufficiently large, you will be
limited by the system’s available physical memory. Depending on the virtual memory
and file system buffering policies of your system, and the requirements of other
applications, the maximum cache size will be some amount smaller than the size of
physical memory. If you find that the db_stat utility shows that increasing the cache
size improves your hit rate, but performance is not improving (or is getting worse),
then it's likely you've hit other system limitations. At this point, you should review the
system’'s swapping/paging activity and limit the size of the cache to the maximum size
possible without triggering paging activity. Finally, always remember to make your
measurements under conditions as close as possible to the conditions your deployed
application will run under, and to test your final choices under worst-case conditions.

shared memory

By default, Berkeley DB creates its database environment shared regions in filesystem
backed memory. Some systems do not distinguish between regular filesystem pages
and memory-mapped pages backed by the filesystem, when selecting dirty pages to
be flushed back to disk. For this reason, dirtying pages in the Berkeley DB cache may
cause intense filesystem activity, typically when the filesystem sync thread or process
is run. In some cases, this can dramatically affect application throughput. The
workaround to this problem is to create the shared regions in system shared memory
(DB_SYSTEM_MEM) or application private memory (DB_PRIVATE), or, in cases where
this behavior is configurable, to turn off the operating system's flushing of
memory-mapped pages.

large key/data items

Storing large key/data items in a database can alter the performance characteristics
of Btree, Hash and Recno databases. The first parameter to consider is the database
page size. When a key/data item is too large to be placed on a database page, it is
stored on "overflow" pages that are maintained outside of the normal database structure
(typically, items that are larger than one-quarter of the page size are deemed to be
too large). Accessing these overflow pages requires at least one additional page
reference over a normal access, so it is usually better to increase the page size than
to create a database with a large number of overflow pages. Use the db_stat utility
(or the statistics returned by the DB->stat() method) to review the number of overflow
pages in the database.

12/18/2009

DB Reference Guide Page 80

../api_reference/C/dbstat.html
../api_reference/C/db_stat.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#open_DB_PRIVATE
../api_reference/C/db_stat.html
../api_reference/C/dbstat.html

The second issue is using large key/data items instead of duplicate data items. While
this can offer performance gains to some applications (because it is possible to retrieve
several data items in a single get call), once the key/data items are large enough to
be pushed off-page, they will slow the application down. Using duplicate data items
is usually the better choice in the long run.

A common question when tuning Berkeley DB applications is scalability. For example, people
will ask why, when adding additional threads or processes to an application, the overall database
throughput decreases, even when all of the operations are read-only queries.

First, while read-only operations are logically concurrent, they still have to acquire mutexes
on internal Berkeley DB data structures. For example, when searching a linked list and looking
for a database page, the linked list has to be locked against other threads of control attempting
to add or remove pages from the linked list. The more threads of control you add, the more
contention there will be for those shared data structure resources.

Second, once contention starts happening, applications will also start to see threads of control
convoy behind locks (especially on architectures supporting only test-and-set spin mutexes,
rather than blocking mutexes). On test-and-set architectures, threads of control waiting for
locks must attempt to acquire the mutex, sleep, check the mutex again, and so on. Each failed
check of the mutex and subsequent sleep wastes CPU and decreases the overall throughput of
the system.

Third, every time a thread acquires a shared mutex, it has to shoot down other references to
that memory in every other CPU on the system. Many modern snoopy cache architectures have
slow shoot down characteristics.

Fourth, schedulers don't care what application-specific mutexes a thread of control might hold
when de-scheduling a thread. If a thread of control is descheduled while holding a shared data
structure mutex, other threads of control will be blocked until the scheduler decides to run
the blocking thread of control again. The more threads of control that are running, the smaller
their quanta of CPU time, and the more likely they will be descheduled while holding a Berkeley
DB mutex.

The results of adding new threads of control to an application, on the application's throughput,
is application and hardware specific and almost entirely dependent on the application’'s data
access pattern and hardware. In general, using operating systems that support blocking mutexes
will often make a tremendous difference, and limiting threads of control to to some small
multiple of the number of CPUs is usually the right choice to make.

Access method FAQ

1. Is a Berkeley DB database the same as a "table"?

Yes; "tables” are databases, "rows" are key/data pairs, and "columns” are
application-encapsulated fields within a data item (to which Berkeley DB does not directly
provide access).

2. I'm getting an error return in my application, but I can't figure out what the library is
complaining about.

12/18/2009 DB Reference Guide Page 81

See DB_ENV->set_errcall(), DB_ENV->set_errfile() and DB->set_errfile() for ways to get
additional information about error returns from Berkeley DB.

. Are Berkeley DB databases portable between architectures with different integer sizes

and different byte orders ?

Yes. Specifically, databases can be moved between 32- and 64-bit machines, as well as
between little- and big-endian machines. See Selecting a byte order (page 21) for more
information.

. I'm seeing database corruption when creating multiple databases in a single physical file.

This problem is usually the result of DB handles not sharing an underlying database
environment. See Opening multiple databases in a single file (page 40) for more information.

. I'm using integers as keys for a Btree database, and even though the key/data pairs are

entered in sorted order, the page-fill factor is low.

This is usually the result of using integer keys on little-endian architectures such as the x86.
Berkeley DB sorts keys as byte strings, and little-endian integers don't sort well when viewed
as byte strings. For example, take the numbers 254 through 257. Their byte patterns on a
little-endian system are:

254 fe 000
255 ff 000
25%6 0100
257 1100

If you treat them as strings, then they sort badly:

256
257
254
255

On a big-endian system, their byte patterns are:

254000
25500
256 0 0
257 00

fe
0ff
10
11
and so, if you treat them as strings they sort nicely. Which means, if you use steadily
increasing integers as keys on a big-endian system Berkeley DB behaves well and you get
compact trees, but on a little-endian system Berkeley DB produces much less compact trees.

To avoid this problem, you may want to convert the keys to flat text or big-endian
representations, or provide your own Btree comparison (page 23)

. Is there any way to avoid double buffering in the Berkeley DB system?

While you cannot avoid double buffering entirely, there are a few things you can do to
address this issue:

12/18/2009

DB Reference Guide Page 82

../api_reference/C/envset_errcall.html
../api_reference/C/envset_errfile.html
../api_reference/C/dbset_errfile.html
../api_reference/C/db.html

First, the Berkeley DB cache size can be explicitly set. Rather than allocate additional space
in the Berkeley DB cache to cover unexpectedly heavy load or large table sizes, double
buffering may suggest you size the cache to function well under normal conditions, and then
depend on the file buffer cache to cover abnormal conditions. Obviously, this is a trade-off,
as Berkeley DB may not then perform as well as usual under abnormal conditions.

Second, depending on the underlying operating system you're using, you may be able to alter
the amount of physical memory devoted to the system'’s file buffer cache. Altering this type
of resource configuration may require appropriate privileges, or even operating system
reboots and/or rebuilds, on some systems.

Third, changing the size of the Berkeley DB environment regions can change the amount of
space the operating system makes available for the file buffer cache, and it's often worth

considering exactly how the operating system is dividing up its available memory. Further,
moving the Berkeley DB database environment regions from filesystem backed memory into
system memory (or heap memory), can often make additional system memory available for
the file buffer cache, especially on systems without a unified buffer cache and VM system.

Finally, for operating systems that allow buffering to be turned off, specifying the
DB_DIRECT_DB and DB_LOG_DIRECT flags will attempt to do so.

7. I'm seeing database corruption when | run out of disk space.

Berkeley DB can continue to run when when out-of-disk-space errors occur, but it requires
the application to be transaction protected. Applications which do not enclose update
operations in transactions cannot recover from out-of-disk-space errors, and the result of
running out of disk space may be database corruption.

8. How can | associate application information with a DB or DB_ENV handle?

In the C API, the DB and DB_ENYV structures each contain an "app_private" field intended to
be used to reference application-specific information. See the db_create() and
db_env_create() documentation for more information.

In the C++ or Java APIs, the easiest way to associate application-specific data with a handle
is to subclass the Db or DbEnv, for example subclassing Db to get MyDb. Objects of type
MyDb will still have the Berkeley DB APl methods available on them, and you can put any
extra data or methods you want into the MyDb class. If you are using "callback” APIs that
take Db or DbEnv arguments (for example, DB->set_bt_compare()) these will always be
called with the Db or DbEnv objects you create. So if you always use MyDb objects, you will
be able to take the first argument to the callback function and cast it to a MyDb (in C++,
cast it to (MyDb*)). That will allow you to access your data members or methods.

12/18/2009 DB Reference Guide Page 83

../api_reference/C/envset_flags.html#set_flags_DB_DIRECT_DB
../api_reference/C/envlog_get_config.html#log_set_config_DB_LOG_DIRECT
../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/dbcreate.html
../api_reference/C/envcreate.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html
../api_reference/CXX/db.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html
../api_reference/C/dbset_bt_compare.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html

Chapter 5. Java API

Java configuration

Building the Berkeley DB java classes, the examples and the native support library is integrated
into the normal build process. See Configuring Berkeley DB (page 290) and Building the Java
API (page 314) for more information.

We expect that you already installed the Java JDK or equivalent on your system. For the sake
of discussion, we assume that it is in a directory called db-VERSION; for example, you
downloaded a Berkeley DB archive, and you did not change the top-level directory name. The
files related to Java are in three subdirectories of db-VERSION: java (the java source files),
libdb_java (the C++ files that provide the "glue” between java and Berkeley DB) and
examples_java (containing all examples code). The directory tree looks like this:

db- VERSI ON

|-- java

| "-- src

| T-- com

| “-- sl eepycat
| |-- bind
| |-- db
| I

| T--outi

| -- exanples_java

| "-- src

| “--db

| Te- L

“-- libdb_java

This naming conforms to the de facto standard for naming java packages. When the java code
is built, it is placed into two jar files: db. j ar, containing the db package, and dbexanpl es. j ar,
containing the examples.

For your application to use Berkeley DB successfully, you must set your CLASSPATH environment
variable to include the full pathname of the db jar files as well as the classes in your java

distribution. On UNIX, CLASSPATH s a colon-separated list of directories and jar files; on Windows,
it is separated by semicolons. On UNIX, the jar files are put in your build directory, and when
you do the make install step, they are copied to the lib directory of your installation tree. On
Windows, the jar files are placed in the Release or Debug subdirectory with your other objects.

The Berkeley DB Java classes are mostly implemented in native methods. Before you can use
them, you need to make sure that the DLL or shared library containing the native methods can
be found by your Java runtime. On Windows, you should set your PATH variable to include:

db- VERSI O\\ bui | d_wi ndows\ Rel ease

12/18/2009

DB Reference Guide Page 84

On UNIX, you should set the LD LI BRARY_PATH environment variable or local equivalent to
include the Berkeley DB library installation directory. Of course, the standard install directory
may have been changed for your site; see your system administrator for details.

On other platforms, the path can be set on the command line as follows (assuming the shared
library is in /usr/1 ocal / Ber kel eyDB/ | i b:)

%java -Djava.library. path=/usr/local /Berkel eyDB/lib ...

Regardless, if you get the following exception when you run, you probably do not have the
library search path configured correctly:

java. | ang. Unsati sfi edLi nkError
Different Java interpreters provide different error messages if the CLASSPATH value is incorrect,
a typical error is the following:

j ava. | ang. Nod assDef FoundEr r or
To ensure that everything is running correctly, you may want to try a simple test from the
example programs in

db- VERSI ON exanpl es_j aval src/ db
For example, the following sample program will prompt for text input lines, which are then
stored in a Btree database named access. db in your current directory:

% j ava db. AccessExanpl e
Try giving it a few lines of input text and then end-of-file. Before it exits, you should see a list

of the lines you entered display with data items. This is a simple check to make sure the
fundamental configuration is working correctly.

Compatibility

The Berkeley DB Java API has been tested with the Sun Microsystem's JDK 1.5 (Java 5) on Linux,
Windows and OS X. It should work with any JDK 1.5- compatible environment.

Java programming notes

Although the Java API parallels the Berkeley DB C++/C interface in many ways, it differs where
the Java language requires. For example, the handle method names are camel-cased and
conform to Java naming patterns. (The C++/C method names are currently provided, but are
deprecated.)

1. The Java runtime does not automatically close Berkeley DB objects on finalization. There
are several reasons for this. One is that finalization is generally run only when garbage
collection occurs, and there is no guarantee that this occurs at all, even on exit. Allowing
specific Berkeley DB actions to occur in ways that cannot be replicated seems wrong. Second,
finalization of objects may happen in an arbitrary order, so we would have to do extra
bookkeeping to make sure that everything was closed in the proper order. The best word of
advice is to always do a close() for any matching open() call. Specifically, the Berkeley DB

12/18/2009

DB Reference Guide Page 85

package requires that you explicitly call close on each individual Database [../java/com/
sleepycat/db/Database.html] and Cursor [../java/com/sleepycat/db/Cursor.html] object
that you opened. Your database activity may not be synchronized to disk unless you do so.

2. Some methods in the Java API have no return type, and throw a DatabaseException [../java/
com/sleepycat/db/DatabaseException.html] when an severe error arises. There are some
notable methods that do have a return value, and can also throw an exception. The "get”
methods in Database [../java/com/sleepycat/db/Database.html] and Cursor [../java/com/
sleepycat/db/Cursor.html] both return 0 when a get succeeds, DB_NOTFOUND (page 230)
when the key is not found, and throw an error when there is a severe error. This approach
allows the programmer to check for typical data-driven errors by watching return values
without special casing exceptions.

An object of type MemoryException [../java/com/sleepycat/db/MemoryException.html] is
thrown when a Dbt is too small to hold the corresponding key or data item.

An object of type DeadlockException [../java/com/sleepycat/db/DeadlockException.html]
is thrown when a deadlock would occur.

An object of type RunRecoveryException [../java/com/sleepycat/db/
RunRecoveryException.html], a subclass of DatabaseException [../java/com/sleepycat/db/
DatabaseException.html], is thrown when there is an error that requires a recovery of the
database using db_recover utility.

An object of type IllegalArgumentException [http://java.sun.com/j2se/1.5.0/docs/api/
java/lang/IllegalArgumentException.html] a standard Java Language exception, is thrown
when there is an error in method arguments.

An object of type OutOfMemoryError [http://java.sun.com/j2se/1.5.0/docs/api/java/lang/
OutOfMemoryError.html] is thrown when the system cannot provide enough memory to
complete the operation (the ENOMEM system error on UNIX).

3. If there are embedded nulls in the curslist argument for
Database.join(com.sleepycat.db.Cursor[], com.sleepycat.db.JoinConfig) [../java/com/
sleepycat/db/Database.html#join(com.sleepycat.db.Cursor[], com.sleepycat.db.JoinConfig)],
they will be treated as the end of the list of cursors, even if you may have allocated a longer
array. Fill in all the cursors in your array unless you intend to cut it short.

4. If you are using custom class loaders in your application, make sure that the Berkeley DB
classes are loaded by the system class loader, not a custom class loader. This is due to a
JVM bug that can cause an access violation during finalization (see the bug 4238486 in Sun
Microsystem’s Java Bug Database).

Java FAQ
1. On what platforms is the Berkeley DB Java API supported?
All platforms supported by Berkeley DB that have a JVM compatible with J2SE 1.4 or above.
2. How does the Berkeley DB Java API relate to the J2EE standard?
12/18/2009 DB Reference Guide Page 86

../java/com/sleepycat/db/Database.html
../java/com/sleepycat/db/Database.html
../java/com/sleepycat/db/Database.html
../java/com/sleepycat/db/Cursor.html
../java/com/sleepycat/db/Cursor.html
../java/com/sleepycat/db/DatabaseException.html
../java/com/sleepycat/db/DatabaseException.html
../java/com/sleepycat/db/DatabaseException.html
../java/com/sleepycat/db/Database.html
../java/com/sleepycat/db/Database.html
../java/com/sleepycat/db/Cursor.html
../java/com/sleepycat/db/Cursor.html
../java/com/sleepycat/db/Cursor.html
../java/com/sleepycat/db/MemoryException.html
../java/com/sleepycat/db/MemoryException.html
../java/com/sleepycat/db/DeadlockException.html
../java/com/sleepycat/db/DeadlockException.html
../java/com/sleepycat/db/RunRecoveryException.html
../java/com/sleepycat/db/RunRecoveryException.html
../java/com/sleepycat/db/RunRecoveryException.html
../java/com/sleepycat/db/DatabaseException.html
../java/com/sleepycat/db/DatabaseException.html
../java/com/sleepycat/db/DatabaseException.html
../api_reference/C/db_recover.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalArgumentException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalArgumentException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalArgumentException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/OutOfMemoryError.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/OutOfMemoryError.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/OutOfMemoryError.html
../java/com/sleepycat/db/Database.html#join(com.sleepycat.db.Cursor[], com.sleepycat.db.JoinConfig)
../java/com/sleepycat/db/Database.html#join(com.sleepycat.db.Cursor[], com.sleepycat.db.JoinConfig)
../java/com/sleepycat/db/Database.html#join(com.sleepycat.db.Cursor[], com.sleepycat.db.JoinConfig)

The Berkeley DB Java API does not currently implement any part of the J2EE standard. That
said, it does implement the implicit standard for Java Java Collections [http://java.sun.com/
j2se/1.5.0/docs/guide/collections/]. The concept of a transaction exists in several Java
packages (J2EE, XA, JINI to name a few). Support for these APIs will be added based on
demand in future versions of Berkeley DB.

. How should I incorporate db.jar and the db native library into a Tomcat or other J2EE

application servers?

Tomcat and other J2EE application servers have the ability to rebuild and reload code
automatically. When using Tomcat this is the case when "reloadable” is set to "true". If your
WAR file includes the db.jar it too will be reloaded each time your code is reloaded. This
causes exceptions as the native library can't be loaded more than once and there is no way
to unload native code. The solution is to place the db.jar in STOMCAT_HOME/common/lib
and let Tomcat load that library once at start time rather than putting it into the WAR that
gets reloaded over and over.

. Can | use the Berkeley DB Java APl from within a EJB, a Servlet or a JSP page?

Yes. The Berkeley DB Java API can be used from within all the popular J2EE application
servers in many different ways.

. During one of the first calls to the Berkeley DB Java API, a DbException is thrown with

a "Bad file number” or "Bad file descriptor" message.

There are known large-file support bugs under JNI in various releases of the JDK. Please
upgrade to the latest release of the JDK, and, if that does not solve the problem, disable
big file support using the --disable-largefile configuration option.

. How can | use native methods from a debug build of the Java library?

Set Java's library path so that the debug version of Berkeley DB's Java library appears, but
the release version does not. Berkeley DB tries to load the release library first, and if that
fails tries the debug library.

. Why is ClassNotFoundException thrown when adding a record to the database, when a

SerialBinding is used?

This problem occurs if you copy the db.jar file into the Java extensions (ext) directory. This
will cause the database code to run under the System class loader, and it won't be able to
find your application classes.

You'll have to actually remove db.jar from the Java extension directory. If you have more
than one installation of Java, be sure to remove it from all of them. This is necessary even
if db.jar is specified in the classpath.

An example of the exception is:

col I ections. shi p. basi c. Suppl i er Key
at java.net.URLO assLoader $1. run(Unknown Sour ce)
at java.security.AccessControl | er.doPrivileged(Native Method)

12/18/2009

DB Reference Guide Page 87

http://java.sun.com/j2se/1.5.0/docs/guide/collections/
http://java.sun.com/j2se/1.5.0/docs/guide/collections/
http://java.sun.com/j2se/1.5.0/docs/guide/collections/

at java.net.URLC assLoader. findC ass(Unknown Source)

at java.lang. d assLoader. | oadd ass(Unknown Source)

at java.lang. d assLoader. | oadd ass(Unknown Source)

at java.lang. d assLoader. | oadd assl nternal (Unknown Sour ce)

at java.lang. d ass. forNameO(Native Method)

at java.lang. d ass. f or Name(Unknown Sour ce)

at com sl eepycat. bi nd. seri al . Storedd assCat al og. get d assl nf o(St oredd assCat al og. j ava: 211)

8. I'm upgrading my Java application to Berkeley DB 4.3. Can | use the
com.sleepycat.db.internal package rather than porting my code to the new API?

While it is possible to use the low-level API from applications, there are some caveats that
should be considered when upgrading. The first is that the internal APl depends on some
classes in the public API such as DatabaseEntry.

In addition, the internal API is closer to the C APl and doesn't have some of the default
settings that were part of the earlier Java API. For example, applications will need to set
the DB_THREAD flag explicitly if handles are to be used from multiple threads, or subtle
errors may occur.

12/18/2009 DB Reference Guide Page 88

Chapter 6. C# API

A separate Visual Studio solution is provided to build the Berkeley DB C# classes, the examples
and the native support library.

The C# API requires version 2.0 of the .NET framework and expects that it has already been
installed on your system. For the sake of discussion, we assume that the Berkeley DB source
is in a directory called db-VERSION; for example, you downloaded a Berkeley DB archive, and
you did not change the top-level directory name. The files related to C# are in four
subdirectories of db-VERSION: csharp (the C# source files), libdb_csharp (the C++ files that
provide the "glue" between C# and Berkeley DB,) examples_csharp (containing all example
code) and test\scr037 (containing NUnit tests for the API).

Building the C# API produces a managed assembly | i bdb_dot net VERSI ON. dI | , containing the
API, and two native libraries: | i bdb_cshar pVERSI ON. dI | and |i bdbVERSI ON. dl | . (For all three
files, VERSION is [MAJOR][MINORY], i.e. for version 4.8 the managed assembly is

|i bdb_dot net 48.dl | .) Following the existing convention, native libraries are placed in either
db- VERSI O\\ bui | d_wi ndows\ W n32or db- VERSI ON\ bui | d_wi ndows\ x64, depending upon the
platform being targeted. In all cases, the managed assembly will be placed in

db- VERSI O\\ bui | d_wi ndows\ AnyCPU.

Because the C# API uses P/Invoke, for your application to use Berkeley DB successfully, the
.NET framework needs to be able to locate the native libaries. This means the native libraries
need to either be copied to your application's directory, the Windows or System directory, or
the location of the libraries needs to be added to the PATHenvironment variable. See the MSDN
documentation of the Dllimport attribute and Dynamic-Link Library Search Order for further
information.

If you get the following exception when you run, the .NET platform probably is unable to locate
the native libraries:

System Typel nitializationException

To ensure that everything is running correctly, you may want to try a simple test from the
example programs in the db- VERSI O\ exanpl es_cshar p directory.

For example, the ex_access sample program will prompt for text input lines, which are then
stored in a Btree database named access. db. It is designed to be run from either the

db- VERSI O\\ bui | d_wi ndows\ Debug or db- VERSI OM bui | d_wi ndows\ Rel ease directory. Try giving
it a few lines of input text and then a blank line. Before it exits, you should see a list of the
lines you entered display with data items. This is a simple check to make sure the fundamental
configuration is working correctly.

Compatibility

The Berkeley DB C# API has been tested with the Microsoft .NET Platform (version 2.0) on
Windows.

12/18/2009 DB Reference Guide Page 89

Chapter 7. Standard Template Library API

Dbstl introduction

Dbstl is a C++ STL style API that provides for Berkeley DB usage. It allows for the storage and
retrieval of data/objects of any type using Berkeley DB databases, but with an interface that
mimics that of C++ STL containers. Dbstl provides access to all of the functionality of Berkeley
DB available via this STL-style API.

With proper configuration, dbstl is able to store/retrieve any complex data types. There is no
need to perform repetitive marshalling and unmarshalling of data. Dbstl also properly manages
the life-cycle of all Berkeley DB structures and objects.

Standards compatible

Dbstl is composed of many container and iterator class templates. These containers and iterators
correspond exactly to each container and iterator available in the C++ STL API, including
identical sets of methods. This allows existing algorithms, functions and container-adapters
for C++ STL to use dbstl containers through its standard iterators. This means that existing STL
code can manipulate Berkeley DB databases. As a result, existing C++ STL code can very easily
use dbstl to gain persistence and transaction guarantees.

Performance overhead

Because dbstl uses C++ template technologies, its performance overhead is minimal.

The dbstl API performs almost equally to the C API, as measured by two different
implementations of the TPC-B benchmark: ex_t pcb and exst| _t pch.

Portability
The degree to which dbstl is portable to a new platform is determined by whether Berkeley
DB is available on the platform, as well as whether an appropriate C++ compiler is available
on the platform.
For information on porting Berkeley DB to new platforms, see the Berkeley DB Porting Guide.
Almost all the advanced C++ template features are used in dbstl, including:
» member function templates
« member function template overloads
« partial specialization
» default template parameters.
For this reason, you need a standards-compatible C++ compiler to build dbstl. As of this writing,
the following compilers are known to build dbstl successfully:

12/18/2009 DB Reference Guide Page 90

o MSVC8

e gcc3.4.4 and above

Intel C++ 9 and above

For *nix platforms, if you can successfully configure your Berkeley DB build script with

enabl e- st , then you should be able to successfully build dbstl library and application code

using it.

Besides its own test suite, dbstl has also been tested against, and passes, the following test
suites:

MS STL test suite

SGI STL test suite

Dbstl typical use cases

Among others, the following are some typical use cases where dbstl would be prefered over
C++ STL:

Working with a large amount of data, more than can reside in memory. Using C++ STL would
force a number of page swaps, which will degrade performance. When using dbstl, data is
stored in a database and Berkeley DB ensures the needed data is in memory, so that the
overall performance of the machine is not slowed down.

Familiar Interface. dbstl provides a familiar interface to Berkeley DB, hiding the marshalling
and unmashalling details and automatically managing Berkeley DB structures and objects.

Transaction semantics. dbstl provides the ACID properties (or a subset of the ACID properties)
in addition to supporting all of the STL functionality.

Concurrent access. Few (if any) existing C++ STL implementations support reading/writing
to the same container concurrently, dbstl does.

Object persistence. dbstl allows your application to store objects in a database, and use the
objects across different runs of your application. dbstl is capable of storing complicated
objects which are not located in a contiguous chunk of memory, with some user configurations.

Dbstl examples

Because dbstl is so much like C++ STL, its usage exactly mirrors that of C++ STL, with the
exception of a few optional Berkeley DB specific configurations. In fact, the only difference
between a program using dbstl and one using C++ STL is the class names. That is, vect or
becomes db_vect or, and map becomes db_nap.

The typical procedure for using dbstl is:

12/18/2009

DB Reference Guide Page 91

1. Optionally create and open your own Berkeley DB environment and database handles using
the DB C++ API. If you perform these opens using the C++ APl, make sure to perform necessary
environment and database configurations at that time.

2. Optionally pass environment and database handles to dbstl container constructors when you
create dbstl container objects. Note that you can create a dbstl container without passing
it an environment and database object. When you do this, an internal anonymous database
is created for you. In this situation, dbstl provides no data persistence guarantees.

3. Perform dbstl-specific configurations. For example, you can configure cursor open flags, as
well as database access for autocommit. You can also configure callback functions.

4. Interact with the data contained in your Berkeley DB databases using dbstl containers and
iterators. This usage of dbstl is identical to C++ STL container and iterator usage.

5. At this time, you can also use dbstl calls that are specific to Berkeley DB. For example, you
can use Berkeley DB specific calls that manage transaction begin/commit/abort, handle
registration, and so forth. While these calls are part of dbstl, they have no equivalence in
the C++ STL APIs.

6. When your application is done using Berkeley DB, you do not need to explicitly close any
Berkeley DB handles (environments, database, cursors, and so forth). Dbstl automatically
closes all such handles for you.

For examples of dbstl usage, see the example programs in the $db/ exanpl es_st| directory.

The following program listing provides two code fragments. You can find more example code
in the dbst |/ exanpl es/ and dbst|/test directories.

HLEEEETEEEELTTT Code Snippet 1 //11TTTTITTTTTT]
db_vector<int, El enmentHolder<int> > vctr(100);

for (int i =0; i < 100; i++)
vetr[i] =1i;

for (int i =0; i <100; i++) {

cout <<"\nvetr["<<i<<"] : "<<vctr[i];

vetr[i] = vetr[i] * vetr[i];
cout<<"\nvetr["<<i<<"] squre : "<<vctr[i];

}

LEEEEELEEELITTT] Code Snippet 2 1111 TTITTTTITTT]

typedef db_map<char *, const char *, El enentHol der<const char *> >
strmap_t2;

strmap_t2 strmap;

char str[2], str2[2];

str{l] = str2[1] ="'\0";

for (char ¢ = 0; ¢ < 26; c++) {

str{0] =c + 'a';

str2[0] ="'z2" - ¢c;

strmap[str] = str2;

12/18/2009

DB Reference Guide Page 92

}
for (strmap_t2::iterator itr = strmap.begin(); itr !'= strmap.end(); ++itr)
cout <<endl <<itr->first<<" : "<<itr->second;

usi ng nanespace dbstl;
dbst|::db_map<char, int> v;
vitit] =1

cout<<v['i'];

dbstl::db_map<char *, char *> name_addr_map;

/1 The strings rather than the nmemory pointers are stored into DB.
nane_addr _map["Al ex"] = "Sydney Australia";

nane_addr _map["Davi d"] = "Shenzhen China";

cout <<"Al ex's address: "<<name_addr_nap[" Al ex"];

dbst|::db_vect or <Person> vi;
/1 Some cal | back configurations follow here.

/1 The strings and objects rather than pointers are stored into DB.

Person obj ("David Zhao", "Oracle", new Ofice("Boston", "USA"));
vi . push_back(obj); // Mre person storage.

for (int I =0; | <vi.size(); |++)

cout <<vi[l];

The first snippet initializes a db_vector container of 100 elements, with an in-memory anonymous
database internally created by dbstl. The only difference between this and C++ STL is dbstl
requires one more t ype parameter: El enent Hol der <i nt >. The El enent Hol der class template
should be used for every type of dbstl container that will store C++ primitive data types, such
asint,float, char *, wchar _t *, and so forth. But these class templates should not be used
for class types for reasons that we explain in the following chapters.

In the second code snippet, the assignment:

strmap[str] = str2;
is used to store a string pair ((str, str2)) instead of pointers to the underlying database.

The rest of the code used in these snippets is identical to the code you would use for C++ STL
containers. However, by using dbstl, you are storing data into a Berkeley DB database. If you
create your own database with backing files on disk, your data or objects can persist and be
restored when the program runs again.

Berkeley DB configuration

While dbstl behaves like the C++ STL APIs in most situations, there are some Berkeley DB
configuration activities that you can and should perform using dbstl. These activities are
described in the following sections.

12/18/2009 DB Reference Guide Page 93

Registering database and environment handles

Remember the following things as you use Berkeley DB Database and Environment handles with
dbstl:

« If you share environment or database handles among multiple threads, remember to specify
the DB_THREAD flag in the open call to the handle.

« If you create or open environment and/or database handles without using the dbstl helper
functions, dbst|:: open_db() or dbstl::open_env(), remember that your environment and
database handles should be:

1. Allocated in the heap via "new" operator.
2. Created using the DB_CXX_NO_EXCEPTIONS flag.

3. In each thread sharing the handles, the handles are registered using either
dbstl::register_db() or dbstl::register_dbenv().

« If you opened the database or environment handle using the open_db() or open_env()
functions, the thread opening the handles should not call regi ster_db() orregister_env()
again. This is because they have already been registered by the open_db() or open_env()
functions. However, other threads sharing these handles still must register them locally.

Truncate requirements

Some Berkeley DB operations require there to be no open cursors on the database handle at
the time the operation occurs. Dbstl is aware of these requirements, and will attempt to close
the cursors opened in the current thread when it performs these operations. However, the
scope of dbstl's activities in this regard are limited to the current thread; it makes no attempt
to close cursors opened in other threads. So you are required to ensure there are no open
cursors on database handles shared across threads when operations are performed that require
all cursors on that handle to be closed.

There are only a a few operations which require all open cursors to be closed. This include all
container cl ear () and swap() functions, and all versions of db_vecti on<>: : assi gn() functions.
These functions require all cursors to be closed for the database because by default they
remove all key/data pairs from the database by truncating it.

When a function removes all key/data pairs from a database, there are two ways it can perform
this activity:

« The default method is to truncate the database, which is an operation that requires all
cursors to be closed. As mentioned above, it is your responsibility to close cursors opened
in other threads before performing this operation. Otherwise, the operation will fail.

« Alternatively, you can specify that the database not be truncated. Instead, you can cause
dbstl to delete all key/data pairs individually, one after another. In this situation, open
cursors in the database will not cause the delete operations to fail. However, due to lock

12/18/2009

DB Reference Guide Page 94

../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/CXX/envcreate.html#env_DB_CXX_NO_EXCEPTIONS

contention, the delete operations might not complete until all cursors are closed, which is
when all their read locks are released.

Auto commit support

Dbstl supports auto commit for some of its container's operations. When a dbstl container is
created using a Db or DbEnv object, if that object was opened using the DB_AUTO_COMMIT flag,
then every operation subsequently performed on that object will be automatically enclosed
in a unique transaction (unless the operation is already in an external transaction). This is
identical to how the Berkeley DB C, C++ and Java APIs behave.

Note that only a subset of a container's operations support auto commit. This is because those
operations that accept or return an iterator have to exist in an external transactional context
and so cannot support auto commit.

The dbstl APl documentation identifies when a method supports auto commit transactions.

Database and environment identity checks

When a container member function involves another container (for example,
db_vector::swap(sel f& v2)), the two containers involved in the operation must not use the
same database. Further, if the function is in an external or internal transaction context, then
both containers must belong to the same transactional database environment; Otherwise, the
two containers can belong to the same database environment, or two different ones.

For example, if db_vector::swap(sel f& v2) is an auto commit method or it is in an external
transaction context, then v2 must be in the same transactional database environment as this
container, because a transaction is started internally that must be used by both v2 and this
container. If this container and the v2 container have different database environments, and
either of them are using transactions, an exception is thrown. This condition is checked in
every such member function.

However, if the function is not in a transactional context, then the databases used by these
containers can be in different environments because in this situation dbstl makes no attempt
to wrap container operations in a common transaction context.

Products, constructors and configurations

You can use dbstl with all Berkeley DB products (DS, CDS, TDS, and HA). Because dbstl is a
Berkeley DB interface, all necessary configurations for these products are performed using
Berkeley DB's standard create/open/set APIs.

As a result, the dbstl container constructors differ from those of C++ STL because in dbstl no
configuration is supported using the container constructors. On the other hand, dbstl container
constructors accept already opened and configured environment and database handles. They
also provide functions to retrieve some handle configuration, such as key comparison and hash
functions, as required by the C++ STL specifications.

12/18/2009

DB Reference Guide Page 95

../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT

The constructors verify that the handles passed to them are well configured. This means they
ensure that no banned settings are used, as well as ensuring that all required setting are
performed. If the handles are not well configured, an | nval i dAr gunent Excepti on is thrown.

If a container constructor is not passed a database or environment handle, an internal anonymous
database is created for you by dbstl. This anonymous database does not provide data persistence.

Using advanced Berkeley DB features with dbstl

This section describes advanced Berkeley DB features that are available through dbstl.

Using bulk retrieval iterators

Bulk retrieval is an optimization option for const iterators and nonconst but read-only iterators.
Bulk retrieval can minimize the number of database accesses performed by your application.
It does this by reading multiple entries at a time, which reduces read overhead. Note that
non-sequential reads will benefit less from, or even be hurt by, this behavior, because it might
result in unneeded data being read from the database. Also, non-serializable reads may read
obsolete data, because part of the data read from the bulk read buffer may have been updated
since the retrieval.

When using the default transaction isolation, iterators will perform serializable reads. In this
situation, the bulk-retrieved data cannot be updated until the iterator's cursor is closed.

Iterators using a different isolation levels, such as DB_READ_COMMITTED or
DB_READ_UNCOMMITTED will not perform serializable reads. The same is true for any iterators
that do not use transactions.

A bulk retrieval iterator can only move in a singled direction, from beginning to end. This means
that iterators only support operator++, and reverse iterators only support operator--.

Iterator objects that use bulk retrieval might contain hundreds of kilobytes of data, which
makes copying the iterator object an expensive operation. If possible, use ++iterator rather
than iterator++. This can save a useless copy construction of the iterator, as well as an
unnecessary dup/close of the cursor.

You can configure bulk retrieval for each container using both in the const and non-const version
of the begi n() method. The non-const version of begi n() will return a read-only cursor. Note
that read-only means something different in C++ than it does when referring to an iterator.
The latter only means that it cannot be used to update the database.

To configure the bulk retrieval buffer for an iterator when calling the begi n() method, use
the Bul kRetrievel ItrQpt::bulk retrieval (u_int32_t bul k_buffer_size) function.

If you move adb_vect or _iterat or randomly rather than sequentially, then dbstl will not perform
bulk retrieval because there is little performance gain from bulk retrieval in such an access
pattern.

You can calliterator::set_bul k_buffer() to modify the iterator's bulk buffer size. Note that
once bulk read is enabled, only the bulk buffer size can be modified. This means that bulk read

12/18/2009

DB Reference Guide Page 96

../api_reference/C/dbcget.html#dbcget_DB_READ_COMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED

cannot be disabled. Also, if bulk read was not enabled when you created the iterator, you can't
enable it after creation.

Example code using this feature can be found in the Test Assoc::test _bulk _retrieval read()
method, which is available in the the dbstl test suite.

Using the DB_RMW flag

The DB_RMW flag is an optimization for non-const (read-write) iterators. This flag causes the
underlying cursor to acquire a write lock when reading so as to avoid deadlocks. Passing
ReadModi f yWiteOption::read nodify wite() toa container's begi n() method creates an
iterator whose cursor has this behavior.

Using secondary index database and secondary containers

Because duplicate keys are forbidden in primary databases, only db_map, db_set and db_vect or
are allowed to use primary databases. For this reason, they are called primary containers. A
secondary database that supports duplicate keys can be used with db_nul ti map containers.
These are called secondary containers. Finally, a secondary database that forbids duplicate
keys can back a db_map container.

The data_type of this db_nul ti map secondary container is the data_type for the primary
container. For example, a db_map<i nt, Person> object where the Person class has an age
property of type size_t, a db_nul ti map<si ze_t, Person> using a secondary database allows
access to a person by age.

A container created from a secondary database can only be used to iterate, search or delete.
It can not be used to update or insert. While dbstl does expose the update and insert operations,
Berkeley DB does not, and an exception will be thrown if attempts are made to insert objects
into or update objects of a secondary container.

Example code demonstrating this feature is available in
Test Assoc: :test _secondary_contai ners(), which is available in the dbstl test suite.

Using transactions in dbstl

When using transactions with dbstl, you must call the dbstl transaction functions instead of
the corresponding methods from the Berkeley DB C or C++ transaction API. That is, you must
use dbst|::begin_txn(), dbstl::commt_txn() and dbstl::abort_txn() in order to
begin/commit/abort transactions.

A container can be configured to use auto commit by setting the DB_AUTO_COMMIT flag when
the environment or database handle is opened. In this case, any container method that supports
auto commit will automatically form an independent transaction if the method is not in an

external transactional context; Otherwise, the operation will become part of that transaction.

You can configure the flags used internally by dbstl when it is creating and committing these
independent transactions required by auto commit. To do so, use the
db_container::set_txn_begin flags() and/or db_container::set_commt flags() methods.

12/18/2009

DB Reference Guide Page 97

../api_reference/C/dbcget.html#dbcget_DB_RMW
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT

When a transaction is committed or aborted, dbstl will automatically close any cursors opened
for use by the transaction. For this reason, any iterators opened within the transaction context
should not be used after the transaction commits or aborts.

You can use nested transactions explicitly and externally, by calling dbst|:: begin_txn() in a
context already operating under the protection of a transaction. But you can not designate
which transaction is the parent transaction. The parent transaction is automatically the most
recently created and unresolved transaction in current thread.

It is also acceptable to use explicit transactions in a container configured for auto commit.
The operation performed by the method will become part of the provided external transaction.

Finally, transactions and iterators cannot be shared among multiple threads. That is, they are
not free-threaded, or thread-safe.

Using dbstl in multithreaded applications

Multithreaded use of dbstl must obey the following guidelines:

1. For a few non-standard platforms, you must first configure dbstl for that platform as described
below. Usually the configure script will detect the applicable thread local storage (TLS)
modifier to use, and then use it. If no appropriate TLS is found, the pthread TLS API is used.

On HP Trué4, if you are not using a gcc compiler, #define HPTru64 before #include'ing any
dbstl container header files.

2. Perform all initializations in a single thread. dbst| :: dbst| _startup() should be called
mutually exclusive in a single thread before using dbstl. If dbstl is used in only a single
thread, this function does not need to be called.

If necessary, callback functions for a complex type T must be registered to the singleton of
DbstlElemTraits<T> before any container related to T (for example, db_vect or <T>), is used,
and certain isolation may be required among multiple threads. The best way to do this is to
register all callback function pointers into the singleton in a single thread before making
use of the containers.

All container cursor open flags and auto commit transaction begin/commit flags must be
set in a single thread before storing objects into or reading objects from the container.

3. Environment and database handles can optionally be shared across threads. If handles are
shared, they must be registered in each thread that is using the handle (either directly, or
indirectly using the containers that own the handles). You do this using the
dbstl::register_db() and dbstl::register_db env() functions. Note that these functions
are not necessary if the current thread called dbst|:: open_db() or dbst!::open_env() for
the handle that is being shared. This is because the open functions automatically register
the handle for you.

Note that the get/set functions that provide access to container data members are not
mutex-protected because these data members are supposed to be set only once at container

12/18/2009

DB Reference Guide Page 98

object initialization. Applications wishing to modify them after initialization must supply
their own protection.

4. While container objects can be shared between multiple threads, iterators and transactions
can not be shared.

5. Set the directdb_get parameter of the container begi n() method to true in order to
guarantee that referenced key/data pairs are always obtained from the database and not
from an iterator's cached value. (This is the default behavior.) You should do this because
otherwise a rare situation may occur. Given db_vector_iterator i1 and i2 used in the same
iteration, setting *i1 = new_value will not update i2, and *i2 will return the original value.

6. If using a CDS database, only const iterators or read-only non-const iterators should be used
for read only iterations. Otherwise, when multiple threads try to open read-write iterators
at the same time, performance is greatly degraded because CDS only supports one write
cursor open at any moment. The use of read-only iterators is good practice in general because
dbstl contains internal optimizations for read-only iterators.

To create a read-only iterator, do one of the following:

« Use a const reference to the container object, then call the container's begi n() method
using the const reference, and then store the return value from the begi n() method in a
db_vector::const iterator.

« If you are using a non-const container object, then simply pass true to the readonly
parameter of the non-const begi n() method.

7. When using DS, CDS or TDS, enable the locking subsystem by passing the DB_INIT_LOCK flag
to DbEnv: : open() .

8. Perform portable thread synchronization within a process by calling the following functions.
These are all global functions in the "dbstl" name space:

db_nmutex_t alloc_nutex();

int lock _nmutex(db_nutex_t);
int unlock_nutex(db nutex t);
void free_nutex(db_nutex t);

These functions use an internal dbstl environment's mutex functionality to synchronize. As
a result, the synchronization is portable across all platforms supported by Berkeley DB.

The Wr ker Thr ead class provides example code demonstrating the use of dbstl in multi-threaded
applications. You can find this class implemented in the dbstl test suite.

Working with primitive types

To store simple primitive types such as i nt, | ong, doubl e, and so forth, an additional type
parameter for the container class templates is needed. For example, to store anint in a
db_vect or, use this container class:

db_vector<int, ElenmentHolder<int> >;

12/18/2009 DB Reference Guide Page 99

../api_reference/C/envopen.html#envopen_DB_INIT_LOCK

To map integers to doubles, use this:

db_map<int, double, ElenentHol der<double> >;

To store a char * string with | ong keys, use this:

db_map<l ong, char*, El enentHol der<char*> >;

Use this for const char* strings:

db_map<l ong, const char*, El enentHol der<const char*> >;

To map one const string to another, use this type:

db_map<const char*, const char*, El enentHol der<const char*> >;

The Test Vector::test_primtive() method demonstrates more of these examples. You can
find this method implemented in the dbstl test suite.

Storing strings

For char* and wchar _t* strings, DB _STL_St or eEl enent () must be called following partial or
total modifications before iterator movement, cont ai ner: : operator[] or
iterator::operator*/->calls. Without the DB STL_StoreEl enent () call, the modified change
will be lost. If storing an new value like this:

*iterator = new char_star_string;
the call to DB STL_St oreEl enent () is not needed.

Note that passing a NULL pointer to a container of char* type or passing a std: : string with
no contents at all will insert an empty string of zero length into the database.

The string returned from a container will not live beyond the next iterator movement call,
container::operator[] oriterator::operator*/-> call.

A db_map::value_type::second_type or db_map::datatype_wrap should be used to hold a
reference to a container::operator[] return value. Then the reference should be used for
repeated references to that value. The *iterator is of type El enent Hol der <char *>, which can
be automatically converted to a char * pointer using its type conversion operator. Wherever
an auto conversion is done by the compiler, the conversion operator of El enent Hol der <T> is
called. This avoids almost all explicit conversions, except for two use cases:

1. The *iterator is used as a "..." parameter like this:

printf("this is the special case %", *iterator);
This compiles but causes errors. Instead, an explicit cast should be used:

printf("this is the special case %", (char *)*iterator);

2. For some old compilers, such as gcc3.4.6, the *iterator cannot be used with the ternary ?
operator, like this:

12/18/2009

DB Reference Guide Page 100

expr ? *iterator : var

Even when var is the same type as the iterator's val ue_t ype, the compiler fails to perform
an auto conversion.

When using std: :string or std::wstring as the data type for dbstl containers — that is,
db_vector<string>, and db_map<string, wstring>— the string's content rather than the string
object itself is stored in order to maintain persistence.

You can find example code demonstrating string storage in the
Test Assoc: :test_char_star_string_storage() and Test Assoc::test_storing_std_strings()
methods. These are available in the dbstl test suite.

Store and Retrieve data or objects of complex types

Storing varying length objects

A structure like this:

cl ass SMSMsg

{

public:

size_t nysize;
tine_t when;
size_t szmsg;
int to;

char nsg[1];
b

with a varying length string in nsg cannot simply be stored in a db_vect or <SMSMsg> without
some configuration on your part. This is because, by default, dbstl uses the sizeof() operator
to get the size of an object and then nentpy() to copy the object. This process is not suitable
for this use-case as it will fail to capture the variable length string contained in nsg.

There are currently two ways to store these kind of objects:

1. Register callback functions with dbstl that are used to measure an object’s size, and then
marshal/unmarshal the object.

2. Use a Dbst | Dbt wrapper object.

Storing by marshaling objects

One way to store an object that contains variable-sized fields is to marshall all of the object’s
data into a single contiguous area in memory, and then store the contents of that buffer. This
means that upon retrieval, the contents of the buffer must be unmarshalled. To do these things,
you must register three callback functions:

o typedef void (*El enRstoreFunct)(T& dest, const void *srcdata);

12/18/2009

DB Reference Guide Page 101

This callback is used to unmarshal an object, updating dest using data found in srcdata. The
datain srcdata contains the chunk of memory into which the object was originally marshalled.
The default unmarshalling function simply performs a cast (for example, dest =
((T)srcdata)), which assumes the srcdata simply points to the memory layout of the
object.

o typedef size t (*El enSizeFunct)(const T& elenj;

This callback returns the size in bytes needed to store the elem object. By default this
function simply uses sizeof(elem) to determine the size of elem.

o typedef void (*El enCopyFunct)(void *dest, const T&elen;

This callback is used to arrange all data contained by elem into the chunk of memory to
which dest refers. The size of dest is set by the El enfSi zeFunct function, discussed above.
The default marshalling function simply uses mentpy() to copy elem to dest.

The Dbst | El enilr ai t s<SMSMsg>: @ i nst ance() - >set _si ze_function(), set_copy_function() and
set _restore_function() methods are used to register these callback functions. If a callback
is not registered, its default function is used.

By providing non-default implementations of the callbacks described here, you can store objects
of varying length and/or objects which do not reside in a continuous memory chunk — for
example, objects containing a pointer which refers another object, or a string, and so forth.
As a result, containers/iterators can manage variable length objects in the same as they would
manage objects that reside in continuous chunks of memory and are of identical size.

Using a Dbst| Dbt wrapper object

To use a Dbst | Dbt wrapper object to store objects of variable length, a db_vect or <Dbst | Dbt >
container is used to store complex objects in a db_vect or. Dbst | Dbt derives from DB C++ API's
Dbt class, but can manage its referenced memory properly and release it upon destruction. The
memory referenced by Dbst | Dbt objects is required to be allocated using the mal | oc() /real | oc()
functions from the standard C library.

Note that the use of Dbst | Dbt wrapper class is not ideal. It exists only to allow raw bytes of
no specific type to be stored in a container.

To store an SMSMsg object into a db_vect or <Dbst | Dbt > container using a Dbst | Dbt object:

1. Wrap the SMSMSg object into a Dbst | Dbt object, then marshal the SMSMsg object properly
into the memory chunk referenced by Dbst | Dbt : : dat a.

2. Store the Dbst| Dbt object into a db_vect or <Dbst | Dbt > container. The bytes in the memory
chunk referenced by the Dbst | Dbt object's data member are stored in the
db_vect or <Dbst | Dbt > container.

3. Reading from the container returns a Dbst | Dbt object whose data field points to the SMSMsg
object located in a continuous chunk of memory. The application needs to perform its own
unmarshalling.

12/18/2009

DB Reference Guide Page 102

4. The memory referenced by Dbst | Dbt : : dat a is freed automatically, and so the application
should not attempt to free the memory.

El enent Hol der should not be used to store objects of a class because it doesn't support access
to object members using (*iter).member or iter->member expressions. In this case, the default
El enent Ref <ddt > is used automatically.

El enent Ref inherits from ddt , which allows *iter to return the object stored in the container.
(Technically it is an El ement Ref <ddt > obj ect , whose "base class” part is the object you stored).
There are a few data members and member functions in El enent Ref , which all start with
_DB_STL_. To avoid potential name clashes, applications should not use names prefixing DB STL
in classes whose instances may be stored into dbstl containers.

Example code demonstrating this feature can be found in the
Test Assoc::test_arbitrary_object_storage method, which can be located in the dbstl test
suite.

Storing arbitrary sequences

A sequence is a group of related objects, such as an array, a string, and so forth. You can store
sequences of any structure using dbstl, so long as you implement and register the proper
callback functions. By using these callbacks, each object in the sequence can be a complex
object with data members that are all not stored in a continuous memory chunk.

Note that when using these callbacks, when you retrieve a stored sequence from the database,
the entire sequence will reside in a single continuous block of memory with the same layout
as that constructed by your sequence copy function.

For example, given a type RGB:

struct RGB{char r, g, b, bright;};

and an array of RGB objects, the following steps describe how to store an array into one
key/data pair of a db_map container.

1. Use a db_map<int, RGB *, El enmentHol der<RGB *> > container.

2. Define two functions. The first returns the number of objects in a sequence, the second
that copies objects from a sequence to a defined destination in memory:

typedef size t (*SequencelLenFunct)(const RGB*);

and

typedef void (*SequenceCopyFunct) (RGB*dest, const RGB*src);

3. Call DbstlElemTraits<RGB>::set_sequence_len_function()/set_sequence_copy_function() to
register them as callbacks.

12/18/2009

DB Reference Guide Page 103

The SequenceLenFunct function

typedef size t (*SequencelLenFunct)(const RGB*);

A SequencelLenFunct function returns the number of objects in a sequence. It is called when

inserting into or reading from the database, so there must be enough information in the sequence
itself to enable the SequencelLenFunct function to tell how many objects the sequence contains.
The char* and wchar _t* strings use a '\ 0' special character to do this. For example, RGB(0,

0, 0, 0) could be used to denote the end of the sequence. Note that for your implementation
of this callback, you are not required to use a trailing object with a special value like '\ 0" or
R&B(0, 0, 0, 0) to denote the end of the sequence. You are free to use what mechanism you
want in your SequencelLenFunct function implementation to figure out the length of the sequence.

The SequenceCopyFunct function

Notes

typedef void (*SequenceCopyFunct) (RGB*dest, const RGB*src);

SequenceCopyFunct copies objects from the sequence src into memory chunk dest. If the objects
in the sequence do not reside in a continuous memory chunk, this function must marshal each
object in the sequence into the dest memory chunk.

The sequence objects will reside in the continuous memory chunk referred to by dest, which
has been sized by SequencelLenFunct and El enSi zeFunct if available (which is when objects in
the sequence are of varying lengths). El enti zeFunct function is not needed in this example
because RGB is a simple fixed length type, the si zeof () operator is sufficient to return the
size of the sequence.

» The get and set functions of this class are not protected by any mutexes. When using multiple
threads to access the function pointers, the callback functions must be registered to the
singleton of this class before any retrieval of the callback function pointers. Isolation may
also be required among multiple threads. The best way is to register all callback function
pointers in a single thread before making use of the any containers.

« If objects in a sequence are not of identical sizes, or are not located in a consecutive chunk
of memory, you also need to implement and register the Dbst | El enTr ai t s<>: ; El enSi zeFunct
callback function to measure the size of each object. When this function is registered, it is
also used when allocating memory space.

There is example code demonstrating the use this feature in
Test Assoc: :test_arbitray_sequence_storage(), which is available in the dbstl test suite.

» A consequence of this dbstl feature is that you can not store a pointer value directly because
dbstl will think it is a sequence head pointer. Instead, you need to convert the pointer into
a |l ong and then store it into a | ong container. And please note that pointer values are
probably meaningless if the stored value is to be used across different application run times.

12/18/2009

DB Reference Guide Page 104

Dbstl persistence

The following sections provide information on how to achieve persistence using dbstl.

Direct database get

Each container has a begin() method which produces an iterator. These begin methods take
a boolean parameter, directdb_get, which controls the caching behavior of the iterator. The
default value of this parameter is true.

If directdb_get is true, then the persistent object is fetched anew from the database each
time the iterator is dereferenced as a pointer by use of the star-operator (*iterator) or by use
of the arrow-operator (iterator->member). If directdb_get is f al se, then the first dereferencing
of the iterator fetches the object from the database, but later dereferences can return cached
data.

With directdb_get set to true, if you call:

(*iterator).datamenber 1=new val uel;
(*iterator).datamenber2=new val ue2;

then the assignment to dat anenber 1 will be lost, because the second dereferencing of the
iterator would cause the cached copy of the object to be overwritten by the object's persistent
data from the database.

You also can use the arrow operator like this:

i terator->dat amenber 1=new val uel;
i terator->dat amenber 2=new val ue2;

This works exactly the same way as iterator::operator*. For this reason, the same caching
rules apply to arrow operators as they do for star operators.

One way to avoid this problem is to create a reference to the object, and use it to access the
object:

container::value_type &ref = *iterator;

ref. dat anenmber 1=new-val uel;

ref. dat anenmber 2=new-val ue2;

...11 more menber function calls and datamenber assignnments
ref. DB STL StoreEl enent();

The above code will not lose the newly assigned value of r ef . dat anenber 1 in the way that the
previous example did.

In order to avoid these complications, you can assign to the object referenced by an iterator
with another object of the same type like this:

cont ai ner::val ue_type obj 2;
obj 2. dat amenber 1 = new val uel;
obj 2. dat amenber2 = new val ue2;
*itr = obj2;

12/18/2009

DB Reference Guide Page 105

This code snippet causes the new values in obj 2 to be stored into the underlying database.

If you have two iterators going through the same container like this:

for (iteratorl = v.begin(), iterator2 = v.begin();
iteratorl !'= v.end();
++iteratorl, ++iterator2) {
*iteratorl = new val ue;
print(*iterator2);

}

then the printed value will depend on the value of directdb_get with which the iterator had
been created. If directdb_get is f al se, then the original, persistent value is printed; otherwise
the newly assigned value is returned from the cache when it erat or 2 is dereferenced. This
happens because each iterator has its own cached copy of the persistent object, and the
dereferencing of i t erat or 2 refreshes i t er at or 2's copy from the database, retrieving the value
stored by the assighment to *iteratorl.

Alternatively, you can set directdb_get to fal se and calliterator2->refresh() immediately
before the dereferencing of i terator2, so thatiterator2's cached value is refreshed.

If directdb_get is f al se, a few of the tests in dbstl's test kit will fail. This is because the above
contrived case appears in several of C++ STL tests. Consequently, the default value of the
directdb_get parameter in the cont ai ner: : begi n() methods is true. If your use cases avoid
such bizarre usage of iterators, you can set it to f al se, which makes the iterator read operation
faster.

Change persistence

If you modify the object to which an iterator refers by using one of the following:

(*iterator).menber function_call()

or
(*iterator).data nember = new val ue

then you should calliterator-> DB STL_StoreEl enent () to store the change. Otherwise the
change is lost after the iterator moves on to other elements.

If you are storing a sequence, and you modified some part of it, you should also call
iterator-> DB STL_StoreEl enent () before moving the iterator.

And in both cases, if directdb_get is true (this is the default value), you should call

_DB STL_StoreEl enent () after the change and before the next iterator movement OR the next
dereferencing of the iterator by the star or arrow operators (i terator::operator* or
iterator::operator->). Otherwise, you will lose the change.

If you update the element by assigning to a dereferenced iterator like this:

*iterator = new el enent;

12/18/2009

DB Reference Guide Page 106

then you never have to call _DB STL_StoreEl enent () because the change is stored in the
database automatically.

Object life time and persistence

Dbstl is an interface to Berkeley DB, so it is used to store data persistently. This is really a
different purpose from that of regular C++ STL. This difference in their goals has implications
on expected object lifetime: In standard STL, when you store an object A of type ID into C++
stl vector V using V.push_back(A), if a proper copy constructor is provided in A's class type,
then the copy of A (call it B) and everything in B, such as another object C pointed to by B's
data member B.c_ptr, will be stored in V and will live as long as B is still in V and V is alive. B
will be destroyed when V is destroyed or B is erased from V.

This is not true for dbstl, which will copy A's data and store it in the underlying database. The
copy is by default a shallow copy, but users can register their object marshalling and
unmarshalling functions using the Dbst| El enilr ai t s class template. So if A is passed to a
db_vect or container, dv, by using dv. push_back(A), then dbstl copies A's data using the
registered functions, and stores data into the underlying database. Consequently, A will be
valid, even if the container is destroyed, because it is stored into the database.

If the copy is simply a shallow copy, and A is later destroyed, then the pointer stored in the
database will become invalid. The next time we use the retrieved object, we will be using an
invalid pointer, which probably will result in errors. To avoid this, store the referred object C
rather than the pointer member A.c_ptr itself, by registering the right marshalling/unmarshalling
function with Dbst| El enflrai ts.

For example, consider the following example class declaration:

class ID

{

public:
string Nane;
int Score;

}s

Here, the class ID has a data member Name, which refers to a memory address of the actual
characters in the string. If we simply shallow copy an object, i d, of class ID to store it, then
the stored data, i dd, is invalid when i d is destroyed. This is because i dd and i d refer to a
common memory address which is the base address of the memory space storing all characters
in the string, and this memory space is released when i d is destroyed. So i dd will be referring
to an invalid address. The next time we retrieve i dd and use it, there will probably be memory
corruption.

The way to store i d is to write a marshal/unmarshal function pair like this:

voi d copy_id(void *dest, const |D&elem

{
mencpy(dest, &elem Score, sizeof(elem Score));
char *p = ((char *)dest) + sizeof(elem Score);
strcpy(p, el emNanme.c_str());

12/18/2009 DB Reference Guide Page 107

}

void restore_id(ID& dest, const void *srcdata)

{

mencpy(&dest. Score, srcdata, sizeof (dest.Score));
const char *p = ((char *)srcdata) + sizeof(dest. Score);

dest. Nane = p;

}

size t size_id(const |D& elen
{

return sizeof (el em Score) + el em Nane. size() +
1;// store the "\0" char.

}

Then register the above functions before storing any instance of | D:

Dbst | El enilr ai t s<I D>; ;i nstance()->set _copy_function(copy_id);
Dbst | El enilr ai t s<I D>; ;i nstance()->set _si ze function(size id);
Dbst | El enilr ai t s<I D>; ;i nstance()->set_restore_function(restore id);

This way, the actual data of instances of ID are stored, and so the data will persist even if the
container itself is destroyed.

Dbstl container specific notes

db_vector specific notes

» Set the DB_RENUMBER flag in the database handle if you want db_vect or <> to work like
std::vector orstd::deque. Do not set DB_RENUMBER if you want db_vect or <> to work like
std::list. Note that without DB_RENUMBER set, db_vect or <> can work faster.

For example, to construct a fast std::queue/std::stack object, you only need a db_vect or <>
object whose database handle does not have DB_RENUMBER set. Of course, if the database
handle has DB_RENUMBER set, it still works for this kind of scenario, just not as fast.

db_vect or does not check whether DB_RENUMBER is set. If you do not set it, db_vect or<>
will not work like std::vector<>/std::deque<> with regard to operator[], because the indices
are not maintained in that case.

You can find example code showing how to use this feature in the
Test Vector: :test_queue_stack() method, which is available in the dbstl test suite.

 Just as is the case with st d: ; vect or, inserting/deleting in the middle of a db_vect or is slower
than doing the same action at the end of the sequence. This is because the underlying
DB_RECNO DB (with the DB_RENUMBER flag set) is relatively slow when inserting/deleting
in the middle or the head — it has to update the index numbers of all the records following
the one that was inserted/deleted. If you do not need to keep the index ordered on
insert/delete, you can use db_map instead.

12/18/2009

DB Reference Guide Page 108

../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER

db_vect or also contains methods inherited from std: :1ist and std: : deque, including
std::list<>'sunique methodsrenove(), remove_if(), uni que(), merge(), sort(), reverse(),
and splice() . These use the identical semantics/behaviors of the std: : |i st <> methods,
although pushing/deleting at the head is slower than the st d: : deque and st d: : | i st equivalent
when there are quite a lot of elements in the database.

» You can use std:: queue, std::priority queue and std: : stack container adapters with
db_vect or ; they work with db_vector even without DB_RENUMBER set.

Associative container specific notes

db_map contains the union of method set from st d: : map and hash_map, but there are some
methods that can only be called on containers backed by DB_BTREE or DB_HASH databases. You
can call db_map<>::is_hash() to figure out the type of the backing database. If you call
unsupported methods then an InvalidFunctionCall exception is thrown.

These are the DB_BTREE specific methods: upper _bound(), | ower _bound(), key_conp(), and
val ue_conmp() . The DB_HASH specific methods are key_eq(), hash_funct ().

Using dbstl efficiently

Using iterators efficiently

To make the most efficient possible use of iterators:
» Close an iterator's cursor as soon as possible.

Each iterator has an open cursor associated with it, so when you are finished using the iterator
it is a good habit to explicitly close its cursor. This can potentially improve performance by
avoiding locking issues, which will enhanced concurrency. Dbstl will close the cursor when
the iterator is destroyed, but you can close the cursor before that time. If the cursor is
closed, the associated iterator cannot any longer be used.

In some functions of container classes, an iterator is used to access the database, and its
cursor is internally created by dbstl. So if you want to specify a non-zero flag for the

Db: : cursor () call, you need to call the container's set _cursor_open_flag() function to do
so.

« Use const iterators where applicable.

If your data access is read only, you are strongly recommended to use a const iterator. In
order to create a const iterator, you must use a const reference to the container object. For
example, supposed we have:

db_vector<int> intv(10);

then we must use a:

const db_vector<int>& intv_ref = intv;

12/18/2009

DB Reference Guide Page 109

../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER

reference to invoke the const begin/end functions. i ntv_ref. begi n() will give you a const
iterator. You can use a const iterator only to read its referenced data elements, not update
them. However, you should have better performance with this iterator using, for example,
eitheriterator::operator* oriterator::operator->nenber. Also, using array indices like
intv_ref[i] will also perform better.

All functions in dbstl's containers which return an iterator or data element reference have
two versions — one returns a const iterator/reference, the other returns an iterator/reference.
If your access is read only, choose the version returning const iterators/references.

Remember that you can only use a const reference to a container object to call the const
versions of operator* and operator[].

You can also use the non-const container object or its non-const reference to create a read
only iterator by passing t r ue to the readonly parameter in the container's begi n() method.

Use pre-increment/pre-decrement rather than post-increment/post-decrement where possible

Pre-increment operations are more efficient because the ++i t erat or avoids two iterator
copy constructions. This is true when you are using C++ standard STL iterators as well.

Use bulk retrieval in iterators

If your access pattern is to go through the entire database read only, or if you are reading
a continuous range of the database, bulk retrieval can be very useful because it returns
multiple key/data pairs in one database call. But be aware that you can only read the returned
data, you can not update it. Also, if you do a bulk retrieval and read the data, and
simultaneously some other thread of control updates that same data, then unless you are
using a serializable transaction, you will now be working with old data.

Using containers efficiently

To make the most efficient possible use of containers:

« Avoid using container methods that return references. These because they are a little more

expensive.

To implement reference semantics, dbstl has to wrap the data element with the current
key/data pair, and must invoke two iterator copy constructions and two Berkeley DB cursor
duplications for each such a call. This is true of non-const versions of these functions:

db_vect or<T>:: operator[]()
db_vect or<T>::front ()
db_vect or <T>:: back()
db_vector<T>::at ()
db_map<>:: operator[]()

There are alternatives to these functions, mainly through explicit use of iterators.

» Use const containers where possible.

12/18/2009

DB Reference Guide Page 110

The const versions of the functions listed above have less overhead than their non-const
counterparts. Using const containers and iterators can bring more performance when you
call the const version of the overloaded container/iterator methods. To do so, you define a
const container reference to an existing container, and then use this reference to call the
methods. For example, if you have:

db_vector<int> container int_vec

then you can define a const reference to i nt_vec:

const db_vector<int>& int_vec_ref;

Then you use i nt_vec_ref. begin() to create a const iterator, citr. You can now can use
int_vec_ref to call the const versions of the container's member functions, and then use
citr to access the data read only. By using i nt _vec_ref and citr, we can gain better
performance.

It is acceptable to call the non-const versions of container functions that return non-const
iterators, and then assign these return values to const iterator objects. But if you are using
Berkeley DB concurrent data store (CDS), be sure to set the readonly parameter for each
container method that returns an iterator to t r ue. This is because each iterator corresponds
to a Berkeley DB cursor, and so for best performance you should specify that the returned
iterator be read-only so that the underlying cursor is also read-only. Otherwise, the cursor
will be a writable cursor, and performance might be somewhat degraded. If you are not using
CDS, but instead TDS or DS or HA, there is no distinction between read-only cursors and
read-write cursors. Consequently, you do not need to specify the readonly parameter at all.

Dbstl memory management

Freeing memory

When using dbstl, make sure memory allocated in the heap is released after use. The rules for
this are:

« dbstl will free/delete any memory allocated by dbstl itself.

» You are responsible for freeing/deleting any memory allocated by your code outside of dbstl.

Type specific notes

DbEnv/Db

When you open a DbEnv or Db object using dbst | : : open_env() or dbst!::open_db(), you do not
need to delete that object. However, if you new'd that object and then opened it without using
the dbst | :: open_env() or dbstl:: open_db() methods, you are responsible for deleting the
object.

Note that you must new the Db or DbEnv object, which allocates it on the heap. You can not
allocate it on the stack. If you do, the order of destruction is uncontrollable, which makes
dbstl unable to work properly.

12/18/2009

DB Reference Guide Page 111

DbstIDbt

You can call dbstl _exit() before the process exits, to release any memory allocated by dbstl
that has to live during the entire process lifetime. Releasing the memory explicitly will not
make much difference, because the process is about to exit and so all memory allocated on
the heap is going to be returned to the operating system anyway. The only real difference is
that your memory leak checker will not report false memory leaks.

dbst| _exit() releases any memory allocated by dbstl on the heap. It also performs other
required shutdown operations, such as closing any databases and environments registered to
dbstl and shared across the process.

If you are calling the dbst| _exit() function, and your DbEnv or Db objects are new'd by your
code, the dbstl _exit() function should be called before deleting the DbEnv or Db objects,
because they need to be closed before being deleted. Alternatively, you can call the
dbstl::close _env() ordbstl::close_db() functions before deleting the DbEnv or Db objects
in order to explicitly close the databases or environments. If you do this, can then delete these
objects, and then call dbst| _exit().

Only when you are storing raw bytes (such as a bitmap) do you have to store and retrieve data
by using the Dbst | Dbt helper class. Although you also can do so simply by using the Berkeley
DB Dbt class, the Dbst| Dbt class offers more convenient memory management behavior.

When you are storing Dbst | Dbt objects (such as db_vect or <Dbst | Dbt >), you must allocate heap
memory explicitly using the mal | oc() function for the Dbst| Dbt object to reference, but you
do not need to free the memory - it is automatically freed by the Dbst | Dbt object that owns
it by calling the standard C library free() function.

However, because dbstl supports storing any type of object or primitive data, it is rare that
you would have to store data using Dbst | Dbt objects while using dbstl. Examples of storing
Dbst | Dbt objects can be found in the Test Assoc::test _arbitrary object storage() and

Test Assoc::test _char_star_string_storage() functions, which are available in the dbstl test
suite.

Dbstl miscellaneous notes

Special notes about trivial methods

There are some standard STL methods which are meaningless in dbstl, but they are kept in
dbstl as no-ops so as to stay consistent with the standard. These are:

db_vecter::reserve()
db_vector:: max_si ze(
db_vector:: capaci ty(
db_map::reserve();
db_map: : max_size();

):
)

db_vector<>:: max_si ze() and db_map<>;: nmax_si ze() both return 2"30. This does not mean
that Berkeley DB can only hold that much data. This value is returned to conform to some

12/18/2009

DB Reference Guide Page 112

compilers' overflow rules — if we set bigger numbers like 232 or 2”31, some compilers complain
that the number has overflowed.

See the Berkeley DB documentation for information about limitations on how much data a
database can store.

There are also some read-only functions. You set the configuration for these using the Berkeley
DB API. You access them using the container's methods. Again, this is to keep consistent with
C++ standard STL containers, such as:

db_map: : key_conp();
db_map: : val ue_conp();
db_map: : hash_funct();
db_map: : key_eq();

Using correct container and iterator public types

All public types defined by the C++ STL specification are present in dbstl. One thing to note is
the value_type. dbstl defines the value_type for each iterator and container class to be the
raw type without the El enent Ref /El enent Hol der wrapper, so this type of variable can not be
used to store data in a database. There is a value_type_wrap type for each container and
iterator type, with the raw type wrapped by the El enent Ref /El enent Hol der .
For example, when type i nt _vector_t is defined as

db_vector<int, ElenmentHolder<int> >
its value_type is i nt, its value_type_wrap is El enent Hol der <i nt >, and its reference and

pointer types are El ement Hol der <i nt >& and El enent Hol der <i nt >* respectively. If you need to
store data, use value_type_wrap to make use of the wrapper to store data into database.

The reason we leave value_type as the raw type is that we want the existing algorithms in the
STL library to work with dbstl because we have seen that without doing so, a few tests will
fail.

You need to use the same type as the return type of the data element retrieval functions to
hold a value in order to properly manipulate the data element. For example, when calling

db_vect or <T>:: operator[]

check that the return type for this function is

db_vect or<T>:: dat at ype_wrap

Then, hold the return value using an object of the same type:

db_vect or<T>::datatype wap refelem= vctr[3];

Dbstl known issues

Three algorithm functions of gcc's C++ STL test suite do not work with dbstl. They are
find_end(), inplace_nerge() and stable_sort().

12/18/2009 DB Reference Guide Page 113

The reason for the incompatibility of fi nd_end() is that it assumes the data an iterator refers
to is located at a shared place (owned by its container). This assumption is not correct in that
it is part of the C++ STL standards specification. However, this assumption can not be true for
dbstl because each dbstl container iterator caches its referenced value.

Consequently, please do not use find_end() for dbstl container iterators if you are using gcc's
STL library.

The reason for the incompatibility with i npl ace_merge() and stabl e_sort () is that their
implementation in gcc requires the value_type for a container to be default constructible.
This requirement is not a part of the the C++ STL standard specification. Dbstl's value type
wrappers (such as El enent Hol der) do not support it.

These issues do not exist for any function available with the Microsoft Visual C++ STL library.

12/18/2009 DB Reference Guide Page 114

Chapter 8. Berkeley DB Architecture
The big picture

The previous chapters in this Reference Guide have described applications that use the Berkeley
DB access methods for fast data storage and retrieval. The applications described in the following
chapters are similar in nature to the access method applications, but they are also threaded
and/or recoverable in the face of application or system failure.

Application code that uses only the Berkeley DB access methods might appear as follows:

switch (ret = dbp->/put(dbp, NULL, &key, &data, 0)) {
case O:

printf("db: %: key stored.\n", (char *)key.data);
br eak;

defaul t:

dbp->/err(dbp, ret, "dbp->/put");

exit (1);

}

The underlying Berkeley DB architecture that supports this is

Applicarions

Access Methods

Buffer Pool P@

As you can see from this diagram, the application makes calls into the access methods, and
the access methods use the underlying shared memory buffer cache to hold recently used file
pages in main memory.

When applications require recoverability, their calls to the Access Methods must be wrapped
in calls to the transaction subsystem. The application must inform Berkeley DB where to begin
and end transactions, and must be prepared for the possibility that an operation may fail at
any particular time, causing the transaction to abort.

An example of transaction-protected code might appear as follows:

for (fail =0;;) {
/* Begin the transaction. */

12/18/2009

DB Reference Guide Page 115

if ((ret = dbenv->/txn_begi n(dbenv, NULL, &id, 0)) !'=0) {
dbenv->/err(dbenv, ret, "dbenv->/txn_begin");

exit (1);

}

/* Store the key. */
switch (ret = dbp->/put(dbp, tid, &key, &data, 0)) {
case 0:
/* Success: commit the change. */
printf("db: %: key stored.\n", (char *)key.data);
if ((ret =tid->commt(tid, 0)) !=20) {
dbenv->/err(dbenv, ret, "DB TXN->/commit");
exit (1);
}
return (0);
case DB _LOCK DEADLOCK:
defaul t:
/* Failure: retry the operation. */
if ((t_ret =tid->/abort(tid)) !=0) {
dbenv->/err(dbenv, t_ret, "DB TXN->/abort");
exit (1);
}
if (fail++ == MAXI MUM RETRY)
return (ret);
continue;

}
}

In this example, the same operation is being done as before; however, it is wrapped in
transaction calls. The transaction is started with DB_ENV->txn_begin() and finished with
DB_TXN->commit(). If the operation fails due to a deadlock, the transaction is aborted using
DB_TXN->abort(), after which the operation may be retried.

There are actually five major subsystems in Berkeley DB, as follows:

Access Methods
The access methods subsystem provides general-purpose support for creating and
accessing database files formatted as Btrees, Hashed files, and Fixed- and
Variable-length records. These modules are useful in the absence of transactions for
applications that need fast formatted file support. See DB->open() and DB->cursor()
for more information. These functions were already discussed in detail in the previous
chapters.

Memory Pool
The Memory Pool subsystem is the general-purpose shared memory buffer pool used
by Berkeley DB. This is the shared memory cache that allows multiple processes and
threads within processes to share access to databases. This module is useful outside
of the Berkeley DB package for processes that require portable, page-oriented, cached,
shared file access.

12/18/2009 DB Reference Guide Page 116

../api_reference/C/txnbegin.html
../api_reference/C/txncommit.html
../api_reference/C/txnabort.html
../api_reference/C/dbopen.html
../api_reference/C/dbcursor.html

Transaction

The Transaction subsystem allows a group of database changes to be treated as an
atomic unit so that either all of the changes are done, or none of the changes are done.
The transaction subsystem implements the Berkeley DB transaction model. This module
is useful outside of the Berkeley DB package for processes that want to
transaction-protect their own data modifications.

Locking
The Locking subsystem is the general-purpose lock manager used by Berkeley DB. This
module is useful outside of the Berkeley DB package for processes that require a
portable, fast, configurable lock manager.

Logging
The Logging subsystem is the write-ahead logging used to support the Berkeley DB
transaction model. It is largely specific to the Berkeley DB package, and unlikely to be
useful elsewhere except as a supporting module for the Berkeley DB transaction
subsystem.

Here is a more complete picture of the Berkeley DB library:

Applications
Access Methods Transacrions
Lock
Buffer Pool
Log T

In this model, the application makes calls to the access methods and to the Transaction
subsystem. The access methods and Transaction subsystems in turn make calls into the Memory
Pool, Locking and Logging subsystems on behalf of the application.

The underlying subsystems can be used independently by applications. For example, the Memory
Pool subsystem can be used apart from the rest of Berkeley DB by applications simply wanting
a shared memory buffer pool, or the Locking subsystem may be called directly by applications
that are doing their own locking outside of Berkeley DB. However, this usage is not common,
and most applications will either use only the access methods subsystem, or the access methods
subsystem wrapped in calls to the Berkeley DB transaction interfaces.

12/18/2009

DB Reference Guide Page 117

Programming model

Berkeley DB is a database library, in which the library is linked into the address space of the
application using it. One or more applications link the Berkeley DB library directly into their
address spaces. There may be many threads of control in this model because Berkeley DB
supports locking for both multiple processes and for multiple threads within a process. This
model provides significantly faster access to the database functionality, but implies trust among
all threads of control sharing the database environment because they will have the ability to
read, write and potentially corrupt each other's data.

Programmatic APIs

C++

The Berkeley DB subsystems can be accessed through interfaces from multiple languages.
Applications can use Berkeley DB via C, C++ or Java, as well as a variety of scripting languages
such as Perl, Python, Ruby or Tcl. Environments can be shared among applications written by
using any of these interfaces. For example, you might have a local server written in C or C++,
a script for an administrator written in Perl or Tcl, and a Web-based user interface written in
Java -- all sharing a single database environment.

The Berkeley DB library is written entirely in ANSI C. C applications use a single include file:
#incl ude <db. h>

The C++ classes provide a thin wrapper around the C API, with the major advantages being
improved encapsulation and an optional exception mechanism for errors. C++ applications use
a single include file:

#include <db_cxx. h>

The classes and methods are named in a fashion that directly corresponds to structures and
functions in the C interface. Likewise, arguments to methods appear in the same order as the
Cinterface, except to remove the explicit this pointer. The #defines used for flags are identical
between the C and C++ interfaces.

As a rule, each C++ object has exactly one structure from the underlying C API associated with
it. The C structure is allocated with each constructor call and deallocated with each destructor
call. Thus, the rules the user needs to follow in allocating and deallocating structures are the
same between the C and C++ interfaces.

To ensure portability to many platforms, both new and old, Berkeley DB makes as few
assumptions as possible about the C++ compiler and library. For example, it does not expect
STL, templates, or namespaces to be available. The newest C++ feature used is exceptions,
which are used liberally to transmit error information. Even the use of exceptions can be
disabled at runtime.

12/18/2009

DB Reference Guide Page 118

STL

Java

dbstl is an C++ STL style API for Berkeley DB, based on the C++ APl above. With it, you can
store data/objects of any type into or retrieve them from Berkeley DB databases as if you are
using C++ STL containers. The full functionality of Berkeley DB can still be utilized via dbstl
with little performance overhead, e.g. you can use all transaction and/or replication
functionality of Berkeley DB.

dbstl container/iterator class templates reside in header files dbstl_vector.h, dbstl_map.h and
dbstl_set.h. Among them, dbstl_vector.h contains dbstl::db_vector and its iterators; dbstl_map.h
contains dbstl::db_map, dbstl::db_multimap and their iterators; dbstl_set.h contains
dbstl::db_set and dbstl::db_multiset and their iterators. You should include needed header
file(s) to use the container/iterator. Note that we don't use the file name with no extention
--- To use dbstl::db_vector, you should do this:

#include "dbstl_vector.h"

rather than this:

#include "dbstl vector"”

And these header files reside in "stl" directory inside Berkeley DB source root directory. If you
have installed Berkeley DB, they are also available in the "include" directory in the directory
where Berkeley DB is installed.

Apart from the above three header files, you may also need to include db_exception.h and
db_utility.h files. The db_exception.h file contains all exception classes of dbstl, which integrate
seamlessly with Berkeley DB C++ API exceptions and C++ standard exception classes in std
namespace. And the db_utility.h file contains the DbstlElemTraits which helps you to store
complex objects. These five header files are all that you need to include in order to make use
of dbstl.

All symbols of dbstl, including classes, class templates, global functions, etc, reside in the
namespace "dbstl", so in order to use them, you may also want to do this:

usi ng nanespace dbstl;

The dbstl library is always at the same place where Berkeley DB library is located, you will
need to build it and link with it to use dbstl.

While making use of dbstl, you will probably want to create environment or databases directly,
or set/get configurations to Berkeley DB environment or databases, etc. You are allowed to
do so via Berkeley DB C/C++ API.

The Java classes provide a layer around the C API that is almost identical to the C++ layer. The
classes and methods are, for the most part identical to the C++ layer. Berkeley DB constants
and #defines are represented as "static final int" values. Error conditions are communicated
as Java exceptions.

12/18/2009

DB Reference Guide Page 119

As in C++, each Java object has exactly one structure from the underlying C API associated
with it. The Java structure is allocated with each constructor or open call, but is deallocated
only by the Java garbage collector. Because the timing of garbage collection is not predictable,
applications should take care to do a close when finished with any object that has a close
method.

Dbm/Ndbm, Hsearch

Berkeley DB supports the standard UNIX dbm and hsearch interfaces. After including a new
header file and recompiling, programs will run orders of magnitude faster, and underlying
databases can grow as large as necessary. Also, historic dbm applications can fail once some
number of entries are inserted into the database, in which the nhumber depends on the
effectiveness of the internal hashing function on the particular data set. This is not a problem
with Berkeley DB.

Scripting languages

Perl

PHP

Tcl

Two Perl wrappers are distributed with the Berkeley DB release. The Perl interface to Berkeley
DB version 1.85 is called DB_File. The Perl interface to Berkeley DB version 2 and later is called
BerkeleyDB. See Using Berkeley DB with Perl (page 271) for more information.

A PHP wrapper is distributed with the Berkeley DB release. See Using Berkeley DB with
PHP (page 271) for more information.

A Tcl wrapper is distributed with the Berkeley DB release. See Loading Berkeley DB with
Tcl (page 266) for more information.

Supporting utilities

The following are the standalone utilities that provide supporting functionality for the Berkeley
DB environment:

db_archive utility

The db_archive utility supports database backup and archival, and log file
administration. It facilitates log reclamation and the creation of database snapshots.
Generally, some form of log archival must be done if a database environment has been
configured for logging or transactions.

db_checkpoint utility

The db_checkpoint utility runs as a daemon process, monitoring the database log and
periodically issuing checkpoints. It facilitates log reclamation and the creation of
database snapshots. Generally, some form of database checkpointing must be done if
a database environment has been configured for transactions.

12/18/2009

DB Reference Guide Page 120

../api_reference/C/dbm.html
../api_reference/C/hsearch.html
../api_reference/C/dbm.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_checkpoint.html

db_deadlock utility
The db_deadlock utility runs as a daemon process, periodically traversing the database
lock structures and aborting transactions when it detects a deadlock. Generally, some
form of deadlock detection must be done if a database environment has been configured
for locking.

db_dump utility
The db_dump utility writes a copy of the database to a flat-text file in a portable
format.

db_hotbackup utility
The db_hotbackup utility creates "hot backup” or "hot failover” snapshots of Berkeley
DB database environments.

db_load utility
The db_load utility reads the flat-text file produced by the db_load utility and loads
it into a database file.

db_printlog utility
The db_printlog utility displays the contents of Berkeley DB log files in a human-readable
and parsable format.

db_recover utility
The db_recover utility runs after an unexpected Berkeley DB or system failure to restore
the database to a consistent state. Generally, some form of database recovery must
be done if databases are being modified.

db_sql utility
The db_sql utility translates a schema description written in a SQL Data Definition
Language dialect into C code that implements the schema using Berkeley DB.

db_stat utility
The db_stat utility displays statistics for databases and database environments.

db_upgrade utility

The db_upgrade utility provides a command-line interface for upgrading underlying
database formats.

db_verify utility
The db_verify utility provides a command-Lline interface for verifying the database
format.

All of the functionality implemented for these utilities is also available as part of the standard
Berkeley DB API. This means that threaded applications can easily create a thread that calls
the same Berkeley DB functions as do the utilities. This often simplifies an application
environment by removing the necessity for multiple processes to negotiate database and
database environment creation and shut down.

12/18/2009

DB Reference Guide Page 121

../api_reference/C/db_deadlock.html
../api_reference/C/db_deadlock.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/db_hotbackup.html
../api_reference/C/db_hotbackup.html
../api_reference/C/db_load.html
../api_reference/C/db_load.html
../api_reference/C/db_load.html
../api_reference/C/db_printlog.html
../api_reference/C/db_printlog.html
../api_reference/C/db_recover.html
../api_reference/C/db_recover.html
../api_reference/C/db_sql.html
../api_reference/C/db_sql.html
../api_reference/C/db_stat.html
../api_reference/C/db_stat.html
../api_reference/C/db_upgrade.html
../api_reference/C/db_upgrade.html
../api_reference/C/db_verify.html
../api_reference/C/db_verify.html

Chapter 9. The Berkeley DB Environment

Database environment introduction

A Berkeley DB environment is an encapsulation of one or more databases, log files and region
files. Region files are the shared memory areas that contain information about the database
environment such as memory pool cache pages. Only databases are byte-order independent
and only database files can be moved between machines of different byte orders. Log files can
be moved between machines of the same byte order. Region files are usually unique to a
specific machine and potentially to a specific operating system release.

The simplest way to administer a Berkeley DB application environment is to create a single
home directory that stores the files for the applications that will share the environment. The
environment home directory must be created before any Berkeley DB applications are run.
Berkeley DB itself never creates the environment home directory. The environment can then
be identified by the name of that directory.

An environment may be shared by any number of processes, as well as by any number of threads
within those processes. It is possible for an environment to include resources from other
directories on the system, and applications often choose to distribute resources to other
directories or disks for performance or other reasons. However, by default, the databases,
shared regions (the locking, logging, memory pool, and transaction shared memory areas) and
log files will be stored in a single directory hierarchy.

It is important to realize that all applications sharing a database environment implicitly trust
each other. They have access to each other's data as it resides in the shared regions, and they
will share resources such as buffer space and locks. At the same time, any applications using
the same databases must share an environment if consistency is to be maintained between

them.

Database Environment Operations Description

db_env_create() Create an environment handle

DB->getenv() handle Return DB's underlying DB_ENV handle

DB_ENV->close() Close an environment

DB_ENV->dbremove() Remove a database

DB_ENV->dbrename() Rename a database

DB_ENV->err() Error message

DB_ENV->failchk() Check for thread failure

DB_ENV->fileid_reset() Reset database file IDs

DB_ENV->open() Return environment's home directory

DB_ENV->open() Return flags with which the environment was
opened

DB_ENV->lsn_reset() Reset database file LSNs

DB_ENV->open() Open an environment

12/18/2009 DB Reference Guide Page 122

../api_reference/C/envcreate.html
../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/dbgetenv.html
../api_reference/C/envclose.html
../api_reference/C/envdbremove.html
../api_reference/C/envdbrename.html
../api_reference/C/enverr.html
../api_reference/C/envfailchk.html
../api_reference/C/envfileid_reset.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/envlsn_reset.html
../api_reference/C/envopen.html

Creating a database environment

Database Environment Operations

Description

DB_ENV->remove()

Remove an environment

DB_ENV->stat()

Environment statistics

db_strerror()

Error strings

DB_ENV->version()

Return version information

Environment Configuration

DB_ENV->set_alloc()

Set local space allocation functions

DB_ENV->set_app_dispatch()

Configure application recovery

DB_ENV->set_cachesize()

Set the environment cache size

DB_ENV->set_data_dir()

Set the environment data directory

DB_ENV->set_encrypt()

Set the environment cryptographic key

DB_ENV->set_errcall()

Set error and informational message callbacks

DB_ENV->set_errfile()

Set error and informational message FILE

DB_ENV->set_errpfx()

Set error message prefix

DB_ENV->set_event_notify()

Set event notification callback

DB_ENV->set_feedback()

Set feedback callback

DB_ENV->set_flags()

Environment configuration

DB_ENV->set_isalive()

Set thread is-alive callback

DB_ENV->set_intermediate_dir_mode()

Set intermediate directory creation mode

DB_ENV->set_shm_key()

Set system memory shared segment ID

DB_ENV->set_thread_id()

Set thread of control ID function

DB_ENV->set_thread_count()

Set approximate thread count

DB_ENV->set_thread_id_string()

Set thread of control ID format function

DB_ENV->set_timeout()

Set lock and transaction timeout

DB_ENV->set_tmp_dir()

Set the environment temporary file directory

DB_ENV->set_verbose()

Set verbose messages

The Berkeley DB environment is created and described by the db_env_create() and
DB_ENV->open() interfaces. In situations where customization is desired, such as storing log
files on a separate disk drive or selection of a particular cache size, applications must describe
the customization by either creating an environment configuration file in the environment
home directory or by arguments passed to other DB_ENV handle methods.

Once an environment has been created, database files specified using relative pathnames will
be named relative to the home directory. Using pathnames relative to the home directory
allows the entire environment to be easily moved, simplifying restoration and recovery of a
database in a different directory or on a different system.

12/18/2009

DB Reference Guide

Page 123

../api_reference/C/envremove.html
../api_reference/C/envstat.html
../api_reference/C/envstrerror.html
../api_reference/C/envversion.html
../api_reference/C/envset_alloc.html
../api_reference/C/envset_app_dispatch.html
../api_reference/C/envset_cachesize.html
../api_reference/C/envset_data_dir.html
../api_reference/C/envset_encrypt.html
../api_reference/C/envset_errcall.html
../api_reference/C/envset_errfile.html
../api_reference/C/envset_errpfx.html
../api_reference/C/envevent_notify.html
../api_reference/C/envset_feedback.html
../api_reference/C/envset_flags.html
../api_reference/C/envset_isalive.html
../api_reference/C/envset_intermediate_dir_mode.html
../api_reference/C/envset_shm_key.html
../api_reference/C/envset_thread_id.html
../api_reference/C/envset_thread_count.html
../api_reference/C/envset_thread_id_string.html
../api_reference/C/envset_timeout.html
../api_reference/C/envset_tmp_dir.html
../api_reference/C/envset_verbose.html
../api_reference/C/envcreate.html
../api_reference/C/envopen.html
../api_reference/C/env.html

Applications first obtain an environment handle using the db_env_create() method, then call
the DB_ENV->open() method which creates or joins the database environment. There are a
number of options you can set to customize DB_ENV->open() for your environment. These
options fall into four broad categories:

Subsystem Initialization:

These flags indicate which Berkeley DB subsystems will be initialized for the
environment, and what operations will happen automatically when databases are
accessed within the environment. The flags include DB_INIT_CDB, DB_INIT_LOCK,
DB_INIT_LOG, DB_INIT_MPOOL, and DB_INIT_TXN. The DB_INIT_CDB flag does
initialization for Berkeley DB Concurrent Data Store applications. (See Concurrent Data
Store introduction (page 136) for more information.) The rest of the flags initialize a
single subsystem; that is, when DB_INIT_LOCK is specified, applications reading and
writing databases opened in this environment will be using locking to ensure that they
do not overwrite each other's changes.

Recovery options:

These flags, which include DB_RECOVER and DB_RECOVER_FATAL, indicate what recovery
is to be performed on the environment before it is opened for normal use.

Naming options:

These flags, which include DB_USE_ENVIRON and DB_USE_ENVIRON_ROOT, modify how
file naming happens in the environment.

Miscellaneous:

Finally, there are a number of miscellaneous flags, for example, DB_CREATE which
causes underlying files to be created as necessary. See the DB_ENV->open() manual
pages for further information.

Most applications either specify only the DB_INIT_MPOOL flag or they specify all four subsystem
initialization flags (DB_INIT_MPOOL, DB_INIT_LOCK, DB_INIT_LOG, and DB_INIT_TXN). The
former configuration is for applications that simply want to use the basic Access Method
interfaces with a shared underlying buffer pool, but don't care about recoverability after
application or system failure. The latter is for applications that need recoverability. There are
situations in which other combinations of the initialization flags make sense, but they are rare.

The DB_RECOVER flag is specified by applications that want to perform any necessary database
recovery when they start running. That is, if there was a system or application failure the last
time they ran, they want the databases to be made consistent before they start running again.
It is not an error to specify this flag when no recovery needs to be done.

The DB_RECOVER_FATAL flag is more special-purpose. It performs catastrophic database
recovery, and normally requires that some initial arrangements be made; that is, archived log
files be brought back into the filesystem. Applications should not normally specify this flag.
Instead, under these rare conditions, the db_recover utility should be used.

The following is a simple example of a function that opens a database environment for a
transactional program.

DB_ENV *
db_setup(hone, data dir, errfp, prognane)

12/18/2009

DB Reference Guide Page 124

../api_reference/C/envcreate.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_CDB
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_LOG
../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/envopen.html#envopen_DB_INIT_TXN
../api_reference/C/envopen.html#envopen_DB_INIT_CDB
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html#envopen_DB_RECOVER_FATAL
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON_ROOT
../api_reference/C/dbopen.html#open_DB_CREATE
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_LOG
../api_reference/C/envopen.html#envopen_DB_INIT_TXN
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html#envopen_DB_RECOVER_FATAL
../api_reference/C/db_recover.html

char *home, *data_dir, *prognane;
FILE *errfp;
{
DB _ENV *dbenv;
int ret;

/*

* Create an environment and initialize it for additional error
* reporting.

*/

if ((ret = db_env_create(&dbenv, 0)) !'=0) {

fprintf(errfp, "%: %\n", progname, db_strerror(ret));
return (NULL);

}

dbenv->set _errfile(dbenv, errfp);

dbenv->set _errpfx(dbenv, progname);

/*

* Specify the shared menory buffer pool cachesize: 5MB.

* Databases are in a subdirectory of the environnment hone.
*/

if ((ret = dbenv->set cachesi ze(dbenv, 0, 5 * 1024 * 1024, 0)) '=0) {
dbenv->err(dbenv, ret, "set_cachesize");

goto err;

}

if ((ret = dbenv->set_data_dir(dbenv, data_dir)) != 0) {
dbenv->err(dbenv, ret, "set_data dir: %", data dir);
goto err;

}

/* Open the environnent with full transactional support. */
if ((ret = dbenv->open(dbenv, home, DB CREATE |
DB INNT_LOG | DB_INIT_LOCK | DB_INIT_MPOOL | DB_INIT_TXN, 0)) !'= 0) {
dbenv->err(dbenv, ret, "environment open: %", hone);
goto err;

}

return (dbenv);

err: (void)dbenv->cl ose(dbenv, 0);
return (NULL);

}
Opening databases within the environment
Once the environment has been created, database handles may be created and then opened

within the environment. This is done by calling the db_create() function and specifying the
appropriate environment as an argument.

12/18/2009 DB Reference Guide Page 125

../api_reference/C/dbcreate.html

File naming, database operations, and error handling will all be done as specified for the
environment. For example, if the DB_INIT_LOCK or DB_INIT_CDB flags were specified when the
environment was created or joined, database operations will automatically perform all necessary
locking operations for the application.

The following is a simple example of opening two databases within a database environment:

DB_ENV *dbenv;
DB *dbpl, *dbp2;
int ret;

dbenv = NULL;
dbpl = dbp2 = NULL;

/*

* Create an environment and initialize it for additional error
* reporting.

*|

if ((ret = db_env_create(&benv, 0)) !'=0) {

fprintf(errfp, "%: %\n", progname, db _strerror(ret));
return (ret);

}

dbenv->set _errfile(dbenv, errfp);
dbenv->set _errpfx(dbenv, progname);

/* Open an environment with just a nenory pool. */
if ((ret =
dbenv- >open(dbenv, home, DB CREATE | DB INT_MPOQL, 0)) !'=0) {
dbenv->err(dbenv, ret, "environment open: %", hone);
goto err;

}

/* Open database #1. */
if ((ret = db_create(&bpl, dbenv, 0)) !'=0) {
dbenv->err(dbenv, ret, "database create");
goto err;
1
if ((ret = dbpl->open(dbpl,
NULL, DATABASE1, NULL, DB BTREE, DB CREATE, 0664)) !'= 0) {
dbenv->err(dbenv, ret, "DB->open: %", DATABASEL);
goto err;

}

/* Open database #2. */

if ((ret = db_create(&bp2, dbenv, 0)) !'= 0) {
dbenv->err(dbenv, ret, "database create");
goto err;

}

12/18/2009

DB Reference Guide Page 126

../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_CDB

if ((ret = dbp2->open(dbp2,

NULL, DATABASE2, NULL, DB HASH, DB_CREATE, 0664)) != 0) {
dbenv->err(dbenv, ret, "DB->open: %", DATABASE2);
goto err;

}

return (0);

err: if (dbp2 !'= NULL)

(voi d) dbp2- >cl ose(dbp2, 0);
if (dbpl !'= NULL)

(voi d) dbp2- >cl ose(dbpl, 0);
(voi d) dbenv->cl ose(dbenv, 0);
return (1);

}

Error support

Berkeley DB offers programmatic support for displaying error return values. The db_strerror()
function returns a pointer to the error message corresponding to any Berkeley DB error return.
This is similar to the ANSI C strerror interface, but can handle both system error returns and
Berkeley DB-specific return values.

For example:

int ret;

if ((ret = dbenv->set_cachesi ze(dbenv, 0, 32 * 1024, 1)) '=0) {
fprintf(stderr, "set cachesize failed: %\n", db_strerror(ret));
return (1);

}

There are also two additional error methods: DB_ENV->err() and DB_ENV- >er r x() . These methods
work like the ANSI C printf function, taking a printf-style format string and argument list, and
writing a message constructed from the format string and arguments.

The DB_ENV->err() function appends the standard error string to the constructed message; the
DB ENV->errx() function does not.

Error messages can be configured always to include a prefix (for example, the program name)
using the DB_ENV->set_errpfx() method.

These functions provide simpler ways of displaying Berkeley DB error messages:

int ret;

dbenv- >set _errpfx(dbenv, program nane);

if ((ret = dbenv->open(dbenv, honeg,
DB CREATE | DB INIT_LOG| DB INIT_TXN | DB_USE_ENVIRON, 0))
'=0) {

dbenv->err(dbenv, ret, "open: %", home);

dbenv->err x(dbenv,

12/18/2009

DB Reference Guide Page 127

../api_reference/C/envstrerror.html
../api_reference/C/enverr.html
../api_reference/C/enverr.html
../api_reference/C/envset_errpfx.html

"contact your systemadm nistrator: session ID was %",
session_id);
return (1);

}

For example, if the program was called "my_app”, and it tried to open an environment home
directory in "/tmp/home” and the open call returned a permission error, the error messages
shown would look like this:

my_app: open: /tnp/home: Permi ssion denied.
my_app: contact your system administrator: session ID was 2

DB_CONFIG configuration file

Almost all of the configuration information that can be specified to DB_ENV class methods can
also be specified using a configuration file. If a file named DB_CONFIG exists in the database
home directory, it will be read for lines of the format NAME VALUE.

One or more whitespace characters are used to delimit the two parts of the line, and trailing
whitespace characters are discarded. All empty lines or lines whose first character is a
whitespace or hash (#) character will be ignored. Each line must specify both the NAME and
the VALUE of the pair. The specific NAME VALUE pairs are documented in the manual for the
corresponding methods (for example, the DB_ENV->set_data_dir() documentation includes
NAME VALUE pair information Berkeley DB administrators can use to configure locations for
database files).

The DB_CONFIG configuration file is intended to allow database environment administrators
to customize environments independent of applications using the environment. For example,
a database administrator can move the database log and data files to a different location
without application recompilation. In addition, because the DB_CONFIG file is read when the
database environment is opened, it can be used to overrule application configuration done
before that time. For example a database administrator could override the compiled-in
application cache size to a size more appropriate for a specific machine.

File naming

One of the most important tasks of the database environment is to structure file naming within
Berkeley DB. Cooperating applications (or multiple invocations of the same application) must
agree on the location of the database environment, log files and other files used by the Berkeley
DB subsystems, and, of course, the database files. Although it is possible to specify full
pathnames to all Berkeley DB methods, this is cumbersome and requires applications be
recompiled when database files are moved.

Applications are normally expected to specify a single directory home for the database
environment. This can be done easily in the call to DB_ENV->open() by specifying a value for
the db_home argument. There are more complex configurations in which it may be desirable
to override db_home or provide supplementary path information.

12/18/2009

DB Reference Guide Page 128

../api_reference/C/env.html
../api_reference/C/envset_data_dir.html
../api_reference/C/envopen.html

Specifying file naming to Berkeley DB

The following list describes the possible ways in which file naming information may be specified
to the Berkeley DB library. The specific circumstances and order in which these ways are applied
are described in a subsequent paragraph.

db_home
If the db_home argument to DB_ENV->open() is non-NULL, its value may be used as
the database home, and files named relative to its path.

DB_HOME

If the DB_HOME environment variable is set when DB_ENV->open() is called, its value
may be used as the database home, and files named relative to its path.

The DB_HOME environment variable is intended to permit users and system
administrators to override application and installation defaults. For example::

env DB _HOVE=/ dat abase/ my_hone application

Application writers are encouraged to support the -h option found in the supporting
Berkeley DB utilities to let users specify a database home.

DB_ENV methods

There are three DB_ENV methods that affect file naming. The DB_ENV->set_data_dir()
method specifies a directory to search for database files. The DB_ENV->set_lg_dir()
method specifies a directory in which to create logging files. The DB_ENV->set_tmp_dir()
method specifies a directory in which to create backing temporary files. These methods
are intended to permit applications to customize a file location for a database. For
example, an application writer can place data files and log files in different directories
or instantiate a new log directory each time the application runs.

DB_CONFIG

The same information specified to the DB_ENV methods may also be specified using
the DB_CONFIG configuration file.

Filename resolution in Berkeley DB

The following list describes the specific circumstances and order in which the different ways
of specifying file naming information are applied. Berkeley DB filename processing proceeds
sequentially through the following steps:

absolute pathnames

If the filename specified to a Berkeley DB function is an absolute pathname, that
filename is used without modification by Berkeley DB.

On UNIX systems, an absolute pathname is defined as any pathname that begins with
a leading slash (/).

On Windows systems, an absolute pathname is any pathname that begins with a leading
slash or leading backslash (\); or any pathname beginning with a single alphabetic
character, a colon and a leading slash or backslash (for example, C./tnp).

12/18/2009 DB Reference Guide Page 129

../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/envset_data_dir.html
../api_reference/C/envset_lg_dir.html
../api_reference/C/envset_tmp_dir.html
../api_reference/C/env.html

DB_ENV methods, DB_CONFIG

If a relevant configuration string (for example, set_data_dir), is specified either by
calling a DB_ENV method or as a line in the DB_CONFIG configuration file, the value is
prepended to the filename. If the resulting filename is an absolute pathname, the
filename is used without further modification by Berkeley DB.

db_home

If the application specified a non-NULL db_home argument to DB_ENV->open(), its
value is prepended to the filename. If the resulting filename is an absolute pathname,
the filename is used without further modification by Berkeley DB.

DB_HOME

If the db_home argument is NULL, the DB_HOME environment variable was set, and
the application has set the appropriate DB_USE_ENVIRON or DB_USE_ENVIRON_ROOT
flags, its value is prepended to the filename. If the resulting filename is an absolute
pathname, the filename is used without further modification by Berkeley DB.

default

Finally, all filenames are interpreted relative to the current working directory of the
process.

The common model for a Berkeley DB environment is one in which only the DB_HOME
environment variable, or the db_home argument is specified. In this case, all data filenames
are relative to that directory, and all files created by the Berkeley DB subsystems will be
created in that directory.

The more complex model for a transaction environment might be one in which a database
home is specified, using either the DB_HOME environment variable or the db_home argument
to DB_ENV->open(); and then the data directory and logging directory are set to the relative
pathnames of directories underneath the environment home.

Examples
Store all files in the directory / a/ dat abase:
dbenv- >open(dbenv, "/aldatabase", flags, node);
Create temporary backing files in / b/ t enpor ary, and all other files in / a/ dat abase:
dbenv->set _tnp_dir(dbenv, "/b/tenporary");
dbenv- >open(dbenv, "/aldatabase", flags, node);
Store data files in / a/ dat abase/ dat adi r, log files in / a/ dat abase/ | ogdi r, and all other files in
the directory / a/ dat abase:
dbenv->set | g_dir(dbenv, "logdir");
dbenv->set data dir(dbenv, "datadir");
dbenv- >open(dbenv, "/aldatabase", flags, node);
Store data files in / a/ dat abase/ dat al and / b/ dat a2, and all other files in the directory
| al dat abase. Any data files that are created will be created in / b/ dat a2, because it is the first
data file directory specified:
12/18/2009 DB Reference Guide Page 130

../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON_ROOT
../api_reference/C/envopen.html

dbenv->set data_dir(dbenv, "/b/data2");
dbenv->set _data_dir(dbenv, "datal");
dbenv- >open(dbenv, "/aldatabase", flags, node);

Shared memory regions

Each of the Berkeley DB subsystems within an environment is described by one or more regions,
or chunks of memory. The regions contain all of the per-process and per-thread shared
information (including mutexes), that comprise a Berkeley DB environment. These regions are
created in one of three types of memory, depending on the flags specified to the DB_ENV->open()
method:

The system memory used by Berkeley DB is potentially useful past the lifetime of any particular
process. Therefore, additional cleanup may be necessary after an application fails because
there may be no way for Berkeley DB to ensure that system resources backing the shared
memory regions are returned to the system.

The system memory that is used is architecture-dependent. For example, on systems supporting
X/0pen-style shared memory interfaces, such as UNIX systems, the shnget (2) and related
System V IPC interfaces are used. Additionally, VxWorks systems use system memory. In these
cases, an initial segment ID must be specified by the application to ensure that applications
do not overwrite each other's database environments, so that the number of segments created
does not grow without bounds. See the DB_ENV->set_shm_key() method for more information.

On Windows platforms, the use of the DB_SYSTEM_MEM flag is problematic because the operating
system uses reference counting to clean up shared objects in the paging file automatically. In
addition, the default access permissions for shared objects are different from files, which may
cause problems when an environment is accessed by multiple processes running as different
users. See Windows notes (page 319) for more information.

1. If the DB_PRIVATE flag is specified to the DB_ENV->open() method, regions are created in
per-process heap memory; that is, memory returned by nal | oc(3).

This flag should not be specified if more than a single process is accessing the environment
because it is likely to cause database corruption and unpredictable behavior. For example,
if both a server application and Berkeley DB utilities (for example, the db_archive utility,
the db_checkpoint utility or the db_stat utility) are expected to access the environment,
the DB_PRIVATE flag should not be specified.

2. If the DB_SYSTEM_MEM flag is specified to DB->open(), shared regions are created in system
memory rather than files. This is an alternative mechanism for sharing the Berkeley DB
environment among multiple processes and multiple threads within processes.

3. If no memory-related flags are specified to DB_ENV->open(), memory backed by the filesystem
is used to store the regions. On UNIX systems, the Berkeley DB library will use the POSIX
mmap interface. If mmap is not available, the UNIX shmget interfaces may be used instead,
if they are available.

Any files created in the filesystem to back the regions are created in the environment home
directory specified to the DB_ENV->open() call. These files are named __db.### (for example,

12/18/2009

DB Reference Guide Page 131

../api_reference/C/envopen.html
../api_reference/C/envset_shm_key.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#open_DB_PRIVATE
../api_reference/C/envopen.html
../api_reference/C/db_archive.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_stat.html
../api_reference/C/envopen.html#open_DB_PRIVATE
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/dbopen.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html

Security

__db.001, __db.002 and so on). When region files are backed by the filesystem, one file per
region is created. When region files are backed by system memory, a single file will still be
created because there must be a well-known name in the filesystem so that multiple processes
can locate the system shared memory that is being used by the environment.

Statistics about the shared memory regions in the environment can be displayed using the -e
option to the db_stat utility.

The following are security issues that should be considered when writing Berkeley DB
applications:

Database environment permissions

The directory used as the Berkeley DB database environment should have its permissions
set to ensure that files in the environment are not accessible to users without
appropriate permissions. Applications that add to the user's permissions (for example,
UNIX setuid or setgid applications), must be carefully checked to not permit illegal use
of those permissions such as general file access in the environment directory.

Environment variables

Setting the DB_USE_ENVIRON and DB_USE_ENVIRON_ROOT flags and allowing the use
of environment variables during file naming can be dangerous. Setting those flags in
Berkeley DB applications with additional permissions (for example, UNIX setuid or setgid
applications) could potentially allow users to read and write databases to which they
would not normally have access.

File permissions

By default, Berkeley DB always creates files readable and writable by the owner and
the group (that is, S_IRUSR, S_IWUSR, S_IRGRP and S_IWGRP; or octal mode 0660 on
historic UNIX systems). The group ownership of created files is based on the system
and directory defaults, and is not further specified by Berkeley DB.

Temporary backing files

If an unnamed database is created and the cache is too small to hold the database in
memory, Berkeley DB will create a temporary physical file to enable it to page the
database to disk as needed. In this case, environment variables such as TMPDIR may
be used to specify the location of that temporary file. Although temporary backing
files are created readable and writable by the owner only (S_IRUSR and S_IWUSR, or
octal mode 0600 on historic UNIX systems), some filesystems may not sufficiently
protect temporary files created in random directories from improper access. To be
absolutely safe, applications storing sensitive data in unnamed databases should use
the DB_ENV->set_tmp_dir() method to specify a temporary directory with known
permissions.

Tcl API

The Berkeley DB Tcl API does not attempt to avoid evaluating input as Tcl commands.
For this reason, it may be dangerous to pass unreviewed user input through the Berkeley
DB Tcl API, as the input may subsequently be evaluated as a Tcl command. Additionally,
the Berkeley DB Tcl API initialization routine resets process' effective user and group

12/18/2009

DB Reference Guide Page 132

../api_reference/C/db_stat.html
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON_ROOT
../api_reference/C/envset_tmp_dir.html

IDs to the real user and group IDs, to minimize the effectiveness of a Tcl injection
attack.

Encryption

Berkeley DB optionally supports encryption using the Rijndael/AES (also known as the Advanced
Encryption Standard and Federal Information Processing Standard (FIPS) 197) algorithm for
encryption or decryption. The algorithm is configured to use a 128-bit key. Berkeley DB uses
a 16-byte initialization vector generated using the Mersenne Twister. All encrypted information
is additionally checksummed using the SHA1 Secure Hash Algorithm, using a 160-bit message
digest.

The encryption support provided with Berkeley DB is intended to protect applications from an
attacker obtaining physical access to the media on which a Berkeley DB database is stored, or
an attacker compromising a system on which Berkeley DB is running but who is unable to read
system or process memory on that system. The encryption support provided with Berkeley
DB will not protect applications from attackers able to read system memory on the system
where Berkeley DB is running.

Encryption is not the default for created databases, even in database environments configured
for encryption. In addition to configuring for encryption by calling the DB_ENV->set_encrypt()
or DB->set_encrypt() methods, applications must specify the DB_ENCRYPT flag before creating
the database in order for the database to be encrypted. Further, databases cannot be converted
to an encrypted format after they have been created without dumping and re-creating them.
Finally, encrypted databases cannot be read on systems with a different endianness than the
system that created the encrypted database.

Each encrypted database environment (including all its encrypted databases) is encrypted using
a single password and a single algorithm. Applications wanting to provide a finer granularity
of database access must either use multiple database environments or implement additional
access controls outside of Berkeley DB.

The only encrypted parts of a database environment are its databases and its log files.
Specifically, the Shared memory regions (page 131) supporting the database environment are
not encrypted. For this reason, it may be possible for an attacker to read some or all of an
encrypted database by reading the on-disk files that back these shared memory regions. To
prevent such attacks, applications may want to use in-memory filesystem support (on systems
that support it), or the DB_PRIVATE or DB_SYSTEM_MEM flags to the DB_ENV->open() method,
to place the shared memory regions in memory that is never written to a disk. As some systems
page system memory to a backing disk, it is important to consider the specific operating system
running on the machine as well. Finally, when backing database environment shared regions
with the filesystem, Berkeley DB can be configured to overwrite the shared regions before
removing them by specifying the DB_OVERWRITE flag. This option is only effective in the
presence of fixed-block filesystems, journaling or logging filesystems will require operating
system support and probably modification of the Berkeley DB sources.

While all user data is encrypted, parts of the databases and log files in an encrypted environment
are maintained in an unencrypted state. Specifically, log record headers are not encrypted,
only the actual log records. Additionally, database internal page header fields are not encrypted.

12/18/2009

DB Reference Guide Page 133

../api_reference/C/envset_encrypt.html
../api_reference/C/dbset_encrypt.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_ENCRYPT
../api_reference/C/envopen.html#open_DB_PRIVATE
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html
../api_reference/C/envset_flags.html#set_flags_DB_OVERWRITE

These page header fields includes information such as the page's DB_LSN number and position
in the database'’s sort order.

Log records distributed by a replication master to replicated clients are transmitted to the
clients in unencrypted form. If encryption is desired in a replicated application, the use of a
secure transport is strongly suggested.

We gratefully acknowledge:

« Vincent Rijmen, Antoon Bosselaers and Paulo Barreto for writing the Rijndael/AES code used
in Berkeley DB.

» Steve Reid and James H. Brown for writing the SHA1 checksum code used in Berkeley DB.

« Makoto Matsumoto and Takuji Nishimura for writing the Mersenne Twister code used in
Berkeley DB.

» Adam Stubblefield for integrating the Rijndael/AES, SHA1 checksum and Mersenne Twister
code into Berkeley DB.

Remote filesystems

When Berkeley DB database environment shared memory regions are backed by the filesystem,
it is a common application error to create database environments backed by remote filesystems
such as the Network File System (NFS), Windows network shares (SMB/CIFS) or the Andrew File
System (AFS). Remote filesystems rarely support mapping files into process memory, and even
more rarely support correct semantics for mutexes if the mapping succeeds. For this reason,
we recommend database environment directories be created in a local filesystem.

For remote filesystems that do allow remote files to be mapped into process memory, database
environment directories accessed via remote filesystems cannot be used simultaneously from
multiple clients (that is, from multiple computers). No commercial remote filesystem of which
we're aware supports coherent, distributed shared memory for remote-mounted files. As a
result, different machines will see different versions of these shared region files, and the
behavior is undefined.

Databases, log files, and temporary files may be placed on remote filesystems, as long as the
remote filesystem fully supports standard POSIX filesystem semantics (although the application
may incur a performance penalty for doing so). Further, read-only databases on remote
filesystems can be accessed from multiple systems simultaneously. However, it is difficult (or
impossible) for modifiable databases on remote filesystems to be accessed from multiple
systems simultaneously. The reason is the Berkeley DB library caches modified database pages,
and when those modified pages are written to the backing file is not entirely under application
control. If two systems were to write database pages to the remote filesystem at the same
time, database corruption could result. If a system were to write a database page back to the
remote filesystem at the same time as another system read a page, a core dump in the reader
could result.

12/18/2009

DB Reference Guide Page 134

../api_reference/C/lsn.html

FreeBSD note:

Some historic FreeBSD releases will return ENOLCK from fsync and close calls on
NFS-mounted filesystems, even though the call has succeeded. To support Berkeley
DB on these releases, the Berkeley DB code should be modified to ighore ENOLCK errors,
or no Berkeley DB files should be placed on NFS-mounted filesystems on these systems.
Note that current FreeBSD releases do not suffer from this problem.

Linux note:

Some historic Linux releases do not support complete semantics for the POSIX fsync
call on NFS-mounted filesystems. No Berkeley DB files should be placed on NFS-mounted
filesystems on these systems. Note that current Linux releases do not suffer from this
problem.

Environment FAQ

1. I'm using multiple processes to access an Berkeley DB database environment; is there
any way to ensure that two processes don't run transactional recovery at the same time,
or that all processes have exited the database environment so that recovery can be run?

See Handling failure in Transactional Data Store applications (page 145) and Architecting
Transactional Data Store applications (page 146) for a full discussion of this topic.

2. How can | associate application information with a DB or DB_ENV handle?

In the C API, the DB and DB_ENYV structures each contain an "app_private” field intended to
be used to reference application-specific information. See the db_create() and
db_env_create() documentation for more information.

In the C++ or Java APIs, the easiest way to associate application-specific data with a handle
is to subclass the Db or DbEnv, for example subclassing Db to get MyDb. Objects of type
MyDb will still have the Berkeley DB APl methods available on them, and you can put any
extra data or methods you want into the MyDb class. If you are using "callback” APIs that
take Db or DbEnv arguments (for example, Db::set_bt_compare()) these will always be called
with the Db or DbEnv objects you create. So if you always use MyDb objects, you will be
able to take the first argument to the callback function and cast it to a MyDb (in C++, cast
it to (MyDb*)). That will allow you to access your data members or methods.

12/18/2009

DB Reference Guide Page 135

../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/dbcreate.html
../api_reference/C/envcreate.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html
../api_reference/CXX/db.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html
../api_reference/CXX/dbset_bt_compare.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html

Chapter 10. Berkeley DB Concurrent Data Store
Applications

Concurrent Data Store introduction

It is often desirable to have concurrent read-write access to a database when there is no need
for full recoverability or transaction semantics. For this class of applications, Berkeley DB
provides interfaces supporting deadlock-free, multiple-reader/single writer access to the
database. This means that at any instant in time, there may be either multiple readers accessing
data or a single writer modifying data. The application is entirely unaware of which is happening,
and Berkeley DB implements the necessary locking and blocking to ensure this behavior.

To create Berkeley DB Concurrent Data Store applications, you must first initialize an
environment by calling DB_ENV->open(). You must specify the DB_INIT_CDB and DB_INIT_MPOOL
flags flags to that method. It is an error to specify any of the other DB_ENV->open() subsystem
or recovery configuration flags, for example, DB_INIT_LOCK, DB_INIT_TXN or DB_RECOVER All
databases must, of course, be created in this environment by using the db_create() function
or Db constructor, and specifying the environment as an argument.

Berkeley DB performs appropriate locking so that safe enforcement of the deadlock-free,
multiple-reader/single-writer semantic is transparent to the application. However, a basic
understanding of Berkeley DB Concurrent Data Store locking behavior is helpful when writing
Berkeley DB Concurrent Data Store applications.

Berkeley DB Concurrent Data Store avoids deadlocks without the need for a deadlock detector
by performing all locking on an entire database at once (or on an entire environment in the
case of the DB_CDB_ALLDB flag), and by ensuring that at any given time only one thread of
control is allowed to simultaneously hold a read (shared) lock and attempt to acquire a write
(exclusive) lock.

All open Berkeley DB cursors hold a read lock, which serves as a guarantee that the database
will not change beneath them; likewise, all non-cursor DB->get() operations temporarily acquire
and release a read lock that is held during the actual traversal of the database. Because read
locks will not conflict with each other, any number of cursors in any number of threads of
control may be open simultaneously, and any number of DB->get() operations may be
concurrently in progress.

To enforce the rule that only one thread of control at a time can attempt to upgrade a read
lock to a write lock, however, Berkeley DB must forbid multiple cursors from attempting to
write concurrently. This is done using the DB_WRITECURSOR flag to the DB->cursor() method.
This is the only difference between access method calls in Berkeley DB Concurrent Data Store
and in the other Berkeley DB products. The DB_WRITECURSOR flag causes the newly created
cursor to be a "write" cursor; that is, a cursor capable of performing writes as well as reads.
Only cursors thus created are permitted to perform write operations (either deletes or puts),
and only one such cursor can exist at any given time.

Any attempt to create a second write cursor or to perform a non-cursor write operation while
a write cursor is open will block until that write cursor is closed. Read cursors may open and

12/18/2009

DB Reference Guide Page 136

../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_CDB
../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_TXN
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/dbcreate.html
../api_reference/CXX/db.html
../api_reference/C/envset_flags.html#set_flags_DB_CDB_ALLDB
../api_reference/C/dbget.html
../api_reference/C/dbget.html
../api_reference/C/dbcursor.html#cursor_DB_WRITECURSOR
../api_reference/C/dbcursor.html
../api_reference/C/dbcursor.html#cursor_DB_WRITECURSOR

perform reads without blocking while a write cursor is extant. However, any attempts to
actually perform a write, either using the write cursor or directly using the DB->put() or
DB->del() methods, will block until all read cursors are closed. This is how the
multiple-reader/single-writer semantic is enforced, and prevents reads from seeing an
inconsistent database state that may be an intermediate stage of a write operation.

By default, Berkeley DB Concurrent Data Store does locking on a per-database basis. For this
reason, using cursors to access multiple databases in different orders in different threads or
processes, or leaving cursors open on one database while accessing another database, can
cause an application to hang. If this behavior is a requirement for the application, Berkeley
DB should be configured to do locking on an environment-wide basis. See the DB_CDB_ALLDB
flag of the DB_ENV->set_flags() method for more information.

With these behaviors, Berkeley DB can guarantee deadlock-free concurrent database access,
so that multiple threads of control are free to perform reads and writes without needing to
handle synchronization themselves or having to run a deadlock detector. Berkeley DB has no
direct knowledge of which cursors belong to which threads, so some care must be taken to
ensure that applications do not inadvertently block themselves, causing the application to hang
and be unable to proceed.

As a consequence of the Berkeley DB Concurrent Data Store locking model, the following
sequences of operations will cause a thread to block itself indefinitely:

1. Keeping a cursor open while issuing a DB->put() or DB->del() access method call.

2. Attempting to open a write cursor while another cursor is already being held open by the
same thread of control. Note that it is correct operation for one thread of control to attempt
to open a write cursor or to perform a non-cursor write (DB->put() or DB->del()) while a
write cursor is already active in another thread. It is only a problem if these things are done
within a single thread of control -- in which case that thread will block and never be able
to release the lock that is blocking it.

3. Not testing Berkeley DB error return codes (if any cursor operation returns an unexpected
error, that cursor must still be closed).

If the application needs to open multiple cursors in a single thread to perform an operation,
it can indicate to Berkeley DB that the cursor locks should not block each other by creating a
Berkeley DB Concurrent Data Store group, using DB_ENV->cdsgroup_begin(). This creates a
locker ID that is shared by all cursors opened in the group.

Berkeley DB Concurrent Data Store groups use a TXN handle to indicate the shared locker ID
to Berkeley DB calls, and call DB_TXN->commit() to end the group. This is a convenient way
to pass the locked ID to the calls where it is needed, but should not be confused with the real
transactional semantics provided by Berkeley DB Transactional Data Store. In particular, Berkeley
DB Concurrent Data Store groups do not provide any abort or recovery facilities, and have no
impact on durability of operations.

12/18/2009

DB Reference Guide Page 137

../api_reference/C/dbput.html
../api_reference/C/dbdel.html
../api_reference/C/envset_flags.html#set_flags_DB_CDB_ALLDB
../api_reference/C/envset_flags.html
../api_reference/C/dbput.html
../api_reference/C/dbdel.html
../api_reference/C/dbput.html
../api_reference/C/dbdel.html
../api_reference/C/envcdsgroup_begin.html
../api_reference/C/txn.html
../api_reference/C/txncommit.html

Handling failure in Data Store and Concurrent Data Store
applications

When building Data Store and Concurrent Data Store applications, there are design issues to
consider whenever a thread of control with open Berkeley DB handles fails for any reason
(where a thread of control may be either a true thread or a process).

The simplest case is handling system failure for any Data Store or Concurrent Data Store
application. In the case of system failure, it doesn't matter if the application has opened a
database environment or is just using standalone databases: if the system fails, after the
application has modified a database and has not subsequently flushed the database to stable
storage (by calling either the DB->close(), DB->sync() or DB_ENV->memp_sync() methods), the
database may be left in a corrupted state. In this case, before accessing the database again,
the database should either be:

« removed and re-created,
» removed and restored from the last known good backup, or

« verified using the DB->verify() method or db_verify utility utility. If the database does not
verify cleanly, the contents may be salvaged using the -R and -r options of the db_dump
utility.

Applications where the potential for data loss is unacceptable should consider the Berkeley DB
Transactional Data Store product, which offers standard transactional durability guarantees,
including recoverability after failure.

Additionally, system failure requires that any persistent database environment (that is, any
database environment not created using the DB_PRIVATE flag), be removed. Database
environments may be removed using the DB_ENV->remove() method. If the persistent database
environment was backed by the filesystem (that is, the environment was not created using the
DB_SYSTEM_MEM flag), the database environment may also be safely removed by deleting the
environment's files with standard system utilities.

The second case is application failure for a Data Store application, with or without a database
environment, or application failure for a Concurrent Data Store application without a database
environment: as in the case of system failure, if any thread of control fails, after the application
has modified a database and has not subsequently flushed the database to stable storage, the
database may be left in a corrupted state. In this case, the database should be handled as
described previously in the system failure case.

The third case is application failure for a Concurrent Data Store application with a database
environment. There are resources maintained in database environments that may be left locked
if a thread of control exits without first closing all open Berkeley DB handles. Concurrent Data
Store applications with database environments have an additional option for handling the
unexpected exit of a thread of control, the DB_ENV->failchk() method.

The DB_ENV->failchk() will return DB_RUNRECOVERY (page 230) if the database environment is
unusable as a result of the thread of control failure. (If a data structure mutex or a database

12/18/2009

DB Reference Guide Page 138

../api_reference/C/dbclose.html
../api_reference/C/dbsync.html
../api_reference/C/mempsync.html
../api_reference/C/dbverify.html
../api_reference/C/db_verify.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/envopen.html#open_DB_PRIVATE
../api_reference/C/envremove.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html

write lock is left held by thread of control failure, the application should not continue to use
the database environment, as subsequent use of the environment is likely to result in threads
of control convoying behind the held locks.) The DB_ENV->failchk() call will release any database
read locks that have been left held by the exit of a thread of control. In this case, the application
can continue to use the database environment.

A Concurrent Data Store application recovering from a thread of control failure should call
DB_ENV->failchk(), and, if it returns success, the application can continue. If DB_ENV->failchk()
returns DB_RUNRECOVERY (page 230), the application should proceed as described for the case
of system failure.

Architecting Data Store and Concurrent Data Store applications

When building Data Store and Concurrent Data Store applications, the architecture decisions
involve application startup (cleaning up any existing databases, the removal of any existing
database environment and creation of a new environment), and handling system or application
failure. "Cleaning up” databases involves removal and re-creation of the database, restoration
from an archival copy and/or verification and optional salvage, as described in Handling failure
in Data Store and Concurrent Data Store applications (page 138).

Data Store or Concurrent Data Store applications without database environments are single
process, by definition. These applications should start up, re-create, restore, or verify and
optionally salvage their databases and run until eventual exit or application or system failure.
After system or application failure, that process can simply repeat this procedure. This document
will not discuss the case of these applications further.

Otherwise, the first question of Data Store and Concurrent Data Store architecture is the
cleaning up existing databases and the removal of existing database environments, and the
subsequent creation of a new environment. For obvious reasons, the application must serialize
the re-creation, restoration, or verification and optional salvage of its databases. Further,
environment removal and creation must be single-threaded, that is, one thread of control
(where a thread of control is either a true thread or a process) must remove and re-create the
environment before any other thread of control can use the new environment. It may simplify
matters that Berkeley DB serializes creation of the environment, so multiple threads of control
attempting to create a environment will serialize behind a single creating thread.

Removing a database environment will first mark the environment as "failed”, causing any
threads of control still running in the environment to fail and return to the application. This
feature allows applications to remove environments without concern for threads of control
that might still be running in the removed environment.

One consideration in removing a database environment which may be in use by another thread,
is the type of mutex being used by the Berkeley DB library. In the case of database environment
failure when using test-and-set mutexes, threads of control waiting on a mutex when the
environment is marked "failed” will quickly notice the failure and will return an error from the
Berkeley DB API. In the case of environment failure when using blocking mutexes, where the
underlying system mutex implementation does not unblock mutex waiters after the thread of
control holding the mutex dies, threads waiting on a mutex when an environment is recovered
might hang forever. Applications blocked on events (for example, an application blocked on a

12/18/2009

DB Reference Guide Page 139

../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html

network socket or a GUI event) may also fail to notice environment recovery within a reasonable
amount of time. Systems with such mutex implementations are rare, but do exist; applications
on such systems should use an application architecture where the thread recovering the database
environment can explicitly terminate any process using the failed environment, or configure
Berkeley DB for test-and-set mutexes, or incorporate some form of long-running timer or
watchdog process to wake or kill blocked processes should they block for too long.

Regardless, it makes little sense for multiple threads of control to simultaneously attempt to
remove and re-create a environment, since the last one to run will remove all environments
created by the threads of control that ran before it. However, for some few applications, it
may make sense for applications to have a single thread of control that checks the existing
databases and removes the environment, after which the application launches a number of
processes, any of which are able to create the environment.

With respect to cleaning up existing databases, the database environment must be removed
before the databases are cleaned up. Removing the environment causes any Berkeley DB library
calls made by threads of control running in the failed environment to return failure to the
application. Removing the database environment first ensures the threads of control in the old
environment do not race with the threads of control cleaning up the databases, possibly
overwriting them after the cleanup has finished. Where the application architecture and system
permit, many applications kill all threads of control running in the failed database environment
before removing the failed database environment, on general principles as well as to minimize
overall system resource usage. It does not matter if the new environment is created before or
after the databases are cleaned up.

After having dealt with database and database environment recovery after failure, the next
issue to manage is application failure. As described in Handling failure in Data Store and
Concurrent Data Store applications (page 138), when a thread of control in a Data Store or
Concurrent Data Store application fails, it may exit holding data structure mutexes or logical
database locks. These mutexes and locks must be released to avoid the remaining threads of
control hanging behind the failed thread of control's mutexes or locks.

There are three common ways to architect Berkeley DB Data Store and Concurrent Data Store
applications. The one chosen is usually based on whether or not the application is comprised
of a single process or group of processes descended from a single process (for example, a server
started when the system first boots), or if the application is comprised of unrelated processes
(for example, processes started by web connections or users logging into the system).

1. The first way to architect Data Store and Concurrent Data Store applications is as a single
process (the process may or may not be multithreaded.)
When this process starts, it removes any existing database environment and creates a new
environment. It then cleans up the databases and opens those databases in the environment.
The application can subsequently create new threads of control as it chooses. Those threads
of control can either share already open Berkeley DB DB_ENV and DB handles, or create
their own. In this architecture, databases are rarely opened or closed when more than a
single thread of control is running; that is, they are opened when only a single thread is
running, and closed after all threads but one have exited. The last thread of control to exit
closes the databases and the database environment.

12/18/2009

DB Reference Guide Page 140

../api_reference/C/env.html
../api_reference/C/db.html

This architecture is simplest to implement because thread serialization is easy and failure
detection does not require monitoring multiple processes.

If the application’s thread model allows the process to continue after thread failure, the
DB_ENV->failchk() method can be used to determine if the database environment is usable
after the failure. If the application does not call DB_ENV->failchk(), or DB_ENV->failchk()
returns DB_RUNRECOVERY (page 230), the application must behave as if there has been a
system failure, removing the environment and creating a new environment, and cleaning
up any databases it wants to continue to use. Once these actions have been taken, other
threads of control can continue (as long as all existing Berkeley DB handles are first
discarded), or restarted.

. The second way to architect Data Store and Concurrent Data Store applications is as a group

of related processes (the processes may or may not be multithreaded).
This architecture requires the order in which threads of control are created be controlled
to serialize database environment removal and creation, and database cleanup.

In addition, this architecture requires that threads of control be monitored. If any thread
of control exits with open Berkeley DB handles, the application may call the DB_ENV->failchk()
method to determine if the database environment is usable after the exit. If the application
does not call DB_ENV->failchk(), or DB_ENV->failchk() returns DB_RUNRECOVERY (page 230),
the application must behave as if there has been a system failure, removing the environment
and creating a new environment, and cleaning up any databases it wants to continue to use.
Once these actions have been taken, other threads of control can continue (as long as all
existing Berkeley DB handles are first discarded), or restarted.

The easiest way to structure groups of related processes is to first create a single "watcher”
process (often a script) that starts when the system first boots, removes and creates the
database environment, cleans up the databases and then creates the processes or threads
that will actually perform work. The initial thread has no further responsibilities other than
to wait on the threads of control it has started, to ensure none of them unexpectedly exit.
If a thread of control exits, the watcher process optionally calls the DB_ENV->failchk()
method. If the application does not call DB_ENV->failchk(), or if DB_ENV->failchk() returns
DB_RUNRECOVERY (page 230), the environment can no longer be used, the watcher kills all
of the threads of control using the failed environment, cleans up, and starts new threads of
control to perform work.

. The third way to architect Data Store and Concurrent Data Store applications is as a group

of unrelated processes (the processes may or may not be multithreaded). This is the most
difficult architecture to implement because of the level of difficulty in some systems of
finding and monitoring unrelated processes.

One solution is to log a thread of control ID when a new Berkeley DB handle is opened. For
example, an initial "watcher” process could open/create the database environment, clean
up the databases and then create a sentinel file. Any "worker” process wanting to use the
environment would check for the sentinel file. If the sentinel file does not exist, the worker
would fail or wait for the sentinel file to be created. Once the sentinel file exists, the worker
would register its process ID with the watcher (via shared memory, IPC or some other registry
mechanism), and then the worker would open its DB_ENV handles and proceed. When the
worker finishes using the environment, it would unregister its process ID with the watcher.
The watcher periodically checks to ensure that no worker has failed while using the

12/18/2009

DB Reference Guide Page 141

../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/env.html

environment. If a worker fails while using the environment, the watcher removes the sentinel
file, kills all of the workers currently using the environment, cleans up the environment and
databases, and finally creates a new sentinel file.

The weakness of this approach is that, on some systems, it is difficult to determine if an
unrelated process is still running. For example, POSIX systems generally disallow sending
signals to unrelated processes. The trick to monitoring unrelated processes is to find a system
resource held by the process that will be modified if the process dies. On POSIX systems,
flock- or fcntl-style locking will work, as will LockFile on Windows systems. Other systems
may have to use other process-related information such as file reference counts or
modification times. In the worst case, threads of control can be required to periodically
re-register with the watcher process: if the watcher has not heard from a thread of control
in a specified period of time, the watcher will take action, cleaning up the environment.

If it is not practical to monitor the processes sharing a database environment, it may be
possible to monitor the environment to detect if a thread of control has failed holding open
Berkeley DB handles. This would be done by having a "watcher” process periodically call the
DB_ENV->failchk() method. If DB_ENV->failchk() returns DB_RUNRECOVERY (page 230), the
watcher would then take action, cleaning up the environment.

The weakness of this approach is that all threads of control using the environment must
specify an "ID" function and an "is-alive” function using the DB_ENV->set_thread_id() method.
(In other words, the Berkeley DB library must be able to assign a unique ID to each thread
of control, and additionally determine if the thread of control is still running. It can be
difficult to portably provide that information in applications using a variety of different
programming languages and running on a variety of different platforms.)

Obviously, when implementing a process to monitor other threads of control, it is important
the watcher process' code be as simple and well-tested as possible, because the application
may hang if it fails.

12/18/2009

DB Reference Guide Page 142

../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envset_thread_id.html

Chapter 11. Berkeley DB Transactional Data Store
Applications

Transactional Data Store introduction

It is difficult to write a useful transactional tutorial and still keep within reasonable bounds of
documentation; that is, without writing a book on transactional programming. We have two
goals in this section: to familiarize readers with the transactional interfaces of Berkeley DB
and to provide code building blocks that will be useful for creating applications.

We have not attempted to present this information using a real-world application. First,
transactional applications are often complex and time-consuming to explain. Also, one of our
goals is to give you an understanding of the wide variety of tools Berkeley DB makes available
to you, and no single application would use most of the interfaces included in the Berkeley DB
library. For these reasons, we have chosen to simply present the Berkeley DB data structures
and programming solutions, using examples that differ from page to page. All the examples
are included in a standalone program you can examine, modify, and run; and from which you
will be able to extract code blocks for your own applications. Fragments of the program will
be presented throughout this chapter, and the complete text of the example program
[transapp.cs] for IEEE/ANSI Std 1003.1 (POSIX) standard systems is included in the Berkeley DB
distribution.

Why transactions?

Perhaps the first question to answer is "Why transactions?” There are a number of reasons to
include transactional support in your applications. The most common ones are the following:

Recoverability

Applications often need to ensure that no matter how the system or application fails,
previously saved data is available the next time the application runs. This is often
called Durability.

Atomicity
Applications may need to make multiple changes to one or more databases, but ensure
that either all of the changes happen, or none of them happens. Transactions guarantee
that a group of changes are atomic; that is, if the application or system fails, either
all of the changes to the databases will appear when the application next runs, or none
of them.

Isolation

Applications may need to make changes in isolation, that is, ensure that only a single
thread of control is modifying a key/data pair at a time. Transactions ensure each
thread of control sees all records as if all other transactions either completed before
or after its transaction.

Terminology

Here are some definitions that will be helpful in understanding transactions:

12/18/2009 DB Reference Guide Page 143

transapp.cs
transapp.cs

Thread of control

Berkeley DB is indifferent to the type or style of threads being used by the application;
or, for that matter, if threads are being used at all — because Berkeley DB supports
multiprocess access. In the Berkeley DB documentation, any time we refer to a thread
of control, it can be read as a true thread (one of many in an application’s address
space) or a process.

Free-threaded

A Berkeley DB handle that can be used by multiple threads simultaneously without any
application-level synchronization is called free-threaded.

Transaction

A transaction is a one or more operations on one or more databases that should be
treated as a single unit of work. For example, changes to a set of databases, in which
either all of the changes must be applied to the database(s) or none of them should.
Applications specify when each transaction starts, what database operations are included
in it, and when it ends.

Transaction abort/commit

Every transaction ends by committing or aborting. If a transaction commits, Berkeley
DB guarantees that any database changes included in the transaction will never be
lost, even after system or application failure. If a transaction aborts, or is uncommitted
when the system or application fails, then the changes involved will never appear in
the database.

System or application failure

System or application failure is the phrase we use to describe something bad happening
near your data. It can be an application dumping core, being interrupted by a signal,
the disk filling up, or the entire system crashing. In any case, for whatever reason, the
application can no longer make forward progress, and its databases are left in an
unknown state.

Recovery

Recovery is what makes the database consistent after a system or application failure.
The recovery process includes review of log files and databases to ensure that the
changes from each committed transaction appear in the database, and that no changes
from an unfinished (or aborted) transaction do. Whenever system or application failure
occurs, applications must usually run recovery.

Deadlock

Deadlock, in its simplest form, happens when one thread of control owns resource A,
but needs resource B; while another thread of control owns resource B, but needs
resource A. Neither thread of control can make progress, and so one has to give up
and release all its resources, at which time the remaining thread of control can make
forward progress.

12/18/2009

DB Reference Guide Page 144

Handling failure in Transactional Data Store applications

When building Transactional Data Store applications, there are design issues to consider
whenever a thread of control with open Berkeley DB handles fails for any reason (where a
thread of control may be either a true thread or a process).

The first case is handling system failure: if the system fails, the database environment and the
databases may be left in a corrupted state. In this case, recovery must be performed on the
database environment before any further action is taken, in order to:

« recover the database environment resources,

« release any locks or mutexes that may have been held to avoid starvation as the remaining
threads of control convoy behind the held locks, and

 resolve any partially completed operations that may have left a database in an inconsistent
or corrupted state.

For details on performing recovery, see the Recovery procedures (page 176).

The second case is handling the failure of a thread of control. There are resources maintained
in database environments that may be left locked or corrupted if a thread of control exits
unexpectedly. These resources include data structure mutexes, logical database locks and
unresolved transactions (that is, transactions which were never aborted or committed). While
Transactional Data Store applications can treat the failure of a thread of control in the same
way as they do a system failure, they have an alternative choice, the DB_ENV->failchk() method.

The DB_ENV->failchk() will return DB_RUNRECOVERY (page 230) if the database environment is
unusable as a result of the thread of control failure. (If a data structure mutex or a database
write lock is left held by thread of control failure, the application should not continue to use
the database environment, as subsequent use of the environment is likely to result in threads
of control convoying behind the held locks.) The DB_ENV->failchk() call will release any database
read locks that have been left held by the exit of a thread of control, and abort any unresolved
transactions. In this case, the application can continue to use the database environment.

A Transactional Data Store application recovering from a thread of control failure should call
DB_ENV->failchk(), and, if it returns success, the application can continue. If DB_ENV->failchk()
returns DB_RUNRECOVERY (page 230), the application should proceed as described for the case
of system failure.

It greatly simplifies matters that recovery may be performed regardless of whether recovery
needs to be performed; that is, it is not an error to recover a database environment for which
recovery is not strictly necessary. For this reason, applications should not try to determine if
the database environment was active when the application or system failed. Instead, applications
should run recovery any time the DB_ENV->failchk() method returns DB_RUNRECOVERY (page 230),
or, if the application is not calling the DB_ENV->failchk() method, any time any thread of

control accessing the database environment fails, as well as any time the system reboots.

12/18/2009

DB Reference Guide Page 145

../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html

Architecting Transactional Data Store applications

When building Transactional Data Store applications, the architecture decisions involve
application startup (running recovery) and handling system or application failure. For details
on performing recovery, see the Recovery procedures (page 176).

Recovery in a database environment is a single-threaded procedure, that is, one thread of
control or process must complete database environment recovery before any other thread of
control or process operates in the Berkeley DB environment.

Performing recovery first marks any existing database environment as "failed” and then removes
it, causing threads of control running in the database environment to fail and return to the
application. This feature allows applications to recover environments without concern for
threads of control that might still be running in the removed environment. The subsequent
re-creation of the database environment is serialized, so multiple threads of control attempting
to create a database environment will serialize behind a single creating thread.

One consideration in removing (as part of recovering) a database environment which may be
in use by another thread, is the type of mutex being used by the Berkeley DB library. In the
case of database environment failure when using test-and-set mutexes, threads of control
waiting on a mutex when the environment is marked "failed" will quickly notice the failure and
will return an error from the Berkeley DB API. In the case of environment failure when using
blocking mutexes, where the underlying system mutex implementation does not unblock mutex
waiters after the thread of control holding the mutex dies, threads waiting on a mutex when
an environment is recovered might hang forever. Applications blocked on events (for example,
an application blocked on a network socket, or a GUI event) may also fail to notice environment
recovery within a reasonable amount of time. Systems with such mutex implementations are
rare, but do exist; applications on such systems should use an application architecture where
the thread recovering the database environment can explicitly terminate any process using
the failed environment, or configure Berkeley DB for test-and-set mutexes, or incorporate
some form of long-running timer or watchdog process to wake or kill blocked processes should
they block for too long.

Regardless, it makes little sense for multiple threads of control to simultaneously attempt
recovery of a database environment, since the last one to run will remove all database
environments created by the threads of control that ran before it. However, for some
applications, it may make sense for applications to have a single thread of control that performs
recovery and then removes the database environment, after which the application launches a
number of processes, any of which will create the database environment and continue forward.

There are three common ways to architect Berkeley DB Transactional Data Store applications.
The one chosen is usually based on whether or not the application is comprised of a single
process or group of processes descended from a single process (for example, a server started
when the system first boots), or if the application is comprised of unrelated processes (for
example, processes started by web connections or users logged into the system).

1. The first way to architect Transactional Data Store applications is as a single process (the
process may or may not be multithreaded.)

12/18/2009

DB Reference Guide Page 146

When this process starts, it runs recovery on the database environment and then opens its
databases. The application can subsequently create new threads as it chooses. Those threads
can either share already open Berkeley DB DB_ENV and DB handles, or create their own. In
this architecture, databases are rarely opened or closed when more than a single thread of
control is running; that is, they are opened when only a single thread is running, and closed
after all threads but one have exited. The last thread of control to exit closes the databases
and the database environment.

This architecture is simplest to implement because thread serialization is easy and failure
detection does not require monitoring multiple processes.

If the application’s thread model allows processes to continue after thread failure, the
DB_ENV->failchk() method can be used to determine if the database environment is usable
after thread failure. If the application does not call DB_ENV->failchk(), or DB_ENV->failchk()
returns DB_RUNRECOVERY (page 230), the application must behave as if there has been a
system failure, performing recovery and re-creating the database environment. Once these
actions have been taken, other threads of control can continue (as long as all existing
Berkeley DB handles are first discarded).

. The second way to architect Transactional Data Store applications is as a group of related

processes (the processes may or may not be multithreaded).

This architecture requires the order in which threads of control are created be controlled
to serialize database environment recovery.

In addition, this architecture requires that threads of control be monitored. If any thread
of control exits with open Berkeley DB handles, the application may call the DB_ENV->failchk()
method to detect lost mutexes and locks and determine if the application can continue. If
the application does not call DB_ENV->failchk(), or DB_ENV->failchk() returns that the
database environment can no longer be used, the application must behave as if there has
been a system failure, performing recovery and creating a new database environment. Once
these actions have been taken, other threads of control can be continued (as long as all
existing Berkeley DB handles are first discarded), or

The easiest way to structure groups of related processes is to first create a single "watcher”
process (often a script) that starts when the system first boots, runs recovery on the database
environment and then creates the processes or threads that will actually perform work. The
initial thread has no further responsibilities other than to wait on the threads of control it
has started, to ensure none of them unexpectedly exit. If a thread of control exits, the
watcher process optionally calls the DB_ENV->failchk() method. If the application does not
call DB_ENV->failchk() or if DB_ENV->failchk() returns that the environment can no longer
be used, the watcher Kills all of the threads of control using the failed environment, runs
recovery, and starts new threads of control to perform work.

. The third way to architect Transactional Data Store applications is as a group of unrelated

processes (the processes may or may not be multithreaded). This is the most difficult
architecture to implement because of the level of difficulty in some systems of finding and
monitoring unrelated processes. There are several possible techniques to implement this
architecture.

12/18/2009

DB Reference Guide Page 147

../api_reference/C/env.html
../api_reference/C/db.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html

One solution is to log a thread of control ID when a new Berkeley DB handle is opened. For
example, an initial "watcher” process could run recovery on the database environment and
then create a sentinel file. Any "worker” process wanting to use the environment would
check for the sentinel file. If the sentinel file does not exist, the worker would fail or wait
for the sentinel file to be created. Once the sentinel file exists, the worker would register
its process ID with the watcher (via shared memory, IPC or some other registry mechanism),
and then the worker would open its DB_ENV handles and proceed. When the worker finishes
using the environment, it would unregister its process ID with the watcher. The watcher
periodically checks to ensure that no worker has failed while using the environment. If a
worker fails while using the environment, the watcher removes the sentinel file, kills all of
the workers currently using the environment, runs recovery on the environment, and finally
creates a new sentinel file.

The weakness of this approach is that, on some systems, it is difficult to determine if an
unrelated process is still running. For example, POSIX systems generally disallow sending
signals to unrelated processes. The trick to monitoring unrelated processes is to find a system
resource held by the process that will be modified if the process dies. On POSIX systems,
flock- or fcntl-style locking will work, as will LockFile on Windows systems. Other systems
may have to use other process-related information such as file reference counts or
modification times. In the worst case, threads of control can be required to periodically
re-register with the watcher process: if the watcher has not heard from a thread of control
in a specified period of time, the watcher will take action, recovering the environment.

The Berkeley DB library includes one built-in implementation of this approach, the
DB_ENV->open() method's DB_REGISTER flag:

If the DB_REGISTER flag is set, each process opening the database environment first checks
to see if recovery needs to be performed. If recovery needs to be performed for any reason
(including the initial creation of the database environment), and DB_RECOVER is also
specified, recovery will be performed and then the open will proceed normally. If recovery
needs to be performed and DB_RECOVER is not specified, DB_RUNRECOVERY (page 230) will
be returned. If recovery does not need to be performed, DB_RECOVER will be ignored.

Prior to the actual recovery beginning, the DB_EVENT_REG_PANIC event is set for the
environment. Processes in the application using the DB_ENV->set_event_notify() method
will be notified when they do their next operations in the environment. Processes receiving
this event should exit the environment. Also, the DB_EVENT_REG_ALIVE event will be triggered
if there are other processes currently attached to the environment. Only the process doing
the recovery will receive this event notification. It will receive this notification once for
each process still attached to the environment. The parameter of the
DB_ENV->set_event_notify() callback will contain the process identifier of the process still
attached. The process doing the recovery can then signal the attached process or perform
some other operation prior to recovery (i.e. kill the attached process).

The DB_ENV->set_timeout() method's DB_SET_REG_TIMEOUT flag can be set to establish a
wait period before starting recovery. This creates a window of time for other processes to
receive the DB_EVENT_REG_PANIC event and exit the environment.

There are three additional requirements for the DB_REGISTER architecture to work:

12/18/2009

DB Reference Guide Page 148

../api_reference/C/env.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REG_PANIC
../api_reference/C/envevent_notify.html
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REG_ALIVE
../api_reference/C/envevent_notify.html
../api_reference/C/envset_timeout.html
../api_reference/C/envset_timeout.html#set_timeout_DB_SET_REG_TIMEOUT
../api_reference/C/envopen.html#envopen_DB_REGISTER

« First, all applications using the database environment must specify the DB_REGISTER flag
when opening the environment. However, there is no additional requirement if the
application chooses a single process to recover the environment, as the first process to
open the database environment will know to perform recovery.

» Second, there can only be a single DB_ENV handle per database environment in each
process. As the DB_REGISTER locking is per-process, not per-thread, multiple DB_ENV
handles in a single environment could race with each other, potentially causing data
corruption.

« Third, the DB_REGISTER implementation does not explicitly terminate processes using the
database environment which is being recovered. Instead, it relies on the processes
themselves noticing the database environment has been discarded from underneath them.
For this reason, the DB_REGISTER flag should be used with a mutex implementation that
does not block in the operating system, as that risks a thread of control blocking forever
on a mutex which will never be granted. Using any test-and-set mutex implementation
ensures this cannot happen, and for that reason the DB_REGISTER flag is generally used
with a test-and-set mutex implementation.

A second solution for groups of unrelated processes is also based on a "watcher process”.
This solution is intended for systems where it is not practical to monitor the processes sharing
a database environment, but it is possible to monitor the environment to detect if a thread
of control has failed holding open Berkeley DB handles. This would be done by having a
"watcher” process periodically call the DB_ENV->failchk() method. If DB_ENV->failchk()
returns that the environment can no longer be used, the watcher would then take action,
recovering the environment.

The weakness of this approach is that all threads of control using the environment must
specify an "ID" function and an "is-alive” function using the DB_ENV->set_thread_id() method.
(In other words, the Berkeley DB library must be able to assign a unique ID to each thread
of control, and additionally determine if the thread of control is still running. It can be
difficult to portably provide that information in applications using a variety of different
programming languages and running on a variety of different platforms.)

A third solution for groups of unrelated processes is a hybrid of the two above. Along with
implementing the built-in sentinel approach with the the DB_ENV->open() methods
DB_REGISTER flag, the DB_FAILCHK flag can be specified. When using both flags, each process
opening the database environment first checks to see if recocvery needs to be performed.
If recovery needs to be performed for any reason, it will first determine if a thread of control
exited while holding database read locks, and release those. Then it will abort any unresolved
transactions. If these steps are successful, the process opening the environment will continue
without the need for any additional recocvery. If these steps are unsuccessful, then additional
recovery will be performed if DB_RECOVER is specified and if DB_RECOVER is not specified,
DB_RUNRECOVERY (page 230)will be returned.

Since this solution is hybrid of the first two, all of the requirements of both of them must
be implemented (will need "ID" function, "is-alive” function, single DB_ENV handle per
database, etc.)

12/18/2009

DB Reference Guide Page 149

../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/env.html
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/env.html
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envset_thread_id.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envopen.html#envopen_DB_FAILCHK
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/env.html

The described approaches are different, and should not be combined. Applications might
use either the DB_REGISTER approach, the DB_ENV->failchk() or the hybrid approach, but
not together in the same application. For example, a POSIX application written as a library
underneath a wide variety of interfaces and differing APIs might choose the DB_REGISTER
approach for a few reasons: first, it does not require making periodic calls to the
DB_ENV->failchk() method; second, when implementing in a variety of languages, is may be
more difficult to specify unique IDs for each thread of control; third, it may be more difficult
determine if a thread of control is still running, as any particular thread of control is likely
to lack sufficient permissions to signal other processes. Alternatively, an application with a
dedicated watcher process, running with appropriate permissions, might choose the
DB_ENV->failchk() approach as supporting higher overall throughput and reliability, as that
approach allows the application to abort unresolved transactions and continue forward
without having to recover the database environment. The hybrid approach is useful in
situations where running a dedicated watcher process is not practical but getting the
equivalent of DB_ENV->failchk() on the DB_ENV->open() is important.

Obviously, when implementing a process to monitor other threads of control, it is important
the watcher process' code be as simple and well-tested as possible, because the application
may hang if it fails.

Opening the environment

Creating transaction-protected applications using the Berkeley DB library is quite easy.
Applications first use DB_ENV->open() to initialize the database environment.
Transaction-protected applications normally require all four Berkeley DB subsystems, so the
DB_INIT_MPOOL, DB_INIT_LOCK, DB_INIT_LOG, and DB_INIT_TXN flags should be specified.

Once the application has called DB_ENV->open(), it opens its databases within the environment.
Once the databases are opened, the application makes changes to the databases inside of
transactions. Each set of changes that entails a unit of work should be surrounded by the
appropriate DB_ENV->txn_begin(), DB_TXN->commit() and DB_TXN->abort() calls. The Berkeley
DB access methods will make the appropriate calls into the Lock, Log and Memory Pool
subsystems in order to guarantee transaction semantics. When the application is ready to exit,
all outstanding transactions should have been committed or aborted.

Databases accessed by a transaction must not be closed during the transaction. Once all
outstanding transactions are finished, all open Berkeley DB files should be closed. When the
Berkeley DB database files have been closed, the environment should be closed by calling
DB_ENV->close().

The following code fragment creates the database environment directory then opens the
environment, running recovery. Our DB_ENV database environment handle is declared to be
free-threaded using the DB_THREAD flag, and so may be used by any number of threads that
we may subsequently create.

#include <sys/types. h>
#include <sys/stat.h>

#i ncl ude <errno. h>
#incl ude <stdarg. h>

12/18/2009

DB Reference Guide Page 150

../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envfailchk.html
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_LOG
../api_reference/C/envopen.html#envopen_DB_INIT_TXN
../api_reference/C/envopen.html
../api_reference/C/txnbegin.html
../api_reference/C/txncommit.html
../api_reference/C/txnabort.html
../api_reference/C/envclose.html
../api_reference/C/env.html
../api_reference/C/dbopen.html#open_DB_THREAD

#include <stdlib.h>
#include <string. h>
#i ncl ude <unistd. h>

#i ncl ude <db. h>

#def i ne ENV_DI RECTORY " TXNAPP"

void env_dir_create(void);
void env_open(DB_ENV **);

nt

mai n(int argc, char *argv)

{

}

extern int optind;

DB *db_cats, *db_color, *db fruit;
DB _ENV *dbenv;

int ch;

while ((ch = getopt(argc, argv, "")) != ECF)
switch (ch) {

case '?':

defaul t:

usage();

}

argc -= optind

argv += optind

env_dir_create();
env_open(&dbenv);

return (0);

voi d
env_dir_create()

{

struct stat sb

* If the directory exists, we're done. W do not further check
* the type of the file, DBw Il fail appropriately if it's the
* wong type

*/

if (stat(ENV_DI RECTORY, &sb) == 0)

return

/* Create the directory, read/wite/access owner only. */
i f (nmkdir(ENV_DI RECTORY, S_IRWKU) !=0) {

12/18/2009

DB Reference Guide

Page 151

fprintf(stderr,
"txnapp: nkdir: 9%: %\n", ENV_DI RECTORY, strerror(errno));
exit (1);
}
}

voi d
env_open(DB_ENV **dbenvp)
{

DB_ENV *dbenv;

int ret;

[* Create the environnment handle. */
if ((ret = db_env_create(&dbenv, 0)) !'=0) {
fprintf(stderr,

"txnapp: db_env_create: %\n", db_strerror(ret));
exit (1);
}

[* Set up error handling. */
dbenv->set _errpfx(dbenv, "txnapp");
dbenv->set _errfile(dbenv, stderr);

/
Open a transactional environment:
create if it doesn't exist
free-threaded handl e

run recovery

read/wite owner only

>* >* >* >* >* >*

*/
if ((ret = dbenv->open(dbenv, ENV_DI RECTCRY,
DB CREATE | DB INIT_LOCK | DB_INIT_LCG |
DB _INIT_MPOOL | DB_INIT_TXN | DB_RECOVER | DB_THREAD,
SIRUSR| S IWISR) !'=0) {
(voi d) dbenv->cl ose(dbenv, 0);
fprintf(stderr, "dbenv->open: %: %\n",
ENV_DI RECTORY, db_strerror(ret));
exit (1);
}

*dbenvp = dbenv;

}

After running this initial program, we can use the db_stat utility to display the contents of the
environment directory:

prompt> db_stat -e -h TXNAPP
3.2.1 Environment version.
120897 Magi ¢ nunber.

12/18/2009

DB Reference Guide Page 152

../api_reference/C/db_stat.html

0 Pani ¢ val ue.

1 Ref er ences.

6 Locks granted without waiting.
0 Locks granted after waiting.

Mpool Region: 4.
264KB Size (270336 bytes).

-1 Segnent I D.

1 Locks granted without waiting.
0 Locks granted after waiting.
Log Region: 3.

96KB Size (98304 bytes).

-1 Segnent I D.

3 Locks granted without waiting.
0 Locks granted after waiting.

Lock Region: 2.
240KB Size (245760 bytes).

-1 Segnent I D.

1 Locks granted without waiting.
0 Locks granted after waiting.
Txn Region: 5.

8KB Size (8192 bytes).

-1 Segnent I D.

1 Locks granted without waiting.
0 Locks granted after waiting.

Opening the databases

i nt

mai n(int argc, char *argv)

{

extern int optind;

DB *db_cats, *db_color, *db fruit;
DB_ENV *dbenv;

int ch;

while ((ch = getopt(argc, argv, "")) !
switch (ch) {
case '?':
defaul t:
usage();

}

ECF)

Next, we open three databases ("color" and "fruit” and "cats”), in the database environment.
Again, our DB database handles are declared to be free-threaded using the DB_THREAD flag,
and so may be used by any number of threads we subsequently create.

12/18/2009

DB Reference Guide

Page 153

../api_reference/C/db.html
../api_reference/C/dbopen.html#open_DB_THREAD

argc -= optind
argv += optind

env_dir_create();
env_open(&dbenv);

/* Open database: Key is fruit class; Data is specific type

if (db_open(dbenv, &b fruit, "fruit", 0))
return (1);

/* Open database: Key is a color; Data is an integer. */
if (db_open(dbenv, &db color, "color", 0))
return (1);

/*

* (Open dat abase:

* Key is a nane; Data is: conpany name, cat breeds
*/

if (db_open(dbenv, &db_cats, "cats", 1))

return (1);

return (0);

}

int
db_open(DB_ENV *dbenv, DB **dbp, char *nane, int dups)
{

DB *db

int ret;

/* Create the database handle. */

if ((ret = db_create(&db, dbenv, 0)) !'=0) {
dbenv->err(dbenv, ret, "db_create");
return (1);

}

[* Optionally, turn on duplicate data itens. */

if (dups & (ret = db->set flags(db, DB DUP)) = 0) {
(voi d) db->cl ose(db, 0)

dbenv->err(dbenv, ret, "db->set flags: DB DUP");
return (1);

}

* (Open a database in the environnent:
* create if it doesn't exist

* free-threaded handl e

* read/wite owner only

*/

12/18/2009

DB Reference Guide

Page 154

if ((ret = db->open(db, NULL, name, NULL, DB BTREE,
DB_AUTO COWM T | DB_CREATE | DB _THREAD, S IRUSR | S_IWISR)) != 0) {
(voi d) db->cl ose(db, 0);
dbenv->err(dbenv, ret, "db->open: %", name);
return (1);

}

*dbp = db;
return (0);

}

After opening the database, we can use the db_stat utility to display information about a
database we have created:

prompt> db_stat -h TXNAPP -d col or
53162 Btree magic nunber.

8 Btree version number.
Fl ags:
2 M ni mum keys per - page.

8192 Under | yi ng dat abase page si ze.

Number of levels in the tree.

Nunber of unique keys in the tree.

Number of data itenms in the tree.

Nunber of tree internal pages.

Nunber of bytes free in tree internal pages (0%ff).
Nunber of tree |eaf pages.

Nunber of bytes free in tree |eaf pages (0.%ff).
Nunber of tree duplicate pages.

Nunber of bytes free in tree duplicate pages (0% ff).
Nunber of tree overflow pages.

Nunber of bytes free in tree overflow pages (0% ff).
Nunber of pages on the free |ist.

[EEN

OOOOOgI—‘OOOO
»
»

The database open must be enclosed within a transaction in order to be recoverable. The
transaction will ensure that created files are re-created in recovered environments (or do not
appear at all). Additional database operations or operations on other databases can be included
in the same transaction, of course. In the simple case, where the open is the only operation
in the transaction, an application can set the DB_AUTO_COMMIT flag instead of creating and
managing its own transaction handle. The DB_AUTO_COMMIT flag will internally wrap the
operation in a transaction, simplifying application code.

The previous example is the simplest case of transaction protection for database open.
Obviously, additional database operations can be done in the scope of the same transaction.
For example, an application maintaining a list of the databases in a database environment in
a well-known file might include an update of the list in the same transaction in which the
database is created. Or, an application might create both a primary and secondary database
in a single transaction.

DB handles that will later be used for transactionally protected database operations must be
opened within a transaction. Specifying a transaction handle to database operations using DB

12/18/2009

DB Reference Guide Page 155

../api_reference/C/db_stat.html
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/db.html
../api_reference/C/db.html

handles not opened within a transaction will return an error. Similarly, not specifying a
transaction handle to database operations that will modify the database, using handles that
were opened within a transaction, will also return an error.

Recoverability and deadlock handling

The first reason listed for using transactions was recoverability. Any logical change to a database
may require multiple changes to underlying data structures. For example, modifying a record
in a Btree may require leaf and internal pages to split, so a single DB->put() method call can
potentially require that multiple physical database pages be written. If only some of those
pages are written and then the system or application fails, the database is left inconsistent
and cannot be used until it has been recovered; that is, until the partially completed changes
have been undone.

Write-ahead-logging is the term that describes the underlying implementation that Berkeley
DB uses to ensure recoverability. What it means is that before any change is made to a database,
information about the change is written to a database log. During recovery, the log is read,
and databases are checked to ensure that changes described in the log for committed
transactions appear in the database. Changes that appear in the database but are related to
aborted or unfinished transactions in the log are undone from the database.

For recoverability after application or system failure, operations that modify the database
must be protected by transactions. More specifically, operations are not recoverable unless a
transaction is begun and each operation is associated with the transaction via the Berkeley DB
interfaces, and then the transaction successfully committed. This is true even if logging is
turned on in the database environment.

Here is an example function that updates a record in a database in a transactionally protected
manner. The function takes a key and data items as arguments and then attempts to store
them into the database.
i nt
mai n(int argc, char *argv)
{
extern int optind;
DB *db_cats, *db_color, *db fruit;
DB_ENV *dbenv;
int ch;

while ((ch = getopt(argc, argv, "")) != ECF)
switch (ch) {
case '?':
defaul t:
usage();
}
argc -= optind;
argv += optind;

env_dir_create();
env_open(&dbenv) ;

12/18/2009

DB Reference Guide Page 156

../api_reference/C/dbput.html

/* Open database: Key is fruit class; Data is specific type.

db_open(dbenv, &db fruit, "fruit", 0);

/* Open database: Key is a color; Data is an integer. */
db_open(dbenv, &db color, "color", 0);

/*

* (Qpen dat abase:

* Key is a nane; Data is: conpany name, cat breeds.
*/

db_open(dbenv, &db_cats, "cats", 1);

add_fruit(dbenv, db_fruit, "apple", "yellow delicious");

return (0);

}

i nt

add_fruit(DB_ENV *dbenv, DB *db, char *fruit, char *nane)
{

DBT key, data;

DB_TXN *ti d;

int fail, ret, t ret;

[* Initialization. */

menset (&key, 0, sizeof (key));
menset (&data, 0, sizeof(data));
key.data = fruit;

key.size = strlen(fruit);

data.data = name;
data.size = strlen(name);
for (fail =0;;) {

/* Begin the transaction. */

if ((ret = dbenv->txn_begin(dbenv, NULL, &id, 0)) !'=0) {
dbenv->err(dbenv, ret, "DB_ENV->txn_begin");

exit (1);

}

[* Store the value. */

switch (ret = db->put(db, tid, &key, &data, 0)) {

case 0:

[* Success: commit the change. */

if ((ret =tid->commt(tid, 0)) !'=0) {
dbenv->err (dbenv, ret, "DB TXN->commit");
exit (1);

}

return (0);

*/

12/18/2009

DB Reference Guide

Page 157

case DB _LOCK DEADLOCK:

defaul t:

/* Retry the operation. */

if ((t_ret =tid->abort(tid)) !=0) {
dbenv->err(dbenv, t _ret, "DB TXN->abort");

exit (1);

}

if (fail++ == MAXI MUM RETRY)
return (ret);

br eak;

}

}
}

Berkeley DB also uses transactions to recover from deadlock. Database operations (that is, any
call to a function underlying the handles returned by DB->open() and DB->cursor()) are usually
performed on behalf of a unique locker. Transactions can be used to perform multiple calls on
behalf of the same locker within a single thread of control. For example, consider the case in
which an application uses a cursor scan to locate a record and then the application accesses
another other item in the database, based on the key returned by the cursor, without first
closing the cursor. If these operations are done using default locker IDs, they may conflict. If
the locks are obtained on behalf of a transaction, using the transaction’s locker ID instead of
the database handle's locker ID, the operations will not conflict.

There is a new error return in this function that you may not have seen before. In transactional
(not Concurrent Data Store) applications supporting both readers and writers, or just multiple
writers, Berkeley DB functions have an additional possible error return:

DB_LOCK_DEADLOCK (page 230). This means two threads of control deadlocked, and the thread
receiving the DB_LOCK DEADLOCK error return has been selected to discard its locks in order to
resolve the problem. When an application receives a DB_LOCK _DEADLOCK return, the correct
action is to close any cursors involved in the operation and abort any enclosing transaction. In
the sample code, any time the DB->put() method returns DB_LOCK DEADLOCK, DB_TXN->abort()
is called (which releases the transaction's Berkeley DB resources and undoes any partial changes
to the databases), and then the transaction is retried from the beginning.

There is no requirement that the transaction be attempted again, but that is a common course
of action for applications. Applications may want to set an upper bound on the number of times
an operation will be retried because some operations on some data sets may simply be unable
to succeed. For example, updating all of the pages on a large Web site during prime business
hours may simply be impossible because of the high access rate to the database.

The DB_TXN->abort() method is called in error cases other than deadlock. Any time an error
occurs, such that a transactionally protected set of operations cannot complete successfully,
the transaction must be aborted. While deadlock is by far the most common of these errors,
there are other possibilities; for example, running out of disk space for the filesystem. In
Berkeley DB transactional applications, there are three classes of error returns: "expected”
errors, "unexpected but recoverable” errors, and a single "unrecoverable” error. Expected errors
are errors like DB_NOTFOUND (page 230), which indicates that a searched-for key item is not
present in the database. Applications may want to explicitly test for and handle this error, or,

12/18/2009

DB Reference Guide Page 158

../api_reference/C/dbopen.html
../api_reference/C/dbcursor.html
../api_reference/C/dbput.html
../api_reference/C/txnabort.html
../api_reference/C/txnabort.html

Atomicity

in the case where the absence of a key implies the enclosing transaction should fail, simply
call DB_TXN->abort(). Unexpected but recoverable errors are errors like

DB_LOCK_DEADLOCK (page 230), which indicates that an operation has been selected to resolve
a deadlock, or a system error such as EIO, which likely indicates that the filesystem has no
available disk space. Applications must immediately call DB_TXN->abort() when these returns
occur, as it is not possible to proceed otherwise. The only unrecoverable error is
DB_RUNRECOVERY (page 230), which indicates that the system must stop and recovery must be
run.

The above code can be simplified in the case of a transaction comprised entirely of a single
database put or delete operation, as operations occurring in transactional databases are
implicitly transaction protected. For example, in a transactional database, the above code
could be more simply written as:

for (fail = 0; fail++ <= MAXI MUM RETRY &&
(ret = db->put (db, NULL, &key, &data, 0)) == DB LOCK DEADLOCK;)

return (ret == 0?0 : 1);
and the underlying transaction would be automatically handled by Berkeley DB.

Programmers should not attempt to enumerate all possible error returns in their software.
Instead, they should explicitly handle expected returns and default to aborting the transaction
for the rest. It is entirely the choice of the programmer whether to check for
DB_RUNRECOVERY (page 230) explicitly or not — attempting new Berkeley DB operations after
DB_RUNRECOVERY (page 230) is returned does not worsen the situation. Alternatively, using the
DB_ENV->set_event_notify() method to handle an unrecoverable error and simply doing some
number of abort-and-retry cycles for any unexpected Berkeley DB or system error in the mainline
code often results in the simplest and cleanest application code.

The second reason listed for using transactions was atomicity. Atomicity means that multiple
operations can be grouped into a single logical entity, that is, other threads of control accessing
the database will either see all of the changes or none of the changes. Atomicity is important
for applications wanting to update two related databases (for example, a primary database
and secondary index) in a single logical action. Or, for an application wanting to update multiple
records in one database in a single logical action.

Any number of operations on any number of databases can be included in a single transaction
to ensure the atomicity of the operations. There is, however, a trade-off between the number
of operations included in a single transaction and both throughput and the possibility of
deadlock. The reason for this is because transactions acquire locks throughout their lifetime
and do not release the locks until commit or abort time. So, the more operations included in
a transaction, the more likely it is that a transaction will block other operations and that
deadlock will occur. However, each transaction commit requires a synchronous disk 1/0, so
grouping multiple operations into a transaction can increase overall throughput. (There is one
exception to this: the DB_TXN_WRITE_NOSYNC and DB_TXN_NOSYNC flags cause transactions
to exhibit the ACI (atomicity, consistency and isolation) properties, but not D (durability);

12/18/2009

DB Reference Guide Page 159

../api_reference/C/txnabort.html
../api_reference/C/txnabort.html
../api_reference/C/envevent_notify.html
../api_reference/C/envset_flags.html#set_flags_DB_TXN_WRITE_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC

Isolation

avoiding the write and/or synchronous disk I/0 on transaction commit greatly increases
transaction throughput for some applications.)

When applications do create complex transactions, they often avoid having more than one
complex transaction at a time because simple operations like a single DB->put() are unlikely
to deadlock with each other or the complex transaction; while multiple complex transactions
are likely to deadlock with each other because they will both acquire many locks over their
lifetime. Alternatively, complex transactions can be broken up into smaller sets of operations,
and each of those sets may be encapsulated in a nested transaction. Because nested transactions
may be individually aborted and retried without causing the entire transaction to be aborted,
this allows complex transactions to proceed even in the face of heavy contention, repeatedly
trying the suboperations until they succeed.

It is also helpful to order operations within a transaction; that is, access the databases and
items within the databases in the same order, to the extent possible, in all transactions.
Accessing databases and items in different orders greatly increases the likelihood of operations
being blocked and failing due to deadlocks.

The third reason listed for using transactions was isolation. Consider an application suite in
which multiple threads of control (multiple processes or threads in one or more processes) are
changing the values associated with a key in one or more databases. Specifically, they are
taking the current value, incrementing it, and then storing it back into the database.

Such an application requires isolation. Because we want to change a value in the database, we
must make sure that after we read it, no other thread of control modifies it. For example,
assume that both thread #1 and thread #2 are doing similar operations in the database, where
thread #1 is incrementing records by 3, and thread #2 is incrementing records by 5. We want
to increment the record by a total of 8. If the operations interleave in the right (well, wrong)
order, that is not what will happen:

thread #1 read record: the value is 2
thread #2 read record: the value is 2
thread #2 wite record + 5 back into the database (new val ue 7)
thread #1 wite record + 3 back into the database (new val ue 5)

As you can see, instead of incrementing the record by a total of 8, we've incremented it only
by 3 because thread #1 overwrote thread #2's change. By wrapping the operations in transactions,
we ensure that this cannot happen. In a transaction, when the first thread reads the record,
locks are acquired that will not be released until the transaction finishes, guaranteeing that
all writers will block, waiting for the first thread's transaction to complete (or to be aborted).

Here is an example function that does transaction-protected increments on database records
to ensure isolation:

int

mai n(int argc, char *argv)

{

extern int optind;

12/18/2009

DB Reference Guide Page 160

../api_reference/C/dbput.html

DB *db_cats, *db_color, *db fruit;
DB _ENV *dbenv;
int ch;

while ((ch = getopt(argc, argv, "")) != ECF)
switch (ch) {
case '?':
defaul t:
usage();
}
argc -= optind;
argv += optind;

env_dir_create();
env_open(&dbenv);

/* Open database: Key is fruit class; Data is specific type.
db_open(dbenv, &db fruit, "fruit", 0);

/* Open database: Key is a color; Data is an integer. */
db_open(dbenv, &db color, "color", 0);

/*

* (Open dat abase:

* Key is a nane; Data is: conpany name, cat breeds.
*/

db_open(dbenv, &db_cats, "cats", 1);

add_fruit(dbenv, db_fruit, "apple", "yellow delicious");

add_col or (dbenv, db_color, "blue", 0);
add_col or (dbenv, db_color, "blue", 3);

return (0);

}

int
add_col or (DB_ENV *dbenv, DB *dbp, char *color, int increment)
{

DBT key, data;

DB_TXN *ti d;

int fail, original, ret, t_ret;

char buf 64;

[* Initialization. */

menset (&key, 0, sizeof (key));
key.data = col or;

key.size = strlen(color);
menset (&data, 0, sizeof(data));

*/

12/18/2009

DB Reference Guide

Page 161

data.flags = DB DBT MALLCC

for (fail =0;;) {

/* Begin the transaction. */

if ((ret = dbenv->txn_begin(dbenv, NULL, &id, 0)) !'=0) {
dbenv->err(dbenv, ret, "DB_ENV->txn_begin");

exit (1);

}

/*
* Get the key. If it exists, we increnment the value. If it
* doesn't exist, we create it.
*/
switch (ret = dbp->get(dbp, tid, &key, &data, DB RMN) {
case 0:
original = atoi(data.data);
br eak;
case DB _LOCK DEADLOCK:
defaul t:
/* Retry the operation. */
if ((t_ret =tid->abort(tid)) !=0) {
dbenv->err(dbenv, t _ret, "DB TXN->abort");
exit (1);

}

if (fail++ == MAXI MUM RETRY)
return (ret);

continue;

case DB_NOTFOUND:

original = 0;

break;

}

if (data.data != NULL)
free(data. data);

[* Create the new data item */

(void)snprintf(buf, sizeof(buf), "%l", original + increnent);
data.data = buf;

data.size = strlen(buf) + 1;

[* Store the new val ue. */

switch (ret = dbp->put(dbp, tid, &key, &data, 0)) {

case 0:

[* Success: commit the change. */

if ((ret =tid->commt(tid, 0)) !'=0) {
dbenv->err (dbenv, ret, "DB TXN->commit");
exit (1);

}

return (0);

case DB_LOCK DEADLOCK:

12/18/2009 DB Reference Guide Page 162

defaul t:

/* Retry the operation. */

if ((t_ret =tid->abort(tid)) !=0) {
dbenv->err(dbenv, t _ret, "DB TXN->abort");
exit (1);

}

if (fail++ == MAXI MUM RETRY)
return (ret);

br eak;

}
}
}

The DB_RMW flag in the DB->get() call specifies a write lock should be acquired on the key/data
pair, instead of the more obvious read lock. We do this because the application expects to
write the key/data pair in a subsequent operation, and the transaction is much more likely to
deadlock if we first obtain a read lock and subsequently a write lock, than if we obtain the
write lock initially.

Degrees of isolation

Transactions can be isolated from each other to different degrees. Serializable provides the
most isolation, and means that, for the life of the transaction, every time a thread of control
reads a data item, it will be unchanged from its previous value (assuming, of course, the thread
of control does not itself modify the item). By default, Berkeley DB enforces serializability
whenever database reads are wrapped in transactions. This is also known as degree 3 isolation.

Most applications do not need to enclose all reads in transactions, and when possible,
transactionally protected reads at serializable isolation should be avoided as they can cause
performance problems. For example, a serializable cursor sequentially reading each key/data
pair in a database, will acquire a read lock on most of the pages in the database and so will
gradually block all write operations on the databases until the transaction commits or aborts.
Note, however, that if there are update transactions present in the application, the read
operations must still use locking, and must be prepared to repeat any operation (possibly closing
and reopening a cursor) that fails with a return value of DB_LOCK_DEADLOCK (page 230).
Applications that need repeatable reads are ones that require the ability to repeatedly access
a data item knowing that it will not have changed (for example, an operation modifying a data
item based on its existing value).

Snapshot isolation also guarantees repeatable reads, but avoids read locks by using multiversion
concurrency control (MVCC). This makes update operations more expensive, because they have
to allocate space for new versions of pages in cache and make copies, but avoiding read locks
can significantly increase throughput for many applications. Snapshot isolation is discussed in
detail below.

A transaction may only require cursor stability, that is only be guaranteed that cursors see
committed data that does not change so long as it is addressed by the cursor, but may change
before the reading transaction completes. This is also called degree 2 isolation. Berkeley DB

12/18/2009

DB Reference Guide Page 163

../api_reference/C/dbcget.html#dbcget_DB_RMW
../api_reference/C/dbget.html

provides this level of isolation when a transaction is started with the DB_READ_COMMITTED
flag. This flag may also be specified when opening a cursor within a fully isolated transaction.

Berkeley DB optionally supports reading uncommitted data; that is, read operations may request
data which has been modified but not yet committed by another transaction. This is also called
degree 1 isolation. This is done by first specifying the DB_READ_UNCOMMITTED flag when
opening the underlying database, and then specifying the DB_READ_UNCOMMITTED flag when
beginning a transaction, opening a cursor, or performing a read operation. The advantage of
using DB_READ_UNCOMMITTED is that read operations will not block when another transaction
holds a write lock on the requested data; the disadvantage is that read operations may return
data that will disappear should the transaction holding the write lock abort.

Snapshot Isolation

To make use of snapshot isolation, databases must first be configured for multiversion access
by calling DB->open() with the DB_MULTIVERSION flag. Then transactions or cursors must be
configured with the DB_TXN_SNAPSHOT flag.

When configuring an environment for snapshot isolation, it is important to realize that having
multiple versions of pages in cache means that the working set will take up more of the cache.
As a result, snapshot isolation is best suited for use with larger cache sizes.

If the cache becomes full of page copies before the old copies can be discarded, additional
I/0 will occur as pages are written to temporary "freezer” files. This can substantially reduce
throughput, and should be avoided if possible by configuring a large cache and keeping snapshot
isolation transactions short. The amount of cache required to avoid freezing buffers can be
estimated by taking a checkpoint followed by a call to DB_ENV->log_archive(). The amount of
cache required is approximately double the size of logs that remains.

The environment should also be configured for sufficient transactions using
DB_ENV->set_tx_max(). The maximum number of transactions needs to include all transactions
executed concurrently by the application plus all cursors configured for snapshot isolation.
Further, the transactions are retained until the last page they created is evicted from cache,
so in the extreme case, an additional transaction may be needed for each page in the cache.
Note that cache sizes under 500MB are increased by 25%, so the calculation of number of pages
needs to take this into account.

So when should applications use snapshot isolation?
« There is a large cache relative to size of updates performed by concurrent transactions; and
» Read/write contention is limiting the throughput of the application; or

» The application is all or mostly read-only, and contention for the lock manager mutex is
limiting throughput.

The simplest way to take advantage of snapshot isolation is for queries: keep update transactions
using full read/write locking and set DB_TXN_SNAPSHOT on read-only transactions or cursors.
This should minimize blocking of snapshot isolation transactions and will avoid introducing new
DB_LOCK_DEADLOCK (page 230) errors.

12/18/2009

DB Reference Guide Page 164

../api_reference/C/dbcget.html#dbcget_DB_READ_COMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html#dbopen_DB_MULTIVERSION
../api_reference/C/txnbegin.html#txnbegin_DB_TXN_SNAPSHOT
../api_reference/C/logarchive.html
../api_reference/C/envset_tx_max.html
../api_reference/C/txnbegin.html#txnbegin_DB_TXN_SNAPSHOT

If the application has update transactions which read many items and only update a small set
(for example, scanning until a desired record is found, then modifying it), throughput may be
improved by running some updates at snapshot isolation as well.

Transactional cursors

Berkeley DB cursors may be used inside a transaction, exactly as any other DB method. The
enclosing transaction ID must be specified when the cursor is created, but it does not then
need to be further specified on operations performed using the cursor. One important point
to remember is that a cursor must be closed before the enclosing transaction is committed or
aborted.

The following code fragment uses a cursor to store a new key in the cats database with four
associated data items. The key is a name. The data items are a company name and a list of
the breeds of cat owned. Each of the data entries is stored as a duplicate data item. In this
example, transactions are necessary to ensure that either all or none of the data items appear
in case of system or application failure.
int
mai n(int argc, char *argv)
{
extern int optind;
DB *db_cats, *db_color, *db fruit;
DB _ENV *dbenv;
int ch;

while ((ch = getopt(argc, argv, "")) != ECF)
switch (ch) {
case '?':
defaul t:
usage();
}
argc -= optind;
argv += optind;

env_dir_create();
env_open(&dbenv);

/* Open database: Key is fruit class; Data is specific type. */
db_open(dbenv, &db fruit, "fruit", 0);

/* Open database: Key is a color; Data is an integer. */
db_open(dbenv, &db color, "color", 0);

/*

* (Qpen dat abase:

* Key is a nane; Data is: conpany name, cat breeds.
*/

db_open(dbenv, &db_cats, "cats", 1);

12/18/2009

DB Reference Guide Page 165

../api_reference/C/db.html

add_fruit(dbenv, db_fruit, "apple", "yellow delicious");

add_col or (dbenv, db_color, "blue", 0);
add_col or (dbenv, db_color, "blue", 3);

add_cat (dbenv, db_cats,
"Any Adans",
"Oracle",
"abyssi ni an",
"bengal ",
"chartreaux",
NULL) ;

return (0);

}

i nt

add_cat (DB_ENV *dbenv, DB *db, char *nane, ...)
{

va_list ap;

DBC *dbc;

DBT key, data;

DB_TXN *ti d;

int fail, ret, t ret;

char *s;

[* Initialization. */
fail = 0;

menset (&key, 0, sizeof (key));
menset (&data, 0, sizeof(data));
key.data = nane;

key.size = strlen(nane);

retry: /* Begin the transaction. */

if ((ret = dbenv->txn_begin(dbenv, NULL, &id, 0)) !'=0) {
dbenv->err(dbenv, ret, "DB_ENV->txn_begin");

exit (1);

}

/* Delete any previously existing item */
switch (ret = db->del (db, tid, &key, 0)) {
case 0:

case DB_NOTFCOUND:

br eak;

case DB _LOCK DEADLOCK:

defaul t:

/* Retry the operation. */

12/18/2009 DB Reference Guide Page 166

if ((t_ret = tid->abort(tid)) !=0) {

dbenv->err(dbenv, t _ret, "DB TXN >abort");

exit (1);

}

if (fail++ == MAXI MUM RETRY)
return (ret);

goto retry;

}

/* Create a cursor. */

if ((ret = db->cursor(db, tid, &bc, 0)) '=0) {

dbenv->err(dbenv, ret, "db->cursor");
exit (1);
}

/* Append the items, in order. */
va_start(ap, nane);

while ((s = va_arg(ap, char *)) I'= NULL) {

data.data = s;
data.size = strlen(s);

switch (ret = dbc->c_put(dbc, &key, &data, DB KEYLAST)) {

case 0:

break;
case DB _LOCK DEADLOCK:
defaul t:

va_end(ap);

/* Retry the operation. */

if ((t_ret = dbc->c_close(dbc)) !'=0) {

dbenv->err (
dbenv, t ret, "dbc->c_close");
exit (1);

}
if ((t_ret =tid->abort(tid)) !=0) {

dbenv->err(dbenv, t _ret, "DB TXN->abort");

exit (1);

}

if (fail++ == MAXI MUM RETRY)
return (ret);

goto retry;

}
}

va_end(ap);

/* Success: commit the change. */

if ((ret = dbc->c_close(dbc)) !'=0) {
dbenv->err(dbenv, ret, "dbc->c_close");
exit (1);

}

12/18/2009

DB Reference Guide

Page 167

if ((ret =tid->commit(tid, 0)) !=0) {
dbenv->err(dbenv, ret, "DB_TXN->commit");
exit (1);

}

return (0);

}

Nested transactions

Berkeley DB provides support for nested transactions. Nested transactions allow an application
to decompose a large or long-running transaction into smaller units that may be independently
aborted.

Normally, when beginning a transaction, the application will pass a NULL value for the parent
argument to DB_ENV->txn_begin(). If, however, the parent argument is a TXN handle, the
newly created transaction will be treated as a nested transaction within the parent. Transactions
may nest arbitrarily deeply. For the purposes of this discussion, transactions created with a
parent identifier will be called child transactions.

Once a transaction becomes a parent, as long as any of its child transactions are unresolved
(that is, they have neither committed nor aborted), the parent may not issue any Berkeley DB
calls except to begin more child transactions, or to commit or abort. For example, it may not
issue any access method or cursor calls. After all of a parent’s children have committed or
aborted, the parent may again request operations on its own behalf.

The semantics of nested transactions are as follows. When a child transaction is begun, it
inherits all the locks of its parent. This means that the child will never block waiting on a lock
held by its parent. Further, locks held by two children of the same parent will also conflict.
To make this concrete, consider the following set of transactions and lock acquisitions.

Transaction T1 is the parent transaction. It acquires a write lock on item A and then begins
two child transactions: C1 and C2. C1 also wants to acquire a write lock on A; this succeeds.
If C2 attempts to acquire a write lock on A, it will block until C1 releases the lock, at which
point it will succeed. Now, let's say that C1 acquires a write lock on B. If C2 now attempts to
obtain a lock on B, it will block. However, let's now assume that C1 commits. Its locks are
anti-inherited, which means they are given to T1, so T1 will now hold a lock on B. At this point,
C2 would be unblocked and would then acquire a lock on B.

Child transactions are entirely subservient to their parent transaction. They may abort, undoing
their operations regardless of the eventual fate of the parent. However, even if a child
transaction commits, if its parent transaction is eventually aborted, the child's changes are
undone and the child's transaction is effectively aborted. Any child transactions that are not
yet resolved when the parent commits or aborts are resolved based on the parent's resolution
-- committing if the parent commits and aborting if the parent aborts. Any child transactions
that are not yet resolved when the parent prepares are also prepared.

12/18/2009

DB Reference Guide Page 168

../api_reference/C/txnbegin.html
../api_reference/C/txn.html

Environment infrastructure

When building transactional applications, it is usually necessary to build an administrative
infrastructure around the database environment. There are five components to this
infrastructure, and each is supported by the Berkeley DB package in two different ways: a
standalone utility and one or more library interfaces.

Deadlock detection: db_deadlock utility, DB_ENV->lock_detect(), DB_ENV->set_lk_detect()

Checkpoints: the db_checkpoint utility, DB_ENV->txn_checkpoint()

» Database and log file archival: the db_archive utility, DB_ENV->log_archive()

Log file removal: db_archive utility, DB_ENV->log_archive()

Recovery procedures: db_recover utility, DB_ENV->open()

When writing multithreaded server applications and/or applications intended for download
from the Web, it is usually simpler to create local threads that are responsible for administration
of the database environment as scheduling is often simpler in a single-process model, and only
a single binary need be installed and run. However, the supplied utilities can be generally
useful tools even when the application is responsible for doing its own administration because
applications rarely offer external interfaces to database administration. The utilities are
required when programming to a Berkeley DB scripting interface because the scripting APIs do
not always offer interfaces to the administrative functionality.

Deadlock detection

The first component of the infrastructure, deadlock detection, is not so much a requirement
specific to transaction-protected applications, but instead is necessary for almost all applications
in which more than a single thread of control will be accessing the database at one time. Even
when Berkeley DB automatically handles database locking, it is normally possible for deadlock
to occur. Because the underlying database access methods may update multiple pages during
a single Berkeley DB API call, deadlock is possible even when threads of control are making
only single update calls into the database. The exception to this rule is when all the threads
of control accessing the database are read-only or when the Berkeley DB Concurrent Data Store
product is used; the Berkeley DB Concurrent Data Store product guarantees deadlock-free
operation at the expense of reduced concurrency.

When the deadlock occurs, two (or more) threads of control each request additional locks that
can never be granted because one of the threads of control waiting holds the requested resource.
For example, consider two processes: A and B. Let's say that A obtains a write lock on item X,
and B obtains a write lock on item Y. Then, A requests a lock on Y, and B requests a lock on
X. A will wait until resource Y becomes available and B will wait until resource X becomes
available. Unfortunately, because both A and B are waiting, neither will release the locks they
hold and neither will ever obtain the resource on which it is waiting. For another example,
consider two transactions, A and B, each of which may want to modify item X. Assume that
transaction A obtains a read lock on X and confirms that a modification is needed. Then it is
descheduled and the thread containing transaction B runs. At that time, transaction B obtains

12/18/2009

DB Reference Guide Page 169

../api_reference/C/db_deadlock.html
../api_reference/C/lockdetect.html
../api_reference/C/envset_lk_detect.html
../api_reference/C/db_checkpoint.html
../api_reference/C/txncheckpoint.html
../api_reference/C/db_archive.html
../api_reference/C/logarchive.html
../api_reference/C/db_archive.html
../api_reference/C/logarchive.html
../api_reference/C/db_recover.html
../api_reference/C/envopen.html

a read lock on X and confirms that it also wants to make a modification. Both transactions A
and B will block when they attempt to upgrade their read locks to write locks because the
other already holds a read lock. This is a deadlock. Transaction A cannot make forward progress
until Transaction B releases its read lock on X, but Transaction B cannot make forward progress
until Transaction A releases its read lock on X.

In order to detect that deadlock has happened, a separate process or thread must review the
locks currently held in the database. If deadlock has occurred, a victim must be selected, and
that victim will then return the error DB_LOCK_DEADLOCK (page 230) from whatever Berkeley
DB call it was making. Berkeley DB provides the db_deadlock utility that can be used to perform
this deadlock detection. Alternatively, applications can create their own deadlock utility or
thread using the underlying DB_ENV->lock_detect() function, or specify that Berkeley DB run
the deadlock detector internally whenever there is a conflict over a lock (see
DB_ENV->set_lk_detect() for more information). The following code fragment does the latter:

voi d
env_open(DB _ENV **dbenvp)
{

DB _ENV *dbenv;

int ret;

/* Create the environnment handle. */
if ((ret = db_env_create(&benv, 0)) !=0) {
fprintf(stderr,

"txnapp: db_env_create: %\n", db_strerror(ret));
exit (1);
1

[* Set up error handling. */
dbenv->set _errpfx(dbenv, "txnapp");
dbenv->set _errfile(dbenv, stderr);

/* Do deadl ock detection internally. */

if ((ret = dbenv->set |k detect(dbenv, DB LOCK DEFAULT)) !'= 0) {
dbenv->err(dbenv, ret, "set |k detect: DB LOCK DEFAULT");

exit (1);

1

/*

* Qpen a transactional environment:

* create if it doesn't exist

* free-threaded handl e

* run recovery

* read/wite owner only

*/

if ((ret = dbenv->open(dbenv, ENV_DI RECTORY,
DB CREATE | DB INIT_LOCK | DB INIT_LOG |
DB INIT_MPOOL | DB INIT_TXN | DB_RECOVER | DB_THREAD,
SIRUSR| S IWISR)) !'=0) {

12/18/2009

DB Reference Guide Page 170

../api_reference/C/db_deadlock.html
../api_reference/C/lockdetect.html
../api_reference/C/envset_lk_detect.html

dbenv->err(dbenv, ret, "dbenv->open: %", ENV_DI RECTCRY);
exit (1);
}

*dbenvp = dbenv;

}

Deciding how often to run the deadlock detector and which of the deadlocked transactions
will be forced to abort when the deadlock is detected is a common tuning parameter for
Berkeley DB applications.

Checkpoints

The second component of the infrastructure is performing checkpoints of the log files.
Performing checkpoints is necessary for two reasons.

First, you may be able to remove Berkeley DB log files from your database environment after
a checkpoint. Change records are written into the log files when databases are modified, but
the actual changes to the database are not necessarily written to disk. When a checkpoint is
performed, changes to the database are written into the backing database file. Once the
database pages are written, log files can be archived and removed from the database
environment because they will never be needed for anything other than catastrophic failure.
(Log files which are involved in active transactions may not be removed, and there must always
be at least one log file in the database environment.)

The second reason to perform checkpoints is because checkpoint frequency is inversely
proportional to the amount of time it takes to run database recovery after a system or
application failure. This is because recovery after failure has to redo or undo changes only
since the last checkpoint, as changes before the checkpoint have all been flushed to the
databases.

Berkeley DB provides the db_checkpoint utility, which can be used to perform checkpoints.
Alternatively, applications can write their own checkpoint thread using the underlying
DB_ENV->txn_checkpoint() function. The following code fragment checkpoints the database
environment every 60 seconds:
i nt
mai n(int argc, char *argv)
{
extern int optind;
DB *db_cats, *db_color, *db fruit;
DB _ENV *dbenv;
pthread t ptid;
int ch;

while ((ch = getopt(argc, argv, "")) != ECF)
switch (ch) {
case '?':
defaul t:
usage();

12/18/2009

DB Reference Guide Page 171

../api_reference/C/db_checkpoint.html
../api_reference/C/txncheckpoint.html

}
argc -= optind
argv += optind

env_dir_create();
env_open(&dbenv);

[* Start a checkpoint thread. */
if ((errno = pthread_creat e(
&tid, NULL, checkpoint_thread, (void *)dbenv)) !=0) {
fprintf(stderr,
"txnapp: failed spawning checkpoint thread: %\n"
strerror(errno));
exit (1);
}

/* Open database: Key is fruit class; Data is specific type. */
db_open(dbenv, &db fruit, "fruit", 0);

/* Open database: Key is a color; Data is an integer. */
db_open(dbenv, &db color, "color", 0);

/*

* (Open dat abase:

* Key is a nane; Data is: conpany name, cat breeds
*/

db_open(dbenv, &db cats, "cats", 1)

add_fruit(dbenv, db_fruit, "apple", "yellow delicious");

add_col or (dbenv, db_color, "blue", 0);
add_col or (dbenv, db_color, "blue", 3);

add_cat (dbenv, db_cats,
"Any Adans",

"Oracle",

"abyssi ni an"

"bengal ",
"chartreaux",

NULL) ;

return (0);

}

void *
checkpoi nt _thread(void *arg)
{

DB _ENV *dbenv;

int ret;

12/18/2009 DB Reference Guide Page 172

dbenv = arg;
dbenv->errx(dbenv, "Checkpoint thread: %u", (u_long)pthread self());

/* Checkpoint once a minute. */

for (;; sleep(60))

if ((ret = dbenv->txn_checkpoint(dbenv, 0, 0, 0)) !=0) {
dbenv->err(dbenv, ret, "checkpoint thread");
exit (1);

}

/* NOTREACHED */
}

Because checkpoints can be quite expensive, choosing how often to perform a checkpoint is a
common tuning parameter for Berkeley DB applications.

Database and log file archival

The third component of the administrative infrastructure, archival for catastrophic recovery,
concerns the recoverability of the database in the face of catastrophic failure. Recovery after
catastrophic failure is intended to minimize data loss when physical hardware has been destroyed
-- for example, loss of a disk that contains databases or log files. Although the application may
still experience data loss in this case, it is possible to minimize it.

First, you may want to periodically create snapshots (that is, backups) of your databases to
make it possible to recover from catastrophic failure. These snapshots are either a standard
backup, which creates a consistent picture of the databases as of a single instant in time; or
an on-line backup (also known as a hot backup), which creates a consistent picture of the
databases as of an unspecified instant during the period of time when the snapshot was made.
The advantage of a hot backup is that applications may continue to read and write the databases
while the snapshot is being taken. The disadvantage of a hot backup is that more information
must be archived, and recovery based on a hot backup is to an unspecified time between the
start of the backup and when the backup is completed.

Second, after taking a snapshot, you should periodically archive the log files being created in
the environment. It is often helpful to think of database archival in terms of full and incremental
filesystem backups. A snapshot is a full backup, whereas the periodic archival of the current

log files is an incremental backup. For example, it might be reasonable to take a full snapshot
of a database environment weekly or monthly, and archive additional log files daily. Using both
the snapshot and the log files, a catastrophic crash at any time can be recovered to the time
of the most recent log archival; a time long after the original snapshot.

To create a standard backup of your database that can be used to recover from catastrophic
failure, take the following steps:

1. Commit or abort all ongoing transactions.

12/18/2009

DB Reference Guide Page 173

2. Stop writing your databases until the backup has completed. Read-only operations are
permitted, but no write operations and no filesystem operations may be performed (for
example, the DB_ENV->remove() and DB->open() methods may not be called).

3. Force an environment checkpoint (see the db_checkpoint utility for more information).

4. Run the db_archive utility with option -s to identify all the database data files, and copy
them to a backup device such as CD-ROM, alternate disk, or tape.

If the database files are stored in a separate directory from the other Berkeley DB files, it
may be simpler to archive the directory itself instead of the individual files (see
DB_ENV->set_data_dir() for additional information). Note: if any of the database files did
not have an open DB handle during the lifetime of the current log files, the db_archive
utility will not list them in its output! This is another reason it may be simpler to use a
separate database file directory and archive the entire directory instead of archiving only
the files listed by the db_archive utility.

5. Run the db_archive utility with option -l to identify all the log files, and copy the last one
(that is, the one with the highest number) to a backup device such as CD-ROM, alternate
disk, or tape.

To create a hot backup of your database that can be used to recover from catastrophic failure,
take the following steps:

1. Archive your databases, as described in the previous step #4. You do not have to halt ongoing
transactions or force a checkpoint. As this is a hot backup, and the databases may be modified
during the copy, the utility you use to copy the databases must read database pages
atomically (as described by Berkeley DB recoverability (page 180)).

2. Archive all of the log files. The order of these two operations is required, and the database
files must be archived before the log files. This means that if the database files and log
files are in the same directory, you cannot simply archive the directory; you must make sure
that the correct order of archival is maintained.

To archive your log files, run the db_archive utility using the -l option to identify all the
database log files, and copy them to your backup media. If the database log files are stored
in a separate directory from the other database files, it may be simpler to archive the
directory itself instead of the individual files (see the DB_ENV->set_lg_dir() method for more
information).

To minimize the archival space needed for log files when doing a hot backup, run db_archive
to identify those log files which are not in use. Log files which are not in use do not need to
be included when creating a hot backup, and you can discard them or move them aside for use
with previous backups (whichever is appropriate), before beginning the hot backup.

After completing one of these two sets of steps, the database environment can be recovered
from catastrophic failure (see Recovery procedures (page 176) for more information).

For an example of a hot backup implementation in the Berkeley DB distribution, see the source
code for the db_hotbackup utility.

12/18/2009

DB Reference Guide Page 174

../api_reference/C/envremove.html
../api_reference/C/dbopen.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_archive.html
../api_reference/C/envset_data_dir.html
../api_reference/C/db.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/envset_lg_dir.html
../api_reference/C/db_hotbackup.html

To update either a hot or cold backup so that recovery from catastrophic failure is possible to
a new point in time, repeat step #2 under the hot backup instructions and archive all of the
log files in the database environment. Each time both the database and log files are copied to
backup media, you may discard all previous database snapshots and saved log files. Archiving
additional log files does not allow you to discard either previous database snapshots or log
files. Generally, updating a backup must be integrated with the application's log file removal
procedures.

The time to restore from catastrophic failure is a function of the number of log records that
have been written since the snapshot was originally created. Perhaps more importantly, the
more separate pieces of backup media you use, the more likely it is that you will have a problem
reading from one of them. For these reasons, it is often best to make snapshots on a regular
basis.

Obviously, the reliability of your archive media will affect the safety of your data. For
archival safety, ensure that you have multiple copies of your database backups, verify that
your archival media is error-free and readable, and that copies of your backups are stored
offsite!

The functionality provided by the db_archive utility is also available directly from the Berkeley
DB library. The following code fragment prints out a list of log and database files that need to
be archived:

voi d

| og_archlist(DB_ENV *dbenv)
{.

int ret;

char **begin, **|ist;

[* Get the list of database files. */
if ((ret = dbenv->|og_archive(dbenv,

&ist, DB_ARCH ABS | DB_ARCH DATA)) != 0) {
dbenv->err(dbenv, ret, "DB_ENV->l og_archive: DB _ARCH DATA");
exit (1);

}
if (list I'= NULL) {
for (begin = 1list; *list !'= NULL; ++list)
printf("database file: 9%\n", *list);
free (begin);
}

[* Get the list of log files. */
if ((ret = dbenv->|og_archive(dbenv,

&ist, DB ARCH ABS | DB_ARCH LOG) != 0) {
dbenv->err(dbenv, ret, "DB _ENV->l og_archive: DB ARCH LOG');
exit (1);

}

if (list I'= NULL) {

for (begin = 1list; *list !'= NULL; ++list)
printf("log file: %\n", *list);

12/18/2009

DB Reference Guide Page 175

../api_reference/C/db_archive.html

free (begin);
}
}

Log file removal

The fourth component of the infrastructure, log file removal, concerns the ongoing disk
consumption of the database log files. Depending on the rate at which the application writes
to the databases and the available disk space, the number of log files may increase quickly
enough so that disk space will be a resource problem. For this reason, you will periodically
want to remove log files in order to conserve disk space. This procedure is distinct from database
and log file archival for catastrophic recovery, and you cannot remove the current log files
simply because you have created a database snapshot or copied log files to archival media.

Log files may be removed at any time, as long as:

« the log file is not involved in an active transaction.

« a checkpoint has been written subsequent to the log file's creation.
« the log file is not the only log file in the environment.

If you are preparing for catastrophic failure, you will want to copy the log files to archival
media before you remove them as described in Database and log file archival (page 173).

If you are not preparing for catastrophic failure, any one of the following methods can be used
to remove log files:

1. Run the standalone db_archive utility with the -d option, to remove any log files that are
no longer needed at the time the command is executed.

2. Call the DB_ENV->log_archive() method from the application, with the DB_ARCH_REMOVE
flag, to remove any log files that are no longer needed at the time the call is made.

3. Call the DB_ENV->log_set_config() method from the application, with the
DB_LOG_AUTO_REMOVE flag, to remove any log files that are no longer needed on an ongoing
basis. With this configuration, Berkeley DB will automatically remove log files, and the
application will not have an opportunity to copy the log files to backup media.

Recovery procedures

The fifth component of the infrastructure, recovery procedures, concerns the recoverability
of the database. After any application or system failure, there are two possible approaches to
database recovery:

1. There is no need for recoverability, and all databases can be re-created from scratch.
Although these applications may still need transaction protection for other reasons, recovery
usually consists of removing the Berkeley DB environment home directory and all files it
contains, and then restarting the application. Such an application may use the
DB_TXN_NOT_DURABLE flag to avoid writing log records.

12/18/2009

DB Reference Guide Page 176

../api_reference/C/db_archive.html
../api_reference/C/logarchive.html
../api_reference/C/logarchive.html#archive_DB_ARCH_REMOVE
../api_reference/C/envlog_set_config.html
../api_reference/C/envlog_get_config.html#log_set_config_DB_LOG_AUTO_REMOVE
../api_reference/C/dbset_flags.html#dbset_flags_DB_TXN_NOT_DURABLE

2. It is necessary to recover information after system or application failure. In this case, recovery
processing must be performed on any database environments that were active at the time
of the failure. Recovery processing involves running the db_recover utility or calling the
DB_ENV->open() method with the DB_RECOVER or DB_RECOVER_FATAL flags.

During recovery processing, all database changes made by aborted or unfinished transactions
are undone, and all database changes made by committed transactions are redone, as
necessary. Database applications must not be restarted until recovery completes. After
recovery finishes, the environment is properly initialized so that applications may be
restarted.

If performing recovery, there are two types of recovery processing: normal and catastrophic.
Which you choose depends on the source for the database and log files you are using to recover.

If up-to-the-minute database and log files are accessible on a stable filesystem, normal recovery
is sufficient. Run the db_recover utility or call the DB_ENV->open() method specifying the
DB_RECOVER flag. However, the normal recovery case never includes recovery using hot backups
of the database environment. For example, you cannot perform a hot backup of databases and
log files, restore the backup and then run normal recovery — you must always run catastrophic
recovery when using hot backups.

If the database or log files have been destroyed or corrupted, or normal recovery fails,
catastrophic recovery is required. For example, catastrophic failure includes the case where
the disk drive on which the database or log files are stored has been physically destroyed, or
when the underlying filesystem is corrupted and the operating system's normal filesystem
checking procedures cannot bring that filesystem to a consistent state. This is often difficult
to detect, and a common sign of the need for catastrophic recovery is when normal Berkeley
DB recovery procedures fail, or when checksum errors are displayed during normal database
procedures. When catastrophic recovery is necessary, take the following steps:

1. Restore the most recent snapshots of the database and log files from the backup media into
the directory where recovery will be performed.

2. If any log files were archived since the last snapshot was made, they should be restored into
the directory where recovery will be performed.

If any log files are available from the database environment that failed (for example, the
disk holding the database files crashed, but the disk holding the log files is fine), those log
files should be copied into the directory where recovery will be performed.

Be sure to restore all log files in the order they were written. The order is important because
it's possible the same log file appears on multiple backups, and you want to run recovery
using the most recent version of each log file.

3. Run the db_recover utility, specifying