

National Imagery and Mapping Agency

The Compendium of Controlled Extensions (CE)

for the

National Imagery Transmission Format (NITF)

VERSION 2.1

16 November 2000

STDI-0002, VERSION 2.1, 16 November 2000

FORWARD

1. The National Imagery Transmission Format Standard (NITFS) is the suite of standards for formatting digital imagery and imagery-related products and exchanging them among the Department of Defense (DOD), other Intelligence Community (IC) members, and other United States (US) Government departments and agencies. Resulting from a collaborative US Government and industry effort, it is the common standard used to exchange and store files composed of images, symbols, text, and associated data.

2. This Controlled Extension (CE) compendium provides the approved CE specifications to be used with the National Imagery Transmission Format (NITF) versions 2.0 (NITF2.0) or 2.1 (NITF2.1). This compendium is an unclassified companion to STDI-0001, *National Support Data Extensions (SDE) (Version 1. 3) for the National Imagery Transmission Format Standard (NITFS)*, 2 October 1998. The documents do not overlap or conflict. SDE implementation requirements are defined in N0105-98, NITFS Standards Compliance and Interoperability Test and Evaluation Program Plan, 25 August 1998.

3. The NITFS Technical Board (NTB) and its Format (FWG), Bandwidth Compression (BCWG), and Communications (CWG) Working Groups develop, coordinate, review, and plan for NITFS. It is a consensus-based government/industry forum that responds to the Geospatial and Imagery Standards Management Committees (GSMC and ISMC). The GSMC and ISMC manage geospatial and imagery standards for the DOD and IC encompassed by the US Imagery and Geospatial Information System (USIGS).

4. Changes to this compendium are controlled by the NTB and the National Imagery and Mapping Agency (NIMA) Configuration Control Board (NCCB). Beneficial comments and data that can be used to improve this document should be addressed to National Imagery and Mapping Agency, Attn: NIMA Customer Support/COD, Mail Stop P-38, 12310 Sunrise Valley Drive, Reston VA 20191-3449.

STDI-0002, VERSION 2.1, 16 November 2000

FORWARD

EFFECTIVE PAGE LOG

PAGES	DATE	PAGES	DATE
i– vi	16 November 2000	117 - 150	4 March 1999
1 – 53	4 March 1999	151 – 222	16 November 2000
54 - 116	16 November 2000		

To Be Determined (TBD), To Be Resolved (TBR) Log

PAGE	TBD/TBR	DESCRIPTION
	TBR01	
	TBR02	
	TBR03	
	TBR04	
	TBR05	
	TBR06	
	TBR07	
	TBR08	
	TBR09	
	TBR10	
	TBR11	
	TBR12	
	TBR13	
	TBR14	
	TBR15	

CHANGE LOG

DATE	PAGES AFFECTED	MECHANISM
16 November 2000	54-116, 151-222	Changed
16 November 2000	223 - 229	Deleted

TABLE OF CONTENTS

1.0	SCOPE	1
1.1	Purpose	1
1.2	Applicability	1
2.0	REFERENCES	2
2.1	Department of Defense Standards and Handbook	2
2.2	Other Department of Defense Publications	2
2.3	Joint Chief of Staff Publications	3
2.4	National Imagery and Manning Agency Publications	3
2.5	Defense Information Systems Agency Publications	3
2.5	NATO Standardization Agreements	
2.0	International Standards	
2.7		5
3.0	Sum out DATA EXTENSION (SDE) Compared Quarieur	5 7
4.0	Support DATA EATENSION (SDE) General Ovenew	/
4.1	Generic Tagged Record Extension (TRE) Mechanism.	/
5.0	ICHIPB SUPPORT DATA EXTENSION (SDE)	9
5.1	Introduction	9
5.2	Purpose of this Document	9
5.3	ICHIPB Overview	9
5.4	Background	10
5.5	Implementation of ICHIPB	10
5.5.1	Generation and Use of ICHIPB (Non-dewarp Scenarios)	10
5.5.2	Dewarp Scenarios	11
5.6	Format of ICHIPB	11
5.6.6	ICHIPB Field Specification	12
5.7	Effectivity	15
5.8	Test Criteria	15
5.8.1	ICHIPB Pack Criteria	15
5.8.2	ICHIPB Unpack Criteria	17
5.9	Summary	17
5.10	Glossary	18
5.11	Appendix A. Pixel vs. Grid Overview	19
5.11.1	Introduction	19
5.11.2	Pixel vs. Grid Orientation	19
5113	Pixel vs. Grid Orientation - Rotation	21
5114	Pixel vs. Grid Orientation - Rotation and "Intelligent" Pixels	22
5.12	Annendix B. Chinned Output Product	24
5.12	Appendix C. Chipped Output Product - Multiple Scap Blocks	25
5.15 60	Profile for Imagery Access Image Support Extensions	23
6.0	PIAE 10 - Version C	.20
6.2	Profile for Imagery Access Product Support Extension Version D	20
0.2 6.2	Profile for Imagery Access Froduct Support Extension - Version D	24
0.5	Profile for Imagery Access Target Support Extension - Version D	24
0.4	Profile for imagery Access Person Identification Extension - Version D	27
6.5	Profile for Imagery Access Event Extension - Version A	3/
6.6	Profile for Imagery Access Equipment Extension - Version A	38
6./	Image Access Data Element Mapping to NITF	39
7.0	Commercial Support data extension (SDE)	.42
7.1	Generic Tagged Extension Mechanism	42
7.2	STDIDC - Standard ID	44
7.3	USE00A - Exploitation Usability	48
7.4	STREOB - Stereo Information	50
7.5	Stereo Geometry Definitions	52
7.6	Exploitation and Mapping Support Data (TBR)	53
8.0	Airborne Support Data Extension (SDE)	.54
8.1	Overview	54
8.1.1	Technical Assistance	54
8.1.2	Defined Support Data Extensions	54
8.1.3	Support Data Extension Placement	55
8.2	Technical Notes	55
8.2.1	Geospatial Coordinates	55

STDI-0002, VERSION 2.1, 16 November 2000

TABLE OF CONTENTS

8.2.2	Attitude Parameters: Heading, Pitch, And Roll	
8.2.3	NITF Pixel Ordering	
8.2.4	Rational projection Model	
8.2.5	Stereo Projection Model	59
8.2.6	Date Representations – Y2K Compliance	
8.2.7	Reduced Resolution Imagery	
8.3	Detailed Requirements	
8.3.1	AIMID - Additional Image ID	
8.3.2	ACFT - Aircraft Information	
8.3.3	BANDS - Multispectral / Hyperspectral Band Parameters	
8.3.4	BLOCK - Image Block Information	
8.3.5	EXOPT - Exploitation Usability Optical Information	
836	EXPLT - Exploitation Related Information	85
837	MENSR - Airborne SAR Mensuration Data	91
8.3.8	MPDSR - Mensuration Data	
839	MSTGT - Mission Target Information	96
8310	MTIRP - Moving Target Report	99
8311	PATCH - Patch Information	104
8312	RPC00 - Ranid Positioning Canability	110
8313	SECTG - Secondary Targeting Information	
8314	SECTO - Secondary Targeting information	
0.J.1 4 9.2.15	STDEO Staroo Information	
0.3.13 Q /	Definitions	
0.4	IOMADA Taggad Pagard Extension Description	
9.0	Format Description and Manning Mathed Expertions	110
9.1	Format Description and Mapping Method Functions.	
9.1.1	Functionality of NITE IDEC/DCT Compressor using the IOMAPA TRE	
9.1.2	Functionality of NTF JPEO/DCT Expander when using the IOMAPA TRE	
9.1.3	IOMAPA Tagged Record Extension Format Tables	
10.0	Profile for Imagery Archives Extensions (PIAE)	129
10.1	Profile for Imagery Archives Image Support Extension.	
10.2	Profile for Imagery Archives Product Support Extension - Version C	
10.3	Profile for Imagery Archives Target Support Extension	
10.4	Profile for Imagery Archives Person Identification Extension	
10.5	Profile for Imagery Archives Event Extension	
10.6	Profile for Imagery Archives Equipment Extension	
10.7	Appendix A SPIA Data Element Mapping to NITFS	
10.8	APPENDIX B: Extension Version Transition Plan	144
10.8.1	Purpose 144	
10.8.2	Scope and Effectivity	
10.8.3	Placement and Content of Controlled Tag Extensions	
10.8.4	Transition Concept	
10.8.5	Read Only Segments	
10.8.6	Write Only Segments	
10.8.7	Read and Write Segments:	
10.8.8	Sending Systems	
10.8.9	Receiving Systems	
10.8.10	Final System Configuration	146
11.0	BCKGDA Controlled Extension	147
11.1	BCKGDA Field Formats	147
12.0	NBLOCA Tagged Record Extension	148
13.0	OFFSET tagged record extension description	149
14.0	RULER Extension	150
15.0	HISTOA Extension	151
15.1	Introduction	151
15.2	Background and Motivation	
15.3	Softcopy History Tag Structure	
15.3.1	Definition of the Processing Events	
15.3.2	Use of the Comments Field	
15.4	Additional Information	

STDI-0002, VERSION 2.1, 16 November 2000

TABLE OF CONTENTS

15.4.1	Display-Ready Transformations	
15.4.2	PEDF Data	
15.4.3	Linlog Data	
15.5	Sharpening Families	
15.6	TTC Families	
16.0	Support Data Extension	
17.0	CMETAA SUPPORT DATA EXTENSION	
17.1	INTRODUCTION	
17.2	PURPOSE OF THIS SECTION	
17.3	BACKGROUND	
17.4	TERMS, DEFINITIONS, AND ABBREVIATIONS	
17.4.1	DEFINITIONS	
17.4.2	ABBREVIATIONS:	
17.5	SPECIFICATION	
17.5.1	SCOPE 171	
17.6	APPLICABILITY	
17.6.1	PURPOSE OF CMETAA	
17.6.2	FUNCTIONALITY PROVIDED BY CMETAA	
17.6.3	FORMAT 176	
17.6.4	IMAGE DATA FIELD	
17.6.5	COMPLEX SAR DATA	
17.6.6	DEFINITIONS FOR FFT & ZERO PADDING	
17.7	CMETAA	
17.8	ANNEX A: DEFINITIONS FOR MAGNITUDE IMAGERY PIXEL VALUE	
	REPRESENTATION BASED ON COMPLEX I AND Q VALUES	
17.9	ANNEX B: DOCUMENTS REFERENCED BY THIS SPECIFICATION	
17.10	ANNEX C: CMETAA FIELDS NAMES PRESENTED ALPHABETICALLY	

SCOPE

1.0 SCOPE

This compendium defines the specifications for the approved NITF Controlled Extensions (CE). NITF2.0 CE implementation is defined in MIL-STD-2500A. NITF2.1 CE implementation is defined in MIL-STD-2500B.

1.1 Purpose

This compendium provides the technical specifications and implementation requirements that USIGS systems must support when implementing NITFS CEs. Specific implementation requirements denoting which extensions should be implemented by the various USIGS systems are defined in the N0102, USIGS Interoperability Profile (UIP).

1.2 Applicability

This plan applies to DOD, IC, and NATO NITFS implementers that need to electronically exchange imagery support data.

REFERENCES

2.0 REFERENCES

2.1 Department of Defense Standards and Handbook

MIL-STD-2500A	National Imagery Transmission Format (Version 2.0) for the National Imagery Transmission Format Standard, 12 October 1994 with Notice 1, 7 February 1997, Notice 2, 26 September 1997, and Notice 3, 1 October 1998
MIL-STD-2500B	National Imagery Transmission Format Version 2.1 for the National Imagery Transmission Format Standard, 22 August 1997 with Notice 1, 2 October 1998
MIL-STD-188-196	Bi-Level Image Compression for the National Imagery Transmission Format Standard, 18 June 1993 with Notice 1, 27 June 1996
MIL-STD-188-198A	Joint Photographic Experts Group (JPEG) Image Compression for the National Imagery Transmission Format Standard, 15 December 1993 with Notice 1, 12 October 1994 and Notice 2, 14 March 1997
MIL-STD-188-199	Vector Quantization Decompression for the National Imagery Transmission Format Standard, 27 June 1994 with Notice 1, 27 June 1996
MIL-STD-2301A	Computer Graphics Metafile (CGM) Implementation Standard for the National Imagery Transmission Format Standard, 5 June 1998
MIL-STD-2045-44500	Tactical Communications Protocol 2 (TACO2) for the National Imagery Transmission Format Standard, 18 June 1993 with Notice 1, 29 July 1994 and Notice 2, 27 June 1996
MIL-STD-188-197A	Adaptive Recursive Interpolated Differential Pulse Code Modulation (ARIDPCM) Compression Algorithm for the National Imagery Transmission Format Standard, 12 October 1994
MIL-STD-2411	Raster Product Format, 5 October 1994
MIL-STD-2411-1	Registered Data Values for Raster Product Format, 30 August 1994
MIL-STD-2411-2	Integration of Raster Product Format Files into the National Imagery Transmission Format, 26 August 1994
MIL-HDBK-1300A	National Imagery Transmission Format Standard (NITFS), 12 October 1994

(Copies of the above standards and handbook are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 Other Department of Defense Publications

DOD/JTA V2.0 Department of Defense Joint Technical Architecture Version 2.0, March 1998

(Copies of the JTA are available from the Defense Information Systems Agency, Center for Standards, 10701 Parkridge Boulevard, Reston, VA 20191-4353.)

REFERENCES

2.3 Joint Chief of Staff Publications		ications
	JV2010	Joint Vision 2010, Chairman of the Joint Chiefs of Staff, Office of the Secretary of Defense
	CJCSI 6212.01A	Compatibility, Interoperability, and Integration of Command, Control, Communications, Computers, and Intelligence Systems, 30 June 1995
2.4	National Imagery and M	apping Agency Publications
	N0105/98	NITFS Standards Compliance and Interoperability Test and Evaluation Program Plan, Review Draft 4, 25 August 1998
	PIAE	National Imagery Transmission Format Standard Profile for Imagery Archives Extensions (PIAE) Version 2.0, 25 April 1996
	NPIAE	NIMA Profile for Imagery Archive Extensions (NPIAE) for the National Imagery Transmission Format Standard (NITFS), 26 September 1997
	STDI-0001	National Support Data Extensions (SDE) (Version 1. 3) for the National Imagery Transmission Format Standard (NITFS), 2 October 1998
	NNPP	NITFS Five-Year Program Plan

(Copies of the above NIMA publications are available from the National Imagery and Mapping Agency, ATTN: NIMA/SES, MS-P24, 12310 Sunrise Valley Drive, Reston, VA. 20191-3449.)

2.5 Defense Information Systems Agency Publications

JIEO Circular 9002	Requirements Assessment and Interoperability Certification of C4I and AIS Equipment and Systems, 23 January 1995
NITFS Tag Registry	Official Register of NITFS Tagged Record Extensions, latest update as posted at http://jitc-emh.army.mil/nitf/tag_reg/mast.htm
(Copies of the above documen	ts are available from the Joint Interoperability Test Command, NITFS Test Facility, Building 57305, Fort Huachuca, AZ 85613-7020.)

2.6 NATO Standardization Agreements

STANAG 4545 NATO Secondary Imagery Format

(Copies of NATO documents are available from the Central US Registry, 3072 Army, Pentagon, Washington DC 20310-3072.)

2.7 International Standards

ISO/IEC 12087-5	Information technology - Computer graphics and image processing - Image Processing and Interchange (IPI) - Functional specification - Part 5: <i>Basic</i> <i>image interchange format (BIIF)</i>
ISO/IEC 8632-1,2,3,4:1994	Information technology - Computer graphics metafile for the storage and transfer of picture description information - Parts 1 through 4

STDI-0002, VERSION 2.0, 4 MARCH 1999

REFERENCES

ISO/IEC 8632:1992	Information technology - Computer graphics metafile for the storage and transfer of picture description information, AMD.1:1994 - Parts 1-4: Rules for profiles
ISO/IEC 10918-1:1994	Information technology - Digital compression and coding of continuous-tone still images: Requirements and guidelines
ISO/IEC 10918-4:1998	Information technology - Digital compression and coding of continuous-tone still images - Part 4: Registration procedures for JPEG profile, APPn marker, and SPIFF profile ID marker

(Application for copies may be addressed to the American National Standards Institute, 13th Floor, 11 West 42nd Street, New York, NY 10036).

ACRONYMS

3.0 ACRONYMS

ARIDPCM	Adaptive Recursive Interpolated Differential Pulse Code Modulation
BIIF	Basic Image Interchange Format
BWCWG	Bandwidth Compression Working Group (under NTB)
CADRG	Compressed ARC Digitized Raster Graphics
CCITT	International Telegraph and Telephone Consultative Committee
CD	Committee Draft
CGM	Computer Graphics Metafile
СМ	Configuration Management
CORBA	Common Object Request Broker Architecture
CTE	Certification, Test, Evaluation
CWG	Communications Working Group (under NTB)
DGIWG	Digital Geographic Information Working Group
DIA	Defense Intelligence Agency
DIGEST	Digital Geographic Information Exchange Standard
DIS	Draft International Standard
DISA	Defense Information Systems Agency
DOD	Department of Defense
DPPDB	Digital Point Positioning Data Base
DSP	Defense Standardization Program
DSPO	Defense Support Project Office
EO	Electro-Optical
FEC	Forward Error Correction
FGDC	Federal Geographic Data Committee
FWG	Format Working Group (under NTB)
GIS	Geographic Information System
GSMC	Geospatial Standards Management Committee
IC	Intelligence Community
IEC	International Electrotechnical Commission
INCA	Intelligence Communications Architecture
IR	Infrared
IS	International Standard
ISMC	Imagery Standards Management Committee
ISO	International Organization for Standardization
ISP	International Standardized Profile
ITU	International Telecommunications Union

ACRONYMS

JITC	Joint Interoperability Test Command
JPEG	Joint Photographic Experts Group
JTA	Joint Technical Architecture
JTC1	Joint Technical Committee for Information Technology
JV	Joint Vision
MPEG	Motion Pictures Expert Group
NATO	North Atlantic Treaty Organization
NCCB	NIMA Configuration Control Board
NIMA	National Imagery and Mapping Agency
NITF	National Imagery Transmission Format
NITFS	National Imagery Transmission Format Standard
NPIAE	NIMA Profile for Imagery Archive Extensions
NSIF	NATO Secondary Imagery Format
NTB	NITFS Technical Board (under GSMC - ISMC)
OASD	Office of the Assistant Secretary of Defense
OSD	Office of the Secretary of Defense
РМО	Program Management Office
RFC	Request for Change
RPF	Raster Product Format
SAR	Synthetic Aperture Radar
SDE	Support Data Extension
SDTS	Spatial Data Transfer Standard
TACO2	Tactical Communications Protocol 2
TRE	Tagged Record Extension
UAV	Unmanned Aerial Vehicle
UIP	USIGS Interoperability Profile
US	United States
USGS	United States Geological Survey
USIGS	United States Imagery and Geospatial Information System
UTA	USIGS Technical Architecture
VPF	Vector Product Format
VQ	Vector Quantization
WD	Working Draft

OVERVIEW

4.0 Support DATA EXTENSION (SDE) General Overiew

4.1 Generic Tagged Record Extension (TRE) Mechanism.

The Tagged Record Extensions (TRE) defined in this document are "Controlled tagged record Extensions" (CE) as defined in MIL-STD-2500B. The TRE format is summarized here for ease of reference. Table 4-1 describes a CE's general format.

FIELD	NAME	SIZE	VALUE RANGE	UNITS	TYPE
CETAG	<u>Unique Extension Type Identifier</u> . A valid alphanumeric identifier properly registered with the NTB.	6	alphanumeric	N/A	R
CEL	Length of CEDATA Field. The length in bytes of the data contained in CEDATA. The TRE's overall length is the value of CEL + 11.	5	00001 to 99985	bytes	R
CEDATA	User-Defined Data. This field shall contain data primarily of character data type (binary data is acceptable for extensive data arrays, such as color palettes or look-up tables) defined by and formatted according to user specification. The length of this field shall not cause any other NITF field length limits to be exceeded but is otherwise fully user defined.	Ť	user-defined	N/A	R

Table 4-1. Controlled Tagged Record Extension Format (TYPE R = Required, C = Conditional, <> = null data allowed)

† equal to value of CEL field.

The Unique Extension type Identifier (CETAG) and Length of CEDATA Field (CEL) fields essentially form a small (11-byte) TRE subheader. The format and meaning of the data within the User-Defined Data (CEDATA) field is the subject of this document for several, individual CEs.

Multiple TREs can exist within the TRE area. There are several such areas, each of which can contain 99,999 bytes worth of TREs. There is also an overflow mechanism, should the sum of all TREs in an area exceed 99,999 bytes. The overflow mechanism allows for up to 1 Gbyte of TREs.

While the CEs defined in this document will typically be found in the image subheader, it is possible that they could appear in the Tagged Record Extension Overflow (TRE_OVERFLOW) Data Extension Segment (DES) which is being used as an overflow of the image subheader.

If the information contained within a TRE is not available, the extension will not be present in the file or segment. For example, if the image is not part of a stereo set, the STERO extension will not be present. The set of TRE stored within the file or segment can change over the lifetime of the image, due to additional information, removal of outdated information, or change in classification. Additional tables indicate which TRE must appear in every file or segment and which may be omitted.

When a TRE is present, all of the information listed as Required (R) must be filled in with valid information. Information listed as Conditional (C) may or may not be present, depending upon the value in a preceding field. Conditional fields that are not present do not occupy space in the file. Information identified with angle brackets ($\langle R \rangle$ or $\langle C \rangle$) may contain valid information, or may contain ASCII spaces (i.e., hex 20) to indicate a null field and that valid data is unavailable.

Alphanumeric values that do not fill the allotted space are left justified within a field, and the remaining bytes are filled with ASCII spaces (i.e., hex 20). Numeric values are right justified within the field, with ASCII zeros (i.e., hex 30) extending to the left field boundary.

STDI-0002, VERSION 2.0, 4 MARCH 1999

OVERVIEW

Reserved fields, identified by names of the form "(reserved-nnn)" maintain alignment and functional equivalence with similar extensions defined for systems beyond the scope of this document. The content of reserved fields is explicitly specified in the Value Range column. Systems generating these TREs shall insert the specified value into each reserved field; systems interpreting them may ignore the contents of reserved fields.

FIGURE 1-1. SUPPORT DATA EXTENSIONS (SDES) MAY BE LOCATED IN THESE AREAS

If the information contained within an extension is not available, the extension will not be present in the file. For example, many images may not contain an STREOB. If the intended use of a file does not require the information contained in an extension, it is not required to be present. The set of extensions stored within the file can change over the lifetime of the image. For example, the RPC00A tag may be added to the file at some time after the NITF 2.0 file is initially created, or additional STREOB extensions could be added as stereo mates are identified. When an extension is present, all of the information listed as required must be filled in.

5.0 ICHIPB SUPPORT DATA EXTENSION (SDE)

5.1 Introduction

As mensuration and geopositional tools proliferate within the United States Imagery and Geospatial Information System (USIGS) environment and the use of NITF image chips continues to expand, potential problems have been identified by the NITF Technical Board (NTB). One such problem arises when a mensuration tool, such as Ruler, is applied to an NITF image chip to determine the length or geoposition of an object within that chip. Ruler requires, as input, data that references the original full image as well as the image chip. This information is not provided within the NITF 2.0 header/subheader fields, or within the current NITF National, Airborne, or Commercial Support Data Extension (SDE) fields. This has resulted in the implementation of various, non-standard solutions for transferring this much needed "chipping" data along with an NITF chip. The ICHIPB Support Data Extension is the standard means whereby any recipient of a chipped image containing SDEs from the original full image, regardless of system or application, will be able to access the necessary data and apply a mensuration tool to the image chip in a uniform and consistent manner.

5.2 Purpose of this Document

This document provides a background of the circumstances leading up to the requirement for the ICHIPB SDE and specifies how this tag is to be used. Compliance with this specification will support consistent community implementation of ICHIPB.

5.3 ICHIPB Overview

As mensuration and geopositioning tools proliferate, several issues have been identified concerning the application of these tools to NITF-formatted image chips. Specifically, there is no mechanism, in the current NITF format, to pass a standardized set of data with an image chip such that a user can easily apply Ruler to that image. Ruler provides mensuration functions for client software applications by utilizing the original image line and sample values for the endpoints of the measured dimension in a geometry model for the image's collection sensor. The geometry model for a sensor consists in part of a transformation from the sensor coordinate system to the original line and sample coordinate system. Incorrect mensuration results will be computed if Ruler is not provided the original line and sample for each measured point. In order to apply Ruler to a chipped NITF image, the using application must provide the Ruler application with the grid point coordinates of interest in the chipped image as if those points came from the original full image. Unless this information is precisely included with the image chip, a user must use alternate methods to generate this data. As a result, several system-specific solutions have been proposed and implemented within the community. Each of these solutions addresses the problem in a different manner, and in many instances, do not generate the same exact points or offsets. In addition, the accuracies of these line and sample points vary. These factors could lead to a scenario where three imagery exploitation systems receive identical images, apply their unique algorithm, derive the points and chip offsets from the full image, input the data to Ruler, and receive mensuration results that are not identical.

Addition of an NITF Tagged Record Extension (TRE) to the set of National and Airborne SDEs as a Controlled Extension (CE) can easily alleviate this situation. By standardizing the data elements (which includes the line and sample corner points, offset data, etc. in a consistent manner) within this TRE, and including it with all image chips, exploiters will be more likely to arrive at the same answer from the mensuration process.

Another typical scenario involves the "chip of a chip" scenario. An exploiter in the Washington DC area satisfies an exploitation request and generates an exploited image chip. This image chip is disseminated as an NITF Product to a single user and is also archived in an Image Product Library (IPL). Another user at CENTCOM downloads the image from the IPL and proceeds to mensurate on the image using Ruler. Unless ICHIPB is included with the image, he/she can not be sure that the results from Ruler are based on valid inputs. This user then takes a subset of the image and generates a chip from the chip, which is then forwarded to a tactical user. The tactical system receiving the second generation chip wants to apply a geopositioning tool to the image, but will be unable to unless he/she has a specific, standard way to reference points in the chipped image with the original full image line and sample points. Inclusion in the chipped image of ICHIPB with the SDE from the original full image will satisfy the mensuration processing need.

5.4 Background

The ICHIPA extension was developed via a series of technical interchange meetings as well as through comment and inputs from the NTB community. The ICHIPA extension was based on the simplification of and generalization of the currently registered I2MAPD extension. System specific I2MAPD data fields were either removed or generalized such that there would be no system-specific dependencies within ICHIPA.

This specification for ICHIPB resulted from attempting to apply ICHIPA to chipped imagery collected by airborne sensors containing attribute data within the Airborne SDE. The Airborne SDE and ICHIPA do not provide a consistent means to identify the width and height of the original full image to which the coverage of the SDE applies. Although ICHIPA may provide sufficient information when used with national SDE and the associated national product naming conventions, a more general-purpose mechanism was needed to accurately process and display coordinate information for chipped images. The changes to ICHIPA resulting in ICHIPB provide a means to identify the number of pixel rows and number of pixel columns in the original full image for which the coverage of the SDEs is applicable.

Version 1.0 of ICHIPB represents a major simplification of I2MAPD pertaining to dewarped (non-linear) capabilities. For example, the previously existing grid overlay has been deleted. As such, ICHIPB deals only with linear situations where only the four line and sample "original" product coordinates are considered. Thus, there is no need for nth order polynomials and the tag length is fixed at 224 bytes. On the other hand, several existing features have been retained such as the non-linear transformation flag, which indicates whether the associated image is dewarped or not, and the anamorphic correction indicator. The scan block number is added to reflect comments received from the user community.

5.5 Implementation of ICHIPB

ICHIPB is a system-independent NITF TRE that, when included with the SDEs in all NITF image chips, will support all users within the USIGS environment for the mensuration of SDE-based image chips (non-dewarped imagery only). It holds the support data that analysts need when using Ruler to mensurate or determine detailed geospatial parameters on pixel-based features within image chips. ICHIPB also holds other limited, processing-related information, such as various correction indicators and scale factor, that are useful to receiving systems.

5.5.1 Generation and Use of ICHIPB (Non-dewarp Scenarios)

The ICHIPB TRE shall be generated by all NITF applications that produce NITF formatted image chips of simple linear (non-dewarped) images that include the Ruler complement of national, commercial and airborne SDE. NITF receiving systems capable of interpreting and using national and airborne data extensions shall properly recognize, read and interpret the information within ICHIPB when present in an image chip.

Ruler mensuration uses the line and sample indexing scheme of the original image to determine various geospatial measurements and position within an image, be it the original image or a chip of the original image. ICHIPB captures image chip corner point coordinate information that is mapped to the original image coordinate system as shown in figure 3-1. The mapping function is the result of a linear interpretation between image corner points and as such, can be assumed for only the simple linear (non-dewarped) processed imagery.

FIGURE 5-1. OUTPUT CHIPPED PRODUCT

The reason for this is twofold. First, few systems today process dewarped imagery and even fewer can mensurate and calculate geopositions from dewarped imagery. Second, due to the complexity of the algorithms that derive line and sample corner points and offset data, as well as the required processing power required, standardization of the algorithms for the community would be difficult. Therefore, standardizing the linear transformation, a straight forward process, is an appropriate baseline for ICHIPB. For a more detailed explanation of this mapping function, and specific examples of chipping non-dewarped imagery, refer to the appendices of this document.

5.5.2 Dewarp Scenarios

In addition, a new TRE or a revision to ICHIPB is recommended for more complex mensuration requirements. This is because the current TRE is not sufficient for addressing dewarp scenarios.

To maintain interoperability within the USIGS, ICHIPB shall be included with all non-dewarped NITF chips, specifically when the chip is disseminated. It shall also be included with NITF chips of dewarped images that include the original SDE to serve as a flag that the coverage of the SDE is different from the coverage of the pixels in the chip.

5.6 Format of ICHIPB

The ICHIPB controlled TRE provides the data needed to mensurate and calculate geopositions of features on chips. This TRE provides the output product row and column data for the image, as well as those data points referenced back to values for the original full image. For this TRE, the original line and sample grid point values will be provided at the four corners of the intelligent image data in the chip (for those cases where the chip includes pad pixels).

5.6.6 ICHIPB Field Specification

The Tagged Record Extension fields for ICHIPB are specified in tables 1, 2, and 3.

FIELD	NAME	SIZE	VALUE RANGE	TYPE
CETAG	Unique extension type identifier	6	ICHIPB	R
CEL	Length of CEDATA field	5	00224	R
CEDATA	User-defined data	224	See table 2	R

Table 5-1. ICHIPB TRE Subheader Fields

FIELD	NAME	SIZE	VALUE RANGE	TYPE
XFRM_ FLAG	Non-linear Transformation Flag	2	Numeric 00 (non-dewarped, data provided), 01 (no data provided)	R
SCALE_ FACTOR	Scale Factor Relative to R0 (original full image resolution)	10	Numeric (typically reciprocal of display magnification) xxxx.xxxx	R
ANAMRPH_ CORR	Anamorphic Correction Indicator	2	Numeric 00 (no anamorphic correction) 01 (anamorphic correction applied)	R
SCANBLK_ NUM	Scan Block Number (scan block index)	2	00-99 00 if not applicable	R
OP_ROW_11	Output product row number component of grid point index (1,1) for intelligent data	12	Numeric xxxxxxxxyyy (typically 00000000.500)	R
OP_COL_11	Output product column number component of grid point index (1,1) for intelligent data	12	Numeric xxxxxxx.yyy (typically 00000000.500)	R
OP_ROW_12	Output product row number component of grid point index (1,2) for intelligent data	12	Numeric xxxxxxx.yyy	R
OP_COL_12	Output product column number component of grid point index (1,2) for intelligent data	12	Numeric xxxxxxxx.yyy	R
OP_ROW_21	Output product row number component of grid point index (2,1) for intelligent data	12	Numeric xxxxxxxx.yyy	R

Table 5-2. ICHIPB TRE User Defined field format

FIELD	NAME	SIZE	VALUE RANGE	TYPE
OP_COL_21	Output product column number component of grid point index (2,1) for intelligent data	12	Numeric xxxxxxx.yyy	R
OP_ROW_22	Output product row number component of grid point index (2,2) for intelligent data	12	Numeric xxxxxxxx.yyy	R
OP_COL_22	Output product column number component of grid point index (2,2) for intelligent data	12	Numeric xxxxxxxx.yyy	R
FI_ROW_11	Grid point (1,1), row number in full image coordinate system	12	Numeric xxxxxxxx.yyy	R
FI_ COL_11	Grid point (1,1), column number in full image coordinate system	12	Numeric xxxxxxx.yyy	R
FI_ROW_12	Grid point (1,2), row number in full image coordinate system	12	Numeric xxxxxxx.yyy	R
FI_ COL_12	Grid point (1,2), column number in full image coordinate system	12	Numeric xxxxxxx.yyy	R
FI_ROW_21	Grid point (2,1), row number in full image coordinate system	12	Numeric xxxxxxx.yyy	R
FI_ COL_21	Grid point (2,1), column number in full image coordinate system	12	Numeric xxxxxxxx.yyy	R
FI_ROW_22	Grid point (2,2), row number in full image coordinate system	12	Numeric xxxxxxx.yyy	R
FI_ COL_22	Grid point (2,2), column number in full image coordinate system	12	Numeric xxxxxxxx.yyy	R
FI_ROW	Full Image Number of Rows	8	Numeric 00000000 and 00000002 to 999999999	R
FI_COL	Full Image Number of Columns	8	Numeric 00000000 and 00000002 to 99999999	R

TABLE 5-2. ICHIPB TRE USER DEFINED FIELD FORMAT (CONTINUED)

Note: - Row and column indexing, NITF nomenclature, corresponds to line and sample indexing in original product nomenclature.

- If XFRM_FLAG is 01, then remaining values will be zero fill.

STDI-0002, VERSION 2.0, 4 MARCH 1999 ICHIPB Support Data Extension for the National Imagery Transmission Format, Version 1.0, 16 November 1998

TABLE 5-3. ICHIPB TRE USER DEFINED FIELD DEFINITIONS

FIELD	VALUE DEFINITIONS AND CONSTRAINTS
XFRM_FLAG	Non-linear Transformation Flag. If image is non-dewarped, field is 00. For all others, flag is 01 with zero fill in the remaining fields.
SCALE_FACTOR	Scale factor relative to the full image resolution R0. This provides a mechanism to reference back to the full image if product is not at R0. To determine product RRDS value: if 0001.00000 then R0; 0002.00000 then R1; 0004.00000 then R2; 0008.00000 then R3; 0016.00000 then R4; 0032.00000 then R5; 0064.00000 then R6; 0128.00000 then R7
ANAMRPH_CORR	If no anamorphic correction, 00; otherwise 01
SCANBLK_NUM	Scan block number from which the product was chipped if applicable; otherwise 00. When chipping from imagery that has multiple scan blocks, the scan block from which the chip was extracted shall be identified. The value in this field permits identification and selection of the scan block specific SDEs from the entire complement of SDEs in the original image file.
OP_ROW_11	Output product row number component of grid point index (1,1) for intelligent data. Typically 0000000.500
OP_COL_11	Output product column number component of grid point index (1,1) for intelligent data. Typically 0000000.500
OP_ROW_12	Output product row number component of grid point index (1,2) for intelligent data.
OP_COL_12	Output product column number component of grid point index (1,2) for intelligent data.
OP_ROW_21	Output product row number component of grid point index (2,1) for intelligent data.
OP_COL_21	Output product column number component of grid point index (2,1) for intelligent data.
OP_ROW_22	Output product row number component of grid point index (2,2) for intelligent data.
OP_COL_22	Output product column number component of grid point index (2,2) for intelligent data.
FI_ROW_11	Grid point (1,1), row number in full image coordinate system. Note: For images with multiple scan blocks, the "full image" value refers to the extent of the single scan block from which the chip was extracted.
FI_COL_11	Grid point (1,1), column number in full image coordinate system. Note: For images with multiple scan blocks, the "full image" value refers to the extent of the single scan block from which the chip was extracted.
FI_ROW_12	Grid point (1,2), row number in full image coordinate system. Note: For images with multiple scan blocks, the "full image" value refers to the extent of the single scan block from which the chip was extracted.
FI_COL_12	Grid point (1,2), column number in full image coordinate system. Note: For images with multiple scan blocks, the "full image" value refers to the extent of the single scan block from which the chip was extracted.
FI_ROW_21	Grid point (2,1), row number in full image coordinate system. Note: For images with multiple scan blocks, the "full image" value refers to the extent of the single scan block from which the chip was extracted.
FI_COL_21	Grid point (2,1), column number in full image coordinate system. Note: For images with multiple scan blocks, the "full image" value refers to the extent of the single scan block from which the chip was extracted.

FIELD	VALUE DEFINITIONS AND CONSTRAINTS
FI_ROW_22	Grid point (2,2), row number in full image coordinate system. Note: For images with multiple scan blocks, the "full image" value refers to the extent of the single scan block from which the chip was extracted.
FI_COL_22	Grid point (2,2), column number in full image coordinate system. Note: For images with multiple scan blocks, the "full image" value refers to the extent of the single scan block from which the chip was extracted.
FI_ROW	The number of pixel rows in the original full image for which the coverage of the SDEs is applicable. When known by the chipping application, this field is to be populated with the maximum row value for the coverage to which the support data (SDE) applies. The default value of 00000000 shall be interpreted to mean the total coverage area of the SDE applies, but the maximum number of rows is unknown. Note: For images with multiple scan blocks, the "full image" value refers to the extent of the single scan block from which the chip was extracted.
FI_COL	The number of pixel columns in the original full image for which the coverage of the SDEs is applicable. This field is to be populated with the maximum column value for the coverage to which the support data (SDE) applies. The default value of 00000000 shall be interpreted to mean the total coverage area of the SDE applies, but the maximum number of columns is unknown. Note: For images with multiple scan blocks, the "full image" value refers to the extent of the single scan block from which the chip was extracted.

TABLE 5-3. ICHIPB TRE USER DEFINED FIELD DEFINITIONS (CONTINUED)

5.7 Effectivity

This ICHIPB proposal impacts the imagery and mapping community from both the system development and CONOPS perspectives within the USIGS. As a result, to provide adequate time for program offices and systems/software developers to assess impacts and plan implementations, ICHIPB's effectivity will be 1 year from the validation, approval, and final publication of this document and will apply to applications subscribing to NITF versions 2.0 and 2.1.

5.8 Test Criteria

5.8.1 ICHIPB Pack Criteria

The ICHIPB TRE must be included in all image segments that contain Ruler focused SDEs (National, Commercial and/or Airborne SDE) when the coverage of the pixel data is less than the coverage of the SDEs.

Applications which generate a chipped image segment from any image source that contains Ruler focused SDEs must preserve the SDEs from the source and include a properly populated ICHIPB TRE in the chipped image segment, even when chipping on FAF (block) boundaries.

The XFRM_FLAG field must have the value '00' when the pixel values in the image segment represent nondewarped image data. The other fields of the TRE must be properly populated with valid data.

The XFRM_FLAG field must have the value '01' when the pixel values in the image segment represent other than non-dewarped image data. The other data fields of the TRE must be populated with the designated default values for those fields.

The SCALE_FACTOR field must contain the appropriate scale factor value relative to the original full image resolution (RO). This value must directly correlate with the value in the IMAG field of the image segment subheader. Allowed values are: 0001.00000 for RO (original image resolution)

0002.00000 for R1 (1/2 resolution)

0004.00000 for R2 (1/4 resolution)

0008.00000 for R3 (1/8 resolution)

0016.00000 for R4 (1/16 resolution)

0032.00000 for R5 (1/32 resolution)

0064.00000 for R6 (1/64 resolution)

0128.00000 for R7 (1/128 resolution) -OR-

the reciprocal of the image magnification when pixel values are not scaled by factors of 2.

The ANAMRPH_CORR field must have the value '00' when no anamorphic correction has been done to the pixel values in the image segment. It must have the value '01' when the pixel values have undergone anamorphic correction.

When chipping from images with multiple scan blocks, the SCANBLK_NUM field must identify the scan block to which the grid points expressed in FI_ROW_nn and FI_COL_nn are referenced.

The 'output product' row and column number fields identify the four 'corner' intelligent pixel indices (NITF common coordinate system row/column values) of the polygon that outlines (encloses) the intelligent pixels of the chipped pixel values in the image segment being packed.

For OP_ROW_11 and OP_COL_11, the common coordinate system row/col index value for the intelligent 'corner' pixel, upper left. (The condition where OP_ROW_11 is less than both OP_ROW_21 and OP_ROW_22 AND OP_COL_11 is less than both OP_COL_12 and OP_COL_22.)

For OP_ROW_12 and OP_COL_12, the common coordinate system row/col index value for the intelligent 'corner' pixel, upper right. (The condition where OP_ROW_12 is less than both OP_ROW_21 and OP_ROW_22 AND OP_COL_12 is greater than both OP_COL_11 and OP_COL_21.)

For OP_ROW_21 and OP_COL_21, the common coordinate system row/col index value for the intelligent 'corner' pixel, lower left. (The condition where OP_ROW_21 is greater than both OP_ROW_11 and OP_ROW_12 AND OP_COL_21 is less than both OP_COL_12 and OP_COL_22.)

For OP_ROW_22 and OP_COL_22, the common coordinate system row/col index value for the intelligent 'comer' pixel, lower right. (The condition where OP_ROW_22 is greater than both OP_ROW_11 and OP_ROW_12 AND OP_COL_22 is greater than both OP_COL_11 and OP_COL_21.)

The 'full image' row and column number fields (FI_ROW_11, FI_COL_11, FI_ROW_12, FI_COL_12, FI_ROW_21, FI_COL_21, FI_ROW_22 and FI_COL_22) must contain the actual grid index values of the full SDE coverage grid coordinate system for each of the four output product pixel indices in the corresponding OP_ROW/OP_COL fields.

The 'full image' number of rows/columns fields (FI_ROW, FI_COL) must be populated with the total number of pixel rows and pixel columns in the 'full image' pixel grid for which the coverage of the SDEs is applicable. For imagery with multiple scan blocks, these values represent those of the single scan block from which the image chip was extracted. When this information is not available to the chipping application, it will populate these fields with the designated default value (all zeros).

The chipping application must correctly populate the IGEOLO fields in the chipped image subheader to correspond with the geolocation of the corner points of the chip as derived from the SDE.

5.8.2 ICHIPB Unpack Criteria

Applications capable of interpreting (point positioning, mensuration, etc.) Ruler focused SDEs must be able to recognize and properly apply the information in the ICHIPB TRE relative to the full coverage SDEs.

Interpret operations performed on a chipped image segment using the Ruler focused SDEs must obtain the same results as if performed on the original full image for which the coverage of the SDEs is applicable.

When the XFRM_FLAG field has a value other than '00', the application must not proceed with SDE interpret functions that rely on the data being 'non-dewarped'.

The application must recognize and use the SCALE_FACTOR value when using the Ruler focused SDEs.

The application must recognize whether anamorphic correction has been applied and account for the correction when using the Ruler focused SDEs.

The application must accommodate chipping from images with multiple scan blocks and apply the appropriate offsets within the SDE grid coordinate space. It must identify and use the correct set of SDEs applicable to the scan block from the support data extensions even when SDEs for other scan blocks may be included from the original multiple scan block image.

The application must interpret the four 'output product' and 'full image' corner indices in the specified order, upperleft, upper-right, lower-left, then lower-right (11,12,21,22).

The application must properly interpret the four 'output product' and 'full image' corner indices when 'pad pixels' from the original image are included in the chipped image and recognize that these corner points identify the bounds of the 'intelligent' pixels.

When the 'full image' number of rows/columns fields (FI_ROW, FI_COL) are populated with values of all zeros, the application must recognize that the total number of rows/columns of the original image was not available to the chipping application. It must not presume a 'zero area' image or disrupt (crash) the normal operation of the application.

When presenting geographical information from the chipped image, the application must clearly identify whether that information is based on the values in the IGEOLO field, or whether it is based on use of the SDEs.

5.9 Summary

The ICHIPB NITF TRE is an SDE mechanism by which exploiters of non-dewarped imagery chips can generate the required data for Ruler mensuration. By requiring that all systems generating non-dewarped imagery implement this TRE, interoperability will be maintained. This standard will enforce a uniform solution to the application of Ruler to NITF images. The effectivity stated in paragraph 3.2 will provide sufficient time for commercial and government developers to plan for the use of ICHIPB within their systems, tools, and products.

5.10 Glossary	
Chip	A portion of another image, be it from the original image as captured by a sensor, or from a sub-image cropped from an original image.
Coverage	The entirety of pixel rows and columns of an original image that directly correlate to the attributes in the Support Data Extensions resulting from the original image capture.
Geopositioning	The process of determining the precise location of an object relative to the Earth's surface.
Grid Points	The line and sample index values (coordinates) of the chipped image in the applicable reference grid coordinate system.
Line and Sample	The row and column of the image, respectively.
Mensuration	The process of measuring positions, distances, and object dimensions (such as length, height, diameter) on an image or map.
Original Full Image	The entire image pixel data for which the attribute information in the Support Data Extensions applies. For images with multiple scan blocks, "Original Full Image" refers to the single scan block from which the image chip was sourced.
Output Product	The image product resulting from the chipping operation.
SDEs	Support Data Extensions. A set of Tagged Record Extensions. The National, Airborne, and Commercial SDEs contain attribute information providing the details of the original full image capture sensor and the original capture event.
Intelligent Pixels	As defined for chipping within this context, are those pixels that possess visual utility or convey exploitable or potentially exploitable information to the user or an application.
Significant Pixels	All pixels included within the number of rows (NROWS) and number of columns (NCOLS) counts in an image subheader. They may or may not include intelligent and/or pad pixels.
Pad Pixels	Those pixels with sample values that have offer no real meaning or intelligence to the image. Pad pixels (sometimes referred to as "fill" or "gray") may be used to complete or "fill out" portions of an image to maintain consonance between row/column counts and block sizes and/or to distinguish a starting location of intelligent pixels.
Warping	Non-dewarped imagery is projected in the same plane as originally collected by the sensor and possesses linear characteristics inherent to the original collection process. Dewarped imagery is imagery that has been changed from its original collection plane to one that is more suitable for display. Dewarped imagery possesses non-linear characteristics as a result of the transformation process.

5.11 Appendix A, Pixel vs. Grid Overview

5.11.1 Introduction

This appendix provides detailed explanations and illustrations of the relationships between image pixels and the NITF grid space over which the images are laid. Three examples are presented: 1) simple chip; 2) chipping after image rotation of original image; and 3) chipping beyond the edge of the original image. It should be noted that in all examples, "image" and "grid" illustrations are highly exaggerated to provide greater detail and visualization. The image sizes are unrealistic and should never be encountered in a real world situation. Lastly, throughout the illustrations and explanations in this and subsequent appendices, different uses of the term "pixel" are used. They are presented here to prepare the reader in understanding the chipping processes. Intelligent pixels, as defined for chipping within this context, are those that possess visual utility or convey exploitable or potentially exploitable information to the user or an application. Significant pixels are all pixels included within the number of rows (NROWS) and number of columns (NCOLS) counts in the image subheader. They may or may not possess intelligence. Pad pixels are those with sample values that offer no real meaning or intelligence to the image. Pad pixels (sometimes referred to as "fill" or "gray") may be used to complete or "fill out" portions of an image to maintain consonance between row/column counts and block sizes and/or to distinguish a starting location of intelligent pixels. In all cases, pad pixels are used to maintain the uniform raster row/column structure of the intended matrix of pixel values.

5.11.2 Pixel vs. Grid Orientation.

The chipping process involves the replication of some portion of a source image plus a copy of the Support Data Extensions (SDEs) that address the coverage for the original image operation. The resulting image chip is also known as the Output Product (OP). The original image operation to which the SDE coverage applies is defined as the Full Image (FI). Since the chip is a subset of the full image, it must be capable of inheriting all of the information necessary to perform mensuration and other exploitation functions. For this to occur, the SDEs presume a grid associated with the original imagery operation. To use the SDEs, the chip pixels must be related back to the original grid, regardless of what manipulations (e.g., rotation, reduced resolution, chip of a chip, etc.) have occurred.

In the following illustration, an image chip of NITF size NROWS = 3 and NCOLS = 4 is being created from a full image of NITF size NROWS = 9 and NCOLS = 7. In both the chip and full image cases, the (row,column) indices are such that the upper left corner contains pixel (0,0), the upper right corner contains pixel (0,NCOLS-1), the lower left corner contains pixel (NROWS-1,0), and the lower right corner contains pixel NROWS-1, NCOLS-1). (Note: Row and column values are zero-based indices which correspond with NITF display of images IAW MIL-STD 2500A, paragraph 5.5.1.1).

To determine where a chip's corner points are in relation to the full image grid coverage from which it is drawn, the location of the center of each of the chip's corner pixels must be determined in relation to the full image's grid space. (Note: Since a pixel is an abstract object whose shape and size are not easily defined, the pixels in this appendix are portrayed in square space, the size of "one unit," to easily determine orientation and measurements). With the center point of a square being located at one half of its height and width, the center of each OP and FI pixel will typically be 0.5, 0.5. In this particular case, the center points of all chip pixels are coincident with the center points of the corresponding pixels in the full image. Also, for this case, all significant pixels in the chip and the full image are considered intelligent pixels.

STDI-0002, VERSION 2.0, 4 MARCH 1999 ICHIPB SUPPORT DATA EXTENSION FOR THE NATIONAL IMAGERY TRANSMISSION FORMAT, VERSION 1.0, 16 NOVEMBER 1998

5-2. PIXEL VS. GRID ORIENTATION

Given the aforementioned information, the specific index values for completing the ICHIPB corner points for the chip (OP) and their corresponding location full image (FI) are as follows:

Pt (1,1)	OP_ROW_11:	00000000.500	FI_ROW_11:	00000002.500
	OP_COL_11:	00000000.500	FI_COL_11:	00000001.500
Pt (1,2)	OP_ROW_12:	00000000.500	FI_ROW_12:	00000002.500
	OP_COL_12:	00000003.500	FI_COL_12:	00000004.500
Pt (2,1)	OP_ROW_21:	00000002.500	FI_ROW_21:	00000004.500
	OP_COL_21:	00000000.500	FI_COL_21:	00000001.500
Pt (2,2)	OP_ROW_22:	00000002.500	FI_ROW_22:	00000004.500
	OP_COL_22:	00000003.500	FI_COL_22:	00000004.500

Using the corner point values above and other related information, a NITF interpreter should be able mensurate and ascertain other information from the chip by using the FI support data that accompanies it, just as if the interpreter was mensurating across the full image.

5.11.3 Pixel vs. Grid Orientation - Rotation

In the following example, the same chip and full images, as in figure A-1, are used again; however, in this case, the full image has been rotated approximately 30 degrees. With this new orientation, two new factors need to be addressed and considered: "pad" pixels and non-coincident pixel center points.

In the illustration below, pad pixels are those that appear within the 12×11 NITF image space but are NOT part of the intelligent pixels within the 9×7 rotated image. The resulting visual affect is similar to when a NITF viewer rotates an image for display, such as in a north orientation. Accordingly, the significant pixels of the full image contain both intelligent and pad pixels, but in the chip, all significant pixels are also intelligent pixels.

Unlike the first illustration in figure A-1, the center points of the chip's corner pixels are no longer coincident with center points of the pixels in the full image grid. In this example, the chip (OP) values used in the ICHIPB corner point index fields remain the same (due to same chip size); however, the full image (FI) index values are not on the "0.5" grid points. The FI values are derived from where the chip's pixel center points are in relation to the full image grid. Given these relationships, the following values, which are estimates for the purpose of this illustration and discussion, are used to complete the ICHIPB corner point index fields:

Pt (1,1)	OP_ROW_11:	00000000.500	FI_ROW_11:	0000003.400
	OP_COL_11:	00000000.500	FI_COL_11:	00000001.250
Pt (1,2)	OP_ROW_12:	00000000.500	FI_ROW_12:	00000001.850
	OP_COL_12:	00000003.500	FI_COL_12:	00000003.850
Pt (2,1)	OP_ROW_21:	00000002.500	FI_ROW_21:	00000005.100
	OP_COL_21:	00000000.500	FI_COL_21:	00000002.200
Pt (2,2)	OP_ROW_22:	00000002.500	FI_ROW_22:	00000003.650
	OP_COL_22:	00000003.500	FI_COL_22:	00000004.850

Again, using the corner point values above and other related information, a NITF interpreter should be able mensurate and ascertain other information from the chip by using the FI support data that accompanies it, just as if the interpreter was mensurating across this portion of the full image.

5.11.4 Pixel vs. Grid Orientation - Rotation and "Intelligent" Pixels

Figure A-3 offers another possibility in image chipping whereby not all of the pixels comprising the image chip possess intelligence. In this case, the chip will continue to possess a NITF size of NROWS = 3 and NCOLS = 4; however, pad pixels (at 0, 0 and 1, 0) will be included in the chip to account for the absence of any pixel contributions from the full image at those locations. Unlike the previous two examples, this case offers intelligent and pad pixels within the significant pixels of both the chip and the full image.

For the chip to properly access the support data coverage offered by the full image, the chip's corner points must be indicative of pixels possessing intelligence. Accordingly, this example will deviate from the previous ones in that OP Pt 1,1 will not reflect corner point indices of 0.5, 0.5. Since this chip will contain unintelligent, pad pixels in the first column, the corner point values of Pt 1,1 will now be 0.5, 1.5, avoiding the unintelligent pixel present at 0, 0

STDI-0002, VERSION 2.0, 4 MARCH 1999 ICHIPB SUPPORT DATA EXTENSION FOR THE NATIONAL IMAGERY TRANSMISSION FORMAT, VERSION 1.0, 16 NOVEMBER 1998

FIGURE 5-4. PIXEL VS. GRID ORIENTATION - ROTATION AND "INTELLIGENT" PIXELS

The remaining OP point values are the same and the corresponding FI point values are determined in the same manner as before. Accordingly, the following values, which are again estimates for the purpose of this illustration and discussion, are used to complete the ICHIPB corner point index fields:

Pt (1,1)	OP_ROW_11:	00000000.500	FI_ROW_11:	00000004.100
	OP_COL_11:	00000001.500	FI_COL_11:	00000000.000
Pt (1,2)	OP_ROW_12:	00000000.500	FI_ROW_12:	00000003.150
	OP_COL_12:	00000003.500	FI_COL_12:	00000001.750
Pt (2,1)	OP_ROW_21:	00000002.500	FI_ROW_21:	00000006.300
	OP_COL_21:	00000000.500	FI_COL_21:	00000000.000
Pt (2,2)	OP_ROW_22:	00000002.500	FI_ROW_22:	00000004.650
	OP_COL_22:	00000003.500	FI_COL_22:	00000002.650

With the corner point values representing intelligent pixels, as shown above, and other related information, a NITF interpreter should again be able to mensurate and ascertain other information from the chip, just as if the interpreter was mensurating across this portion of the full image.

5.12 Appendix B, Chipped Output Product

This example demonstrates the relationship of a chip the size of NROWS = 120 and NCOLS = 100 with a full image of the size NROWS = 400 and NCOLS = 300. The chip's NITF 0,0 pixel corresponds to the full image's pixel 099, 099 location. For this example, the image should be considered full frame, with no scan blocks, with regards to format.

FIGURE 5-5. CHIPPED OUTPUT PRODUCT

In the above example, Output Product (OP) values reflect the actual grid corner points of the image chip as it would stand independently, while the Full Image (FI) values provide those same OP points' values in the full image's corresponding grid space. Since the Support Data Extensions (SDEs) that will be included with the image chip will provide coverage for the entire 400 x 300 FI, ICHIPB's FI_ROW and FI_COL will be populated with the values 00000400 and 00000300, respectively. The ICHIPB grid corner point fields will be populated as follows:

Pt (1,1)	OP_ROW_11:	00000000.500	FI_ROW_11:	00000099.500
	OP_COL_11:	00000000.500	FI_COL_11:	00000099.500
Pt (1,2)	OP_ROW_12:	00000000.500	FI_ROW_12:	00000099.500
	OP_COL_12:	00000099.500	FI_COL_12:	00000199.500
Pt (2,1)	OP_ROW_21:	00000119.500	FI_ROW_21:	00000219.500
	OP_COL_21:	00000000.500	FI_COL_21:	00000099.500
Pt (2,2)	OP_ROW_22:	00000119.500	FI_ROW_22:	00000219.500
	OP_COL_22:	00000099.500	FI_COL_22:	00000199.500

5.13 Appendix C, Chipped Output Product - Multiple Scan Blocks

This example demonstrates generation of two chips, each the size of NROWS = 90 and NCOLS = 70. The source image is of the size NROWS = 308 and NCOLS = 300 and is comprised of 3 scan blocks, each of size NROWS = 100 and NCOLS = 300, and 4 rows of pad pixel separation between each adjacent scan block pair. One chip will be taken from the first scan block starting with scan block 1's pixel 004, 069. The second chip will be taken from the third scan block starting with its pixel 004,149 (see Note 1).

FIGURE 5-6. CHIPPED OUTPUT PRODUCT - MULTIPLE SCAN BLOCKS

For this example, consideration should be given to cases where applications cut chips on some fixed row and column multiple, such as those that chip on "FAF boundaries." If these conditions exist and there is a desire for the area of interest to be in the center of the image chip, the resulting chip may include some pad pixels as part of its significant image data. While this may not be desirable from an aesthetic perspective, it does not present any functional limitations. With proper application of ICHIPB corner points and use of the support data that will accompany the chip, the means exist to navigate beyond the pad pixels and into the intelligent pixels in the resulting chip.

In the above examples, Output Product (OP) values reflect the actual intelligent pixel grid corner points of the image chips as they would stand independently, while the Full Image (FI) values provide those same OP points' values in the full image's (scan block 1 for Chip 1; scan block 3 for Chip 2) corresponding grid space. Since the Support Data Extensions (SDEs) that will be included with each image chip will provide separate coverage for each 100 x 300 FI scan block individually, ICHIPB's FI_ROW and FI_COL in each example will be populated with the values 00000100 and 00000300, respectively. Since Chip 1 was cut from scan block 1 and Chip 2 was cut from

scan block 3, each chip's ICHIPB SCANBLK_NUM field will be populated with 01 and 03, respectively. The ICHIPB grid corner point fields will be populated as follows:

ICHIPB Grid Corner Points - Chip 1

Pt (1,1)	OP_ROW_11:	00000000.500	FI_ROW_11:	00000004.500
	OP_COL_11:	00000024.500	FI_COL_11:	00000094.500
Pt (1,2)	OP_ROW_12:	00000000.500	FI_ROW_12:	00000004.500
	OP_COL_12:	00000069.500	FI_COL_12:	00000139.500
Pt (2,1)	OP_ROW_21:	00000089.500	FI_ROW_21:	00000094.500
	OP_COL_21:	00000024.500	FI_COL_21:	00000094.500
Pt (2,2)	OP_ROW_22:	00000089.500	FI_ROW_22:	00000094.500
	OP_COL_22:	00000069.500	FI_COL_22:	00000139.500
		ICHIPB Grid Corner	Points - Chip 2	
Pt (1,1)	OP_ROW_11:	00000000.500	FI_ROW_11:	00000004.500
	OP_COL_11:	00000000.500	FI_COL_11:	00000149.500
Pt (1,2)	OP_ROW_12:	00000000.500	FI_ROW_12:	00000004.500
	OP_COL_12:	00000069.500	FI_COL_12:	00000219.500
Pt (2,1)	OP_ROW_21:	00000089.500	FI_ROW_21:	00000094.500
	OP_COL_21:	00000000.500	FI_COL_21:	00000149.500
Pt (2,2)		00000089 500	FL ROW/ 22	00000094 500

Cutting chips across scan blocks is highly discouraged at this time because of the complications that may arise from the independent support data that exists for each scan block. Since only one set of support data can be referred to via the ICHIPB's SCANBLK_NUM, coverage for the entire chip will not be possible and errors or incorrect values may result when attempting geographical point positioning or performing other measurements in the other areas represented by the "uncovered" scan blocks. Accordingly, chips resembling those in the following examples should be avoided.

(Note 1: Using each individual scan block's 0,0 pixel to determine a chip's relative location in the block is a generic approach used in this document. Sensor products, both now and in the future, may use different scan block separation schemes and, as such, cannot be addressed in this document. If a scan block separation scheme is known, it would be possible for a NITF interpreter to calculate the chip's offsets from the beginning of the entire NITF image data; however, the interpreter would have to be cognizant of all schemes it will process to be able to produce chips in this manner. Since ICHIPB is not intended to be community or sensor specific, and support data is specific to each scan block, individual 0,0 pixel points are used to determine chip offsets within scan blocks.)

6.0 Profile for Imagery Access Image Support Extensions

6.1 PIAE 1.0 - Version C

This support extension is designed to provide an area to place fields not currently carried in NITF but are contained in the Standards Profile for Imagery Access (SPIA). Most imagery related information is contained in the NITF main headers and Support Data Extensions (SDEs). The purpose of this extension is to minimize redundant fields while providing space for all information. This extension shall be present no more than once for each image in the NITF file. When present, this extension shall be contained within the image extended subheader data field of the image subheader or within an overflow DES if there is insufficient room to place the entire extension within the image extended subheader data field.

FIELD	NAME	SIZE	VALUE RANGE	TYPE
CETAG	Unique Extension Type ID	6	PIAIMC	R
CEL	Length Of PIAIMC Extension	5	00362	R
CEDATA	User-Defined Data	362	table 6-2	R

Table 6-1.	Profile for	Imagery	Access	Image ((PIAIMC)	
------------	-------------	---------	--------	---------	----------	--

FIELD	NAME	SIZE	FMT	VALUE RANGE	TYPE
CLOUDCVR	Cloud Cover	3	Ν	000 to 100, 999	0
SRP	Standard Radiometric Product	1	A/N	Y, N	0
SENSMODE	Sensor Mode	12	A/N	WHISKBROOM,	0
				PUSHBROOM,	
				FRAMING, SPOT,	
				SWATH, TBD	
SENSNAME	Sensor Name	18	A/N	USIGS DM, SENSOR -	0
				TYPE Name	
SOURCE	Source	255	A/N	alphanumeric	0
COMGEN	Compression Generation	2	Ν	00 to 99	0
SUBQUAL	Subjective Quality	1	A/N	P-Poor, G - Good, E -	0
				Excellent, F- Fair	
PIAMSNNUM	PIA Mission Number	7	A/N	EARS 1.1 page 4-28	0
CAMSPECS	Camera Specs	32	A/N	alphanumeric	0
PROJID	Project ID Code	2	A/N	EARS Appendix 9	0
GENERATION	Generation	1	Ν	0 to 9	0
ESD	Exploitation Support Data	1	A/N	Y, N	0
OTHERCOND	Other Conditions	2	A/N	EARS 1.1 page 4 to 28	0
MEAN GSD	MEANGSD	7	Ν	00000.0 to 99999.9	0
				Expressed in inches,	
				accuracy=10%	

Table 6-2. Profile for Imagery Access Image (PIAIMC) Data and Ranges

STDI-0002, VERSION 2.0, 4 MARCH 1999 NATIONAL IMAGERY TRANSMISSION FORMAT PROFILE FOR IMAGE ACCESS EXTENSIONS (PIAE) VERSION 3.0, 25 SEPTEMBER 1997

FIELD	NAME	SIZE	FMT	VALUE RANGE	TYPE
IDATUM	Image Datum	3	A/N	Horizontal_Reference_Da	0
				tum_Code (refer to DDDS	
				element	
IELLIP	Image Ellipsoid	3	A/N	DIGEST, Part 3, table 8-1	0
PREPROC	Image Processing Level	2	A/N	USIGS DM, IMAGE-	0
	Code			DATASET Processing	
				Level Code	
IPROJ	Image Projection System	2	A/N	DIGEST, Part 3, table 6-1	0
SATTRACK	Satellite Track	8	N	Minimum values:	0
				PATH(J)=0001	
				ROW(K)=0001	
				Maximum values:	
				PATH(J)=9999	
				ROW(K)=9999	
				Recorded as	
				PATH/ROW=00010001	
				to 99999999	

Table 6-2. Profile for Imagery Access Image (PIAIMC) Data and Ranges (continued).

FIELD	VALUE DEFINITIONS AND CONSTRAINTS
CLOUDCVR	Indicates the percentage of the image that is obscured by cloud. A value of 999
	indicates an unknown condition.
SRP	Indicates whether or not standard radiometric product data is available.
SENSMODE	Identifies the sensor mode used in capturing the image.
SENSNAME	Identifies the name of the sensor used in capturing the image.
SOURCE	Indicates where the image came from (e.g., magazine, trade show, etc.).
COMGEN	Counts the number of lossy compressions done by the archive.
SUBQUAL	Indicates a subjective rating of the quality of the image.
PIAMSNNUM	Indicates the mission number assigned to the reconnaissance mission.
CAMSPECS	Specifies the brand name of the camera used, and the focal length of the lens.
PROJID	Identifies collection platform project identifier code.
GENERATION	Specifies the number of image generations of the product. The number (0) is
	reserved for the original product.
ESD	Indicates whether or not Exploitation Support Data is available and contained
	within the product data.
OTHERCOND	Indicates other conditions that affect the imagery over the target.
MEANGSD	The geometric mean of the across and along scan center-to-center distance
	between contiguous ground samples.

Table 6-3. Description of PIAIMC Data Fields

STDI-0002, VERSION 2.0, 4 MARCH 1999 NATIONAL IMAGERY TRANSMISSION FORMAT PROFILE FOR IMAGE ACCESS EXTENSIONS (PIAE) VERSION 3.0, 25 SEPTEMBER 1997

FIELD	VALUE DEFINITIONS AND CONSTRAINTS
IDATUM	Identifies the mathematical representation of the earth used to geo-correct/or to
	rectify the image. (Identifies the Datum associated with IGEOLO.)
IELLIP	Identifies the mathematical representation of the earth used to geo-correct/or to rectify the image. (Identifies the Ellipsoid associated with IGEOLO.)
PREPROC	Identifies the level of radiometric and geometric processing applied to the product by the commercial vendor.
IPROJ	Identifies the 2D-map projection used by commercial vendors to geo-correct/or to rectify the image.
SATTRACK	Identifies location of an image acquired by LANDSAT or SPOT (only) along the satellite path.

Table 6-3. Description of PIAIMC Data Fields (continued).
6.2 Profile for Imagery Access Product Support Extension - Version D

The data found in the Product Support Extension addresses information regarding the products derived from source imagery. While there is product-related data in the NITF main header and SDEs, many fields contained in the Standards Profile for Imagery Access (SPIA) are absent. This extension aligns the SPIA and NITF for product information, and adds descriptive detail associated with products. This extension shall be present no more than once for each product. When present, this extension shall be contained within the extended header data field of the NITF file header or within an overflow DES if there is insufficient room to place the entire extension within the file's extended header data field.

Table 0-4. Frome for imagely Access Froduct (FIAFRD)						
FIELD	NAME	SIZE	VALUE RANGE	TYPE		
CETAG	Unique Extension Type ID	6	PIAPRD	R		
CEL	Length Of PIAPRD Extension	5	00201 to 63759	R		
CEDATA	User-Defined Data	201 to 63759	table 6-5	R		

Table 6-4. Profile for Imagery Access Product (PIAPRD)

FIELD	NAME	SIZE	FMT	VALUE RANGE	TYPE
ACCESSID	Access ID	64	A/N	alphanumeric	0
FMCONTROL	FM Control Number	32	A/N	alphanumeric	0
SUBDET	Subjective Detail	1	A/N	P- Poor, F - Fair, G - Good, E - Excellent	0
PRODCODE	Product Code	2	A/N	EARS 1.1 Appendix 6	0
PRODUCERSE	Producer Supplement	6	A/N	alphanumeric	0
PRODIDNO	Product ID Number	20	A/N	alphanumeric	0
PRODSNME	Product Short Name	10	A/N	alphanumeric	R
PRODUCERCD	Producer Code	2	A/N	alphanumeric	0
PRODCRTIME	Product Create Time	14	A/N	CCYYMMDDHHMMSS (ZULU)	0
MAPID	Map ID	40	A/N	alphanumeric	0
SECTITLEREP	SECTITLE Repetitions	2	N	00 to 99	R
SECTITLE1	Section Title	40	A/N	alphanumeric	С
PPNUM1	Page/Part Number	5	A/N	alphanumeric	С
TPP1	Total Pages/Parts	3	N	001 to 999	С
SECTITLEnn	Section Title	40	A/N	alphanumeric	С
PPNUMnn	Page/Part Number	5	A/N	alphanumeric	С

Table 6-5.	PIAPRD	Data and	Ranges
------------	--------	----------	--------

			anges	(continueu <u>)</u>	
FIELD	NAME	SIZE	FMT	VALUE RANGE	TYPE
TPPnn	Total Pages/Parts	3	Ν	001 to 999	C
REQORGREP	REQORG Repetitions	2	Ν	00 to 99	R
REQORG1	Requesting Organization	64	A/N	alphanumeric	С
REQORGnn	Requesting Organization	64	A/N	alphanumeric	C
KEYWORDREP	KEYWORD Repetitions	2	Ν	00 to 99	R
KEYWORD1	Keyword String 1	255	A/N	alphanumeric	C
KEYWORDnn	Keyword String nn	255	A/N	alphanumeric	C
ASSRPTREP	ASSRPT Repetitions	2	Ν	00 to 99	R
ASSRPT1	Associated Report 1	20	A/N	alphanumeric	C
ASSRPTnn	Associated Report nn	20	A/N	alphanumeric	C
ATEXTREP	ATEXT Repetitions	2	N	00 to 99	R
ATEXT1	Associated Text 1	255	A/N	alphanumeric	C
ATEXTnn	Associated Text nn	255	A/N	alphanumeric	C

Table 6-5. PIAPRD Data and Ranges (continued)

Table 6-6. Description of PIAPRD Data Fields

FIELD	VALUE DEFINITIONS AND CONSTRAINTS
ACCESSID	Contains an archive unique identifier. This could be the product filename, a record identifier, a reference number, the product id, or any other means to access the product from the archive.
FM CONTROL	Identifies foreign material associated with the product.
SUBDET	Indicates a subjective rating of useful detail available in the product.
PRODCODE	Identifies the category of product data stored in the archive.
PRODUCERSE	Identifies the element within the producing organization that created the product.
PRODIDNO	Identifies a product stored in the archive with a producer assigned number.
PRODSNME	Identifies the abbreviated name of a product stored in the archive.
PRODUCERCD	Identifies the organization responsible for creating or modifying the product.
PRODCRTIME	Identifies the date or the date and time that the product was created or last modified, expressed in ZULU time

FIELD	VALUE DEFINITIONS AND CONSTRAINTS
MAPID	Identifies a map associated with the product.
SECTITLEREP	Identifies the number of times the SECTITLE, PPNUM, and TPP fields repeat per extension instance.
SECTITLE1	Identifies the first user defined title of a section of a multi-section product.
PPNUM1	Identifies the first page/part number of the section identified in SECTITLE1.
TPP1	Identifies the total number of pages or parts associated with SECTITLE1 and PPNUM1.
SECTITLEnn	Identifies the nnth user defined title of a section of a multi-section product.
PPNUMnn	Identifies the nnth page/part number of the section identified in SECTITLEnn.
TPPnn	Identifies the nnth number of pages or parts associated with SECTITLEnn and PPNUMnn.
REQORGREP	Identifies the number of times the REQORG field repeats per extension instance.
REQORG1	Identifies the first organization requesting that an image be placed in an archive. This is the first field represented based on the value of REQORGREP.
REQORGnn	Identifies the nnth organization requesting that an image be placed in an archive. The number of REQORGs between the previous field and this is represented in the REQORGREP field.
KEYWORDREP	Identifies the number of times the KEYWORD field repeats per extension instance.
KEYWORD1	Provides the first block of a freeform text description of the product.
KEYWORDnn	Provides the nnth block of a freeform text description of the product. The number of KEYWORDSs between the previous field and this is represented in the KEYWORDREP field.
ASSRPTREP	Identifies the number of times the ASSRPTREP field repeats per extension instance.
ASSRPT1	First field for the entry of another known report associated with the product.
ASSRPTnn	Provides the nnth field of other known reports associated with the product. The number of ASSRPTs between the previous field and this is represented in the ASSRPTREP field.
ATEXTREP	Identifies the number of times the ATEXTREP field repeats per extension instance.
ATEXT1	Provides the first text block further describing the imagery product.
ATEXTnn	Provides the nnth text block further describing the imagery product. The number of ATEXTs between the previous field and this is represented in the ATEXTREP field.

Table 6-6. Description of PIAPRD Data Fields (continued)

6.3 Profile for Imagery Access Target Support Extension - Version B

The Target Extension is designed to accommodate more than just the essential target data. It contains descriptive data about the targets. This extension shall be present once for each target identified in the image. There may be up to 250 of these extensions for each data type in an NITF file. When present, these extension(s) shall be contained within the appropriate data type (image, symbol, label or text) extended subheader data field of the data type subheader or within an overflow DES if there is insufficient room to place the entire extension(s) within the data type extended subheader data field.

	Tuble e fri Trefile fer illiager,	, 1100000 10		
FIELD	NAME	SIZE	VALUE RANGE	TYPE
CETAG	Unique Extension Type ID	6	PIATGB	R
CEEL	Length of PIATGB Extension	5	000117	R
CEDATA	User-Defined Data	117	table 6-8	R

Table 6-7. Profile for Imagery Access Target (PIATGB)

				inges	
FIELD	NAME	SIZE	FMT	VALUE RANGE	TYPE
TGTUTM	Target UTM	15	A/N	XXXNNnnnnnnnn	0
PIATGAID	Target Identification	15	A/N	6 character Area Target ID	0
				10 Character BE, or	
				15 character BE + suffix	
PIACTRY	Country Code	2	A/N	FIPS 10-4	0
PIACAT	Category Code	5	N	DIAM 65-3-1	0
TGTGEO	Target Geographic Coordinates	15	A/N	ddmmssXdddmmssY	0
DATUM	Target Coordinate Datum	3	A/N	In accordance with Appendix B, Attachment 10, XI-DBDD-08 93 Aug 93.	Ο
TGTNAME	Target Name	38	A/N	alphanumeric target names	0
PERCOVER	Percentage of Coverage	3	Ν	000 to 100	0
TGTLAT	Target Latitude	10	N	<u>+</u> dd.ddddd - where "+" is northern hemisphere and "-" is southern hemisphere. NOTE: Provide the value only to the decimal places (precision) warranted by the sources and methods used to determine the location. The remaining places will be blank.	0

Table 6-8. PIATGB Data and Ranges

FIELD	NAME	SIZE	FMT	VALUE RANGE	TYPE
TGTLON	Target Longitude	11	Ν	<u>+</u> ddd.ddddd - where "+" is eastern hemisphere and "-" is western hemisphere. NOTE: Provide the value only to the decimal places (precision) warranted by the sources and methods used to determine the location. The remaining places will be blank.	Ο

Table 6-8. PIATGB Data and Ranges (continued)

	Table 6-9. Description of PIATGB Data Fields				
FIELD	VALUE DEFINITIONS AND CONSTRAINTS				
TGTUTM	Identifies the Universal Transverse Mercator (UTM) grid coordinates that equate to the geographic coordinates of the target element.				
PIATGAID	Identifies a point or area target (DSA, LOC or BAS).				
PIACTRY	Identifies the country in which the geographic coordinates of the target element reside.				
PIACAT	Classifies a target element by its product or the type of activity in which it can engage.				
TGTGEO	Specifies a point target's geographic location in latitude and longitude.				
DATUM	Identifies the datum of the map used to derive the target coordinates (UTM or GEO).				
TGTNAME	Identifies the official name of the target element based on the MIIDS/IDB name.				
PERCOVER	Percentage of the target covered by the image.				
TGTLAT	Specifies a point target's geographic location in latitude (in decimal degrees).				
TGTLON	Specifies a point target's geographic location in longitude (in decimal degrees).				

6.4 Profile for Imagery Access Person Identification Extension - Version B

The Person Extension is designed to identify information contained in the Imagery Archive that is directly related to a person(s) contained in a data type (image, symbol, label, and text). This extension shall be present for each person identified in a data type. There may be up to 500 occurrences of this extension for each data type in an NITF file. When present, these extension(s) shall be contained within the appropriate data type (image, symbol, label or text) extended subheader data field of the data type subheader or within an overflow DES if there is insufficient room to place the entire extension(s) within the data type extended subheader data field.

	Tuble e fer i fernie fer inlager	<i>, , , , , , , , , ,</i>		
FIELD	NAME	SIZE	VALUE RANGE	TYPE
CETAG	Unique Extension Type ID	6	PIAPEB	R
CEL	Length of PIAPEB Extension	5	00094	R
CEEDATA	User-Defined Data	94	table 6-11	R

Table 6-10. Profile for Imagery Access Person (PIAPEB)

Table 6-11. PIAPEB Data and Ranges						
FIELD	NAME	SIZE	FMT	VALUE RANGE	TYPE	
LASTNME	Last Name	28	A/N	alphanumeric	0	
FIRSTNME	First Name	28	A/N	alphanumeric	0	
MIDNME	Middle Name	28	A/N	alphanumeric	0	
DOB	Birth Date	8	A/N	CCMMDDYY	0	
ASSOCTRY	Associated Country	2	A/N	Per FIPS 10-4	0	

. . . ~ . . .

Table 6-12. Description of PIAPEA Data Fields				
FIELD	VALUE DEFINITIONS AND CONSTRAINTS			
LASTNME	Identifies the surname of individual captured in an image.			
FIRSTNME	Identifies the first name of individual captured in an image.			
MIDNME	Identifies the middle name of individual captured in an image.			
DOB	Identifies the birth date of the individual captured in the image.			
ASSOCTRY	Identifies the country the person captured in the image is/are associated with.			

Table 6.12 Description of PLAPEA Data Fields

6.5 Profile for Imagery Access Event Extension - Version A

The Event Extension is designed to provide an area for specific information about an event or events that are identified on an image. This extension shall be present for each event identified in an image. There may be up to 100 of these extensions present for each data type in a NITF file. When present, these extension(s) shall be contained within the appropriate data type (image, symbol, label or text) extended subheader data field of the data type subheader or within an overflow DES if there is insufficient room to place the entire extension(s) within the data type extended subheader data field.

	Table e let i lette let inage			
FIELD	NAME	SIZE	VALUE RANGE	TYPE
CETAG	Unique Extension Type ID	6	PIAEVA	R
CEL	Length of PIAEVA Extension	5	00046	R
CEDATA	User-Defined Data	46	table 6-14	R

Table 6-13. Profile for Imagery Access Event (PIAEVA)

FIELD	NAME	SIZE	FMT	VALUE RANGE	TYPE
EVENTNAME	Event Name	38	A/N	alphanumeric	0
EVENTTYPE	Event Type	8	A/N	POL, DIS, COMMO,	0
				MILEX, ECON, NUC,	
				SPACE, MILMOV,	
				CIVIL	

Table 6-14. PIAEVA Data and Ranges

Table 0-13. Description of FIALVA Data fields				
FIELD	VALUE DEFINITIONS AND CONSTRAINTS			
EVENTNAME	The recognized name of the event.			
EVENTTYPE	Indicates the generic type of event associated with the product.			

Table 6-15. Description of PIAEVA Data Fields

6.6 Profile for Imagery Access Equipment Extension - Version A

The Equipment Extension was created to provide space in the NITF file for data contained in the archive that is specifically related to equipment that is contained in an image. This extension shall be present for each instance of equipment identified in an image. There may be up to 250 occurrences of this extension for each data type in an NITF file. When present, these extension(s) shall be contained within the appropriate data type (image, symbol, label or text) extended subheader data field of the data type subheader or within an overflow DES if there is insufficient room to place the entire extension(s) within the data type extended subheader data field.

Table 6 16. Theme for imagery Addess Equipment (TAEQA)						
FIELD	NAME	SIZE	VALUE RANGE	TYPE		
CETAG	Unique Extension Type ID	6	PIAEQA	R		
CEL	Length of PIAEQA	5	00130	R		
CEDATA	User-Defined Data	130	table 6-17	R		

Table 0-17. TIALQA Data and Nanges						
FIELD	NAME	SIZE	FMT	VALUE RANGE	TYPE	
EQPCODE	Equipment Code	7	A/N	NGIC Foreign Equipment Guide	0	
EQPNOMEN	Equipment Nomenclature	45	A/N	NGIC Foreign Equipment Guide	0	
EQPMAN	Equipment Manufacturer	64	A/N	alphanumeric	0	
OBTYPE	OB Type	1	A/N	MIIDS/IDB	0	
ORDBAT	Type Order of Battle	3	A/N	EARS 1.1	0	
CTRYPROD	Country Produced	2	A/N	FIPS 10-4	0	
CTRYDSN	Country Code Designed	2	A/N	FIPS 10-4	0	
OBJVIEW	Object View	6	A/N	Right, Left, Top, Bottom, Front, Rear	0	

Table 6-17. PIAEQA Data and Ranges

Table 6-18. Description of PIAEQA Data Fields				
FIELD	VALUE DEFINITIONS AND CONSTRAINTS			
EQPCODE	A unique designated equipment code identifying a category of equipment.			
EQPNOMEN	Nomenclature used to identify a piece of equipment.			
EQPMAN	Identifies the manufacturer of a piece of equipment.			
OBTYPE	Indicates the type of order of battle according to MIIDS/IDB			
ORDBAT	Indicates the type of order of battle according to EARS 1.1			
CTRYPROD	Identifies the country that produced the object			
CTRYDSN	Identifies the country that designed the original object			
OBJVIEW	View of the object.			

6.7 Image Access Data Element Mapping to NITF

The following table maps all Imagery Access data elements to their proper location in a NITF file when transmitting imagery data and associated metadata.

	ige neesse Data Element	i mapping to titti
SPIA ELEMENT	NITF ELEMENT	NITF LOCATION
ABPP (N2)	ABPP	IMAGE SUBHEADER
ACCESSID (A/N64)	ACCESSID	PIAPRC, PIAPRD
ANGLETONORTH (N3)	ANGLE TO NORTH	USEN1A, USEN2A, USEN2B,
		EXPLTA, EXQPTA, USE00A
ASSOCTRY (A2)	ASSOCTRY	PIAPEA, PIAPEB
ASSRPT (A/N20)	ASSRPT	PIAPRC, PIAPRD
ATEXT (A/N255)	ATEXT	PIAPRC, PIAPRD
AUTHORITY (A/N20)	FSCAUT (2500A)	HEADER
ATUHORITY (A/N40)	FSCAUT (2500B)	
AUTHTYP (A/N 1)	FSCATP (2500B)	HEADER
CAMSPECS (A/N 32)	CAMSPECS	PIAIMB, PIAIMC
CAT (N5)	PIACAT	PIATGA, PIATGB
CLASS (A1)	FSCLAS	HEADER
CLASSRSN (A/N 1)	FSCRSN (2500B)	HEADER
CLASSYS (A/N 2)	FSCLSY (2500B)	HEADER
CLASTXT (A/N 44)	FSCLTX (2500B)	HEADER
CLEVEL (N2)	CLEVEL	HEADER
CLOUDCVR (N3)	CLOUDCVR	PIAIMB, PIAIMC
CODEWORDS (A/N40)	FSCODE (2500A)	HEADER
CODEWORDS (A/N11)	FSCODE (2500B)	
COMGEN (N2)	COMGEN	PIAIMB, PIAIMC
CONTROL (A/N40)	FSCTLH (2500A)	HEADER
CONTROL (A/N2)	FSCTLH (2500B)	
CTRYCD (A2)	PIACTRY	PIATGA, PIATGB
CTRYDSN (A2)	CTRYDSN	PIAEQA
CTRYPROD (A2)	CTRYPROD	PIAEQA
DATUM (A3)	DATUM	PIATGA, PIATGB
DOB (A/N6)	DOB	PIAPEA
DOB (A/N8)	DOB	PIAPEB
DWNG (A/N6)	FSDDVT (2500A)	HEADER
WNGFEVT (A/N40)	FSDEVT (2500A)	HEADER
DECLASTYP (A/N 2)	FSDCTP (2500B)	HEADER
DECLASSDTE (A/N 8)	FSDCDT (2500B)	HEADER
DECLASXMP (A/N 4)	FSDCXM (2500B)	HEADER
DWNGRD (A/N 1)	FSDG (2500B)	HEADER
DWNDTE (A/N 8)	FSDGDT (2500B	HEADER
EQPCODE (A/N7)	EQPCODE	PIAEQA
EQPMAN (A64)	EQPMAN	PIAEQA

Table 6-19	Image	Access	Data	Flement	mannin	a to NITE
	maye		σαια	LICINCII	παρρπι	

SPIA ELEMENT	NITF ELEMENT	NITF LOCATION
EQPNOMEN (A/N45)	EQPNOMEN	PIAEQA
ESD (A1)	ESD	PIAIMB, PIAIMC
EVENTNAME (A/N38)	EVENTNAME	PIAEVA
EVENTTYPE (A8)	EVENTTYPE	PIAEVA
FCNTLNR (A/N15)	FSCTLN (2500B)	HEADER
FIRSTNME (A/N 28)	FIRSTNME	PIAPEA, PIAPEB
FMCONTROL(A/N32)	FMCONTROL	PIAPRC, PIAPRD
GENERATION(N1)	GENERATION	PIAIMB, PIAIMC
ICAT(A8)	ICAT	IMAGE SUBHEADER
ICORDS (A1)	ICORDS	IMAGE SUBHEADER
ICRNPTS (N84)	IGEOLO (TRUNCATED	IMAGE SUBHEADER
	TO N60)	
IDATUM (A/N3)	IDATUM	PIAIMC
IELLIP (A/N3)	IELLIP	PIAIMC
IGEOLO (A/N60)	IGEOLO	IMAGE SUBHEADER
IMAGEID (A/N80)	ITITLE	IMAGE SUBHEADER
IPROJ (A/N2)	IPROJ	PIAIMC
IREP (A8)	IREP	IMAGE SUBHEADER
KEYWORD (A/N 255)	KEYWORD	PIAPRC, PIAPRD
LASTNME (A/N28)	LASTNME	PIAPEA, PIAPEB
LICENSE (A/N50)	ICOM (License values	IMAGE SUBHEADER
	will be transmitted in the	
	first 50 bytes of the	
	comments field)	
MAPID (A/N40)	MAPID	PIAPRC, PIAPRD
MEANGSD (N5)	MEAN_GSD	USEN1A, EXOPTA, USE00A
MEANGSD (N7)	MEAN_GSD	PIAIMC
MIDNME (A/N28)	MIDNME	PIAPEA, PIAPEB
MISSION (A/N7)	PIAMSNNUM	PIAIMB, PIAIMC
NBANDS (N1)	NBANDS (2500A)	IMAGE SUBHEADER
NBANDS (N5)	XBANDS (2500B)	
NCOLS (N8)	NCOLS	IMAGE SUBHEADER
NIIRS (N3)	NIIKS	USENIA MIDI VA IMIDI VD
NDOWE (NO)	NRIS	IVIDLKA, IVIDLKD
	NROWS ODWEW	IMAGE SUBHEADER
OBJVIEW (A0)	OBLANC	LISENIA EVODTA LISEOOA
OBLANGLE (N3)	OBL_ANG	DIAEOA
OBTIFE(AT)	OPDRAT	PIAEQA
OTHERCOND (A2)	OTHERCOND	DIAIMP DIAIMC
DEDCOVED (N2)	DEDCOVED	DIATGA DIATGR
	MISSION	STDIDC
PLATID (A/N14)		
PPNUM (A/N4)	PPNUM	PIAPRC, PIAPRD
PREPROC (A/N2)	PREPROC	PIAIMC
PRODCODE (A2)	PRODCODE	PIAPRC, PIAPRD
PRODCRTIME (A/N14)	PRODCRTIME	PIAPRC, PIAPRD
PRODFMT(A9)	FHDR	HEADER
PRODESIZE (N12)	FL	HEADER
		PLAPEC PLAPE
PKODSNME (A/N10)	PRODSNME	PIAPRC, PIAPRD

Table 6-19. Image Access Data Element mapping to NITF (continued)

SPIA ELEMENT	NITF ELEMENT	NITF LOCATION
PRODTITLE (A/N50)	FTITLE	HEADER
PRODUCERCD (A 2)	PRODUCERCD	PIAPRC, PIAPRD
PRODUCERSE (A/N 6)	PRODUCERSE	PIAPRC, PIAPRD
PROJID (A2)	PROJID	PIAIMB, PIAIMC
RELEASE (A/N40)	FSREL	HEADER
REQORG (A/N64)	REQORG	PIAPRC, PIAPRD
RPC (A1)	SUCCESS	RPC00A
SATTRACK	SATTRACK	PIAIMC
SECTITLE (A/N40)	SECTITLE	PIAPRC, PIAPRD
SENSMODE (A/N12)	SENSMODE	PIAIMB, PIAIMC
SENSNAME (A/N18)	SENSNAME	PIAIMB, PIAIMC
SOURCE (A/N255)	SOURCE	PIAIMB, PIAIMC
SRCDTE	FSSRDT (2500B)	HEADER
SRP (A1)	SRP	PIAIMB, PIAIMC
STEREOID (A/N40)	ST_ID	STREOA
STEREOID (A/N60)	ST_ID	STREOB, STEROB
SUBDET (A1)	SUBDET	PIAPRC, PIAPRD
SUBQUAL (A1)	SUBQUAL	PIAIMB, PIAIMC
SUNAZ(N3)	SUN_AZ	MPDN1A, USE00A, EXOPTA
SUNELEV (N3)	SUN_EL	MPDN1A, USE00A, EXOPTA
TGTGEO (A/N15)	TGTGEO	PIATGA, PIATGB
TGTID (A/N15)	PIATGAID	PIATGA, PIATGB
TGTLAT (N10)	TGTLAT	PIATGB
TGTLON (N11)	TGTLON	PIATGB
TGTNAME (A/N38)	TGTNAME	PIATGA
TGTUTM (A/N16)	TGTUTM	PIATGA
TIMECOLL (A/N14)	IDATIM	IMAGE SUBHEADER
TPP (N3)	ТРР	PIAPRC, PIAPRD

Table 6-19. Image Access Data Element mapping to NITF (continued)

7.0 Commercial Support data extension (SDE)

7.1 Generic Tagged Extension Mechanism

The tagged record extensions defined in this document are CEs as defined in Section 5.9 of the NITF 2.0 document. The CE format is summarized here for ease of reference. Tables 7-1 and 7-2 describe the general format of a CE. NOTE: All blanks or spaces in this document are defined as ASCII spaces (i.e. hex '20') and are used interchangeably.

	i conditional						
FIELD	NAME	SIZE	VALUE RANGE	TYPE			
CETAG	Unique Extension Type Identifier	6	alphanumeric	R			
CEL	Length of CEDATA Field	5	00001 to 99985	R			
CEDATA	User-Defined Data	+	User-defined	R			
CETAG CEL CEDATA	Unique Extension Type Identifier Length of CEDATA Field User-Defined Data	6 5 †	alphanumeric 00001 to 99985 User-defined	R R R			

Table 7-1 Controlled Tagged Record Extension Format R = required, C = conditional

† Equal to value of CEL field

All fields of all of the tags defined within this section are of type "Required".

Table 7-2 Controlled Tagged Record Extension Field Description	Table 7-2	-2 Controlled	Tagged Record	Extension	Field	Descriptions
--	-----------	---------------	----------------------	-----------	-------	--------------

FIELD	VALUE DEFINITIONS AND CONSTRAINTS
CETAG	This field shall contain a valid alphanumeric identifier properly registered with the NTB.
CEL	This field shall contain the length in bytes of the data contained in CEDATA. The tagged record's length is 11+ the value of CEL.
CEDATA	This field shall contain data of either binary or character data types defined by and formatted according to user specification. The length of this field shall not cause any other NITF field length limits to be exceeded but is otherwise fully user-defined.

The CETAG and CEL fields essentially form a small (11 byte) tagged record subheader. The format and meaning of the data within the CEDATA field is the subject of this section for several, individual CEs.

Multiple tagged extensions can exist within the TRE area. There are several such areas, each of which can contain up to 99,999 bytes worth of tagged extensions. There is also an overflow mechanism, should the sum of all tags in an area exceed 99,999 bytes. The overflow mechanism allows for up to 1 Gbyte of tags. Figure 7-1 shows a diagram of the tagged extension locations within the NITF 2.0 file structure.

While the extensions defined in this document will typically be found in the image subheader, it is possible that they could appear in a DES that is being used as an overflow of the image subheader.

STDI-0002, VERSION 2.0, 4 MARCH 1999 COMMERCIAL SUPPORT DATA EXTENSION FOR THE NATIONAL IMAGERY TRANSMISSION FORMAT VERSION 0.9, 25 SEPTEMBER 1997

FIGURE 7-1. ILLUSTRATION OF ANGLES INVOLVED IN STEREO IMAGERY

7.2 STDIDC - Standard ID

The Standard ID extension contains image identification data that supplements the image subheader. Some parameters in this extension may be used by USIGS compliant systems. The format and description for the user-defined fields of the STDIDC extension are detailed in table 7-3. A single STDID is placed in the image subheader; where several images relate to a single scene; an STDIDC may be placed in each applicable image subheader. Note: The fields ACQUISITION_DATE through END_ROW constitute an image ID which is used by other SDEs (e.g., STREOB) to designate unique images for associating imagery pairs or sets.

FIELD	NAME	SIZE	VALUE RANGE	UNIT	TYPE
CETAG	Unique Extension Identifier	6	STDIDC	N/A	R
CEL	Length of Data Field	5	00089	bytes	R
The following fields define	STDIDC			1	
ACQUISITION_DATE	<u>Acquisition Date</u> . This field shall contain the date of the collection mission (date of aircraft takeoff) in the format YYYYMMDDHHMMSS, in which YYYY is the year, MM is the month (01 to 12), DD is the day of the month (01 to 31), HH is the hour (0 to 23), MM is the minute (0 to 59) and SS (00 to 59) is the second (00 to 59). The date changes at midnight UTC. This field is equivalent to the IDATIM field in the image subheader.	14	YYYYMMDDHHMMSS		R
MISSION	<u>Mission Identification</u> . Fourteen character descriptor of the vehicle. For satellite, identifies the specific vehicle as source of image data. For aerial, identifies the scanner.	14	alphanumeric Valid values as per list maintained by JITC		R
PASS	Pass Number. A number in the range 01 to 99 shall identify each pass or flight per day. In order to ensure uniqueness in the image id, if the satellite or aerial mission extends across midnight UTC, the pass number shall be 01 through 99 on images acquired before midnight UTC and Ax on images acquired after midnight UTC; for extended missions Bx, Zx shall designate images acquired on subsequent days (where x is in the range of 0 to 9).	2	alphanumeric 01 to 99, A1 to A9 B1 to B9 Z1 to Z9		R

 TABLE 7-3.
 User-Defined Fields STDIDC ID EXTEnsion Format

 R = Required, C = Conditional, <> = null data allowed.

TABLE 7-3.	USER-DEFINED FIELDS STDIDC ID EXTENSION FORMAT	(CONTINUED)
		、

FIELD	NAME	SIZE	VALUE RANGE	UNIT	TYPE
OP_NUM	<u>Image Operation Number</u> . Imaging operations numbers shall increase within each Imaging System pass. A value of "000" indicates that the system does not number imaging operations. For video systems, this field will contain the frame number within the acquisition date and time.	3	000 to 999		R
START_SEGMENT	Start Segment ID Identifies images as separate pieces (segments) within an imaging operation. AA is first segment; AB is second segment, etc.	2	AA to ZZ		R
REPRO_NUM	<u>Reprocess Number</u> . This field indicates whether the data was reprocessed to overcome initial processing failures, or has been enhanced. A "00" in this field indicates that the data is an originally processed image, "01" indicates the first reprocess/enhancement, etc.	2	00 to 99		R
REPLAY_REGEN	Replay(remapping) imagery modeshall provide the capability to alterthe digital processing of previouslyrecorded digital imagery.RegenRegen regeneration imagery modeprovides the capability to produce animage identical to the image that wasproduced in initial process. Theimages are used as replacements forimages damaged during productionA "000" in this field indicates that thedata is an originally processed image.	3	alphanumeric		R
BLANK_FILL	Blank Fill	1	blank or _		<r></r>
START_COLUMN	<u>Starting Column Block</u> . For tiled (blocked) sub-images, the starting column block is defined as the offset, in blocks, of the first block in the cross-scan direction relative to start of the original reference image tiling.	3	001 to 999		R

I ABLE 7-3. USER-DEFINED FIELDS ST DIDC ID EXTENSION FORMAT (CONTINUED)

FIELD	NAME	SIZE	VALUE RANGE	UNIT	TYPE
START_ROW	<u>Starting Row Block</u> . For tiled (blocked) sub-images, the starting row block is defined as the offset, in blocks, of the first block in the along- scan direction relative to start of the original reference image tiling.	5	00001 to 99999		R
END_SEGMENT	Ending Segment ID of this file	2	AA to ZZ		R
END_COLUMN	Ending Column Block. For tiled (blocked) sub-images, the ending column block is defined as the offset, in blocks, of the last block of the image in the cross-scan direction relative to start of the original reference image tiling.	3	001 to 999		R
END_ROW	Ending Row Block. For tiled (blocked) sub-images, the ending row block is defined as the offset, in blocks, of the last block in the along- scan direction relative to start of the original reference image tiling.	5	00001 to 99999		R
COUNTRY	<u>Country Code</u> . Two letter code defining the country for the reference point of the image. Standard codes may be found in FIPS PUB 10-4.	2	AA to ZZ		<r></r>
WAC	World Aeronautical Chart. 4 number World Aeronautical Chart for the reference point of the image segment. World Aeronautical Chart grids the earth into regions with a 4 number ID.	4	0001 to 1866		<r></r>

FIELD	NAME	SIZE	VALUE RANGE	UNIT	TYPE
LOCATION	Location. The natural reference point of the sensor; provides a rough indication of geographic coverage. The format DDMMX represents degrees (00 to 89) and minutes (00 to 59) of latitude, with $X = N$ or S for north or south, and DDMMY represents degrees (000 to 179) and minutes (00 to 59) of longitude, with Y = E or W for east or west, respectively. For SAR imagery, the reference point is normally the center of the first image block. For EO-IR imagery, the reference point for framing sensors is the center of the frame; for continuous sensors, it is the center of the first line.	11	DDMMXDDDMMY		R
	reserved	5	spaces		<r></r>
	reserved	8	spaces		<r></r>

TABLE 7-3. USER-DEFINED FIELDS STDIDC ID EXTENSION FORMAT (CONTINUED)

7.3 **USE00A - Exploitation Usability**

The Exploitation Usability extension is intended to allow a user program to determine if the image is usable for the exploitation problem currently being performed. It also contains some catalogue metadata. The format and descriptions for the user-defined fields of the USE00A are detailed in table 7-4.

FIFI D	NAME	SIZE	VALUE RANGE	UNITS	TYPE
	Luizza Extension Identifien	6			D
CETAG		6	USEUUA	IN/A	ĸ
CEL	Length Data Fields	5	00107	bytes	R
The following fields defin	e USE00A	1		- 1	
ANGLE_TO_NORTH	<u>Angle to North</u> . Angle to true north measured clockwise from first row of the image	3	000 to 359	degrees	R
MEAN_GSD	<u>Mean Ground Sample Distance</u> . The geometric mean of the cross and along scan center-to-center distance between contiguous ground samples. A ccuracy = $\pm 10\%$ Note: Systems requiring an extended range shall insert a default value of "000.0" for this field and utilize the PIAMC tag.	5	000.0 to 999.9	inches	R
	reserved	1	spaces		<r></r>
DYNAMIC_RANGE	Dynamic Range. Dynamic range of pixels in image.	5	00000 to 99999		<r></r>
	reserved	3	spaces		<r></r>
	reserved	1	spaces		<r></r>
	reserved	3	spaces		<r></r>
OBL_ANG	Obliquity Angle	5	00.00 to 90.00	degrees	<r></r>
ROLL_ANG	Roll Angle	6	<u>+</u> 90.00	degrees	<r></r>
	reserved	12	spaces		<r></r>
	reserved	15	spaces		<r></r>
	reserved	4	spaces		<r></r>
	reserved	1	space		<r></r>
	reserved	3	spaces		<r></r>
	reserved	1	spaces		<r></r>
	reserved	1	space		<r></r>

Table 7-4. USEOOA - Exploitation Usability Extension Format R = Required, C = Conditional, <> = null data allowed

FIELD	NAME	SIZE	VALUE RANGE	UNITS	TYPE
N_REF	Number of Reference Lines. Number of reference lines in the image. For each reference line, there will be a REFLNA extension in the NITF file.	2	00 to 99		R
REV_NUM	<u>Revolution Number.</u> The revolution number in effect at the northernmost point of orbit.	5	00001 to 99999		R
N_SEG	Number of Segments	3	001 to 999		R
MAX_LP_SEG	Maximum Lines Per Segment. Maximum number of lines per segment, including overlap lines. The maximum number of lines per segment depends upon the aggregation mode of the collector.	6	000001 to 999999		<r></r>
	reserved	6	spaces		R
	reserved	6	spaces		R
SUN_EL	Sun Elevation. In degrees measured from the target plane at intersection of the optical line of sight with the earth's surface at the time of the first image line. Default value, if data is not available, is 999.9.	5	-90.0 to +90.0, or 999.9	degrees	R
SUN_AZ	<u>Sun Azimuth</u> . In degrees measured from true North clockwise (as viewed from space) at the time of the first image line. Default value, if data is not available, is 999.9.	5	000.0 to 359.0, or 999.9	degrees	R

Table 7-4. USE00A - Exploitation Usability Extension Format (continued)

STDI-0002, VERSION 2.0, 4 MARCH 1999 COMMERCIAL SUPPORT DATA EXTENSION FOR THE NATIONAL IMAGERY TRANSMISSION FORMAT VERSION 0.9, 25 SEPTEMBER 1997

7.4 STREOB - Stereo Information

The STREO extension provides links between several images that form a stereo set to allow exploitation of elevation information. There can be up to 3 STREO extensions per image. The format and descriptions for the User Defined fields of the STREOB extension is detailed in table 7-5. The Stereo geometry definitions for Bisector Elevation Angle (BIE), convergence angle, and asymmetry angle are specified in paragraph 2.3.1.

FIELD	NAME	SIZE	VALUE RANGE	UNITS	TYPE
CETAG	Unique Extension Identifier	6	STREOB	N/A	R
CEL	Length of Data Field	5	00094	bytes	R
The Following Fields I	Define STREOB :		•		
ST_ID	Stereo Mate. The image ID of the first stereo mate. The fields ACQUISITION_DATE through END_ROW in the STDIDC tag constitute the image ID.	60	alphanumeric	N/A	R
N_MATES	<u>Number of Stereo Mates</u> . If there are no stereo mates, there will not be any STREOB (TBR) extensions in the file. If there is a STREOB (TBR) extension, then there will be at least 1 stereo mate.	1	1 to 3	N/A	R
MATE_INSTANCE	Mate Instance identifies which stereo mate is described in that extension. For example, this field contains a 2 for the second stereo mate.	1	1 to 3	N/A	R
B_CONV	Beginning Convergence Angle defined at the first lines of the fore/left and aft/right images, unless those images are more than 90 degrees apart. If the images are more than 90 degrees apart, the first line of the fore and the last line of the aft shall be used.	5	00.00 to 90.00	degrees	<r></r>
E_CONV	Ending Convergence Angle defined at the last lines of the fore/left and aft/right images, unless those images are more than 90 degrees apart. If the images are more than 90 degrees apart, the last line of the fore and the first line of the aft shall be used.	5	00.00 to 90.00	degrees	<r></r>

Table 7-5. STREOB - Stereo Information Extension Forma	at
R = Required, C = Conditional, <> = null data allowed	

FIELD	NAME	SIZE	VALUE RANGE	UNITS	TYPE
B_ASYM	Beginning Asymmetry Angle defined at the first lines of the fore/left and aft/right images, unless those images are more than 90 degrees apart. If the images are more than 90 degrees apart, the first line of the fore and the last line of the aft shall be used.	5	00.00 to 90.00	degrees	<r></r>
E_ASYM	Ending Asymmetry Angle defined at the last lines of the fore/left and aft/right images, unless those images are more than 90 degrees apart. If the images are more than 90 degrees apart, the last line of the fore and the first line of the aft shall be used.	5	00.00 to 90.00	degrees	<r></r>
B_BIE	Beginning BIE less Convergence Angle of Stereo Mate, defined at the first lines of the fore/left and aft/right images, unless those images are more than 90 degrees apart. If the images are more than 90 degrees apart, the first line of the fore and the last line of the aft shall be used.	6	<u>+</u> 90.00	degrees	<r></r>
E_BIE	Ending BIE less Convergence Angle of Stereo Mate, defined at the last lines of the fore/left and aft/right images, unless those images are more than 90 degrees apart. If the images are more than 90 degrees apart, the last line of the fore and the first line of the aft shall be used.	6	± 90.00	degrees	<r></r>

Table 7-5. STREOB - Stereo Information Extension Format (continued)

7.5 Stereo Geometry Definitions

Refer to figure 7-1. Stereo geometry is often described in terms of convergence angle and asymmetry angle at a ground point defined by radius vector \overline{R} . These angles are measured in the plane formed by the two lines of sight (one for each image) to the ground point. Given the geocentric radius vectors to the sensor's principle point for the two images, \overline{R}_{01} and \overline{R}_{02} , the two line of sight vectors to the ground point are given by:

$$\overline{L}_1 = \overline{R} - \overline{R}_{01}$$
$$\overline{L}_2 = \overline{R} - \overline{R}_{02}$$

Where all of the above vectors are defined in the S_E coordinate system. Let:

$$\hat{q}_1 = -\overline{L}_1 / |\overline{L}_1|$$
$$\hat{q}_2 = -\overline{L}_2 / |\overline{L}_2|$$

The convergence angle, C, is the angle between \hat{q}_1 and \hat{q}_2 and is given by:

$$C = \cos^{-1}(\hat{q}_1 \bullet \hat{q}_2), \quad 0 \le C \le \boldsymbol{p}$$

The asymmetry angle, $\bigstar 3$, at a ground point is the angle between the projection of \hat{Z}_T into the plane of the convergence angle and the bisector, B, of the convergence angle. \hat{Z}_T is the ground geocentric "up" and is defined by geocentric radius vector \overline{R} ,

$$\hat{Z}_T = \overline{R} / |\overline{R}|$$

Define vector \hat{A} perpendicular to the plane of the convergence defined by vectors \hat{q}_1 and \hat{q}_2 . Then:

$$\hat{\mathbf{A}} = (\hat{q}_1 \times \hat{q}_2) / |\hat{q}_1 \times \hat{q}_2|$$

The unit vector along the projection of \hat{Z}_T into the plane of the convergence, \hat{Z}'_T is given by:

$$\hat{Z}'_{T} = \hat{A} \times \left(\hat{Z}_{T} \times \hat{A}\right) / \left|\hat{A} \times \left(\hat{Z}_{T} \times \hat{A}\right)\right|$$

The unit vector along the bisector, \hat{B} , of the convergence angle (the angle between \hat{q}_1 and \hat{q}_2) is given by:

$$\hat{B} = (\hat{q}_1 + \hat{q}_2) / |\hat{q}_1 + \hat{q}_2|$$

The asymmetry angle is computed by:

$$\Delta \Sigma = \cos^{-1} \left(\hat{B} \bullet \hat{Z}'_{T} \right), \quad 0 \le \Delta \Sigma \le \boldsymbol{p}/2$$

If \hat{Z}'_{T} lies in the positive Along-Track (A/T) direction from \hat{B} ,

$$\hat{\mathbf{A}} \bullet \left(\hat{\mathbf{Z}}_{T}^{\prime} \times \hat{\mathbf{B}} \right) < 0$$

Note that figure 7-1 shows $\hat{Z'}_T$ in the minus A/T direction from \hat{B} . The elevation angle of the bisector of the Stereo Convergence Angle, BIE is given by:

$$BIE = \sin^{-1}\left(\hat{Z}_T \bullet \hat{B}\right)$$

7.6 Exploitation and Mapping Support Data (TBR)

The Exploitation and Mapping Support Data Extension will provide the necessary information to perform accurate geo-positioning and mensuration. The Government has agreed to provide resolution as to form and content.

Background. This data extension may be executed in either of two methods:

- 1) A Rational Polynomial Relating Position to Image Coordinates plus Associated Error Propagation
 - Candidate Models: RPC, Universal Math Model
 - Technique does require user to maintain proprietary sensor camera models
 - Issues with regard to accuracy, precision & error propagation to be addressed for mapping applications
 - 2) Ephemeris -based Geo-positioning
 - Allows user to perform triangulation to determine location and associated errors
 - Requires use of rigorous projection models
 - Issues regarding:
- a) Maintenance of Camera Models for each sensor platform
- b) Proprietary Camera Models
- c) User System Implementation requires extensive documentation of camera models and ephemeris reduction techniques for each satellite sensor.
- d) Standard ephemeris data format for all commercial vehicles.

8.0 Airborne Support Data Extension (SDE)

8.1 Overview

That set of support data needed to accomplish the mission of a system receiving a NITF file is referred to as "appropriate" support data. The appropriate support data may vary across systems receiving NITF files. A system receiving a NITF file may add or subtract support data before passing the file to another system with a different mission. This strategy implies a modular support data definition approach.

This section specifies the format and content of a set of Tagged Record Extensions for the NITF file format. The specified tagged records incorporate all SDEs relevant to synthetic aperture radar (SAR), visible (EO), infrared (IR), multispectral (MSI), and hyperspectral (HSI) primary imagery. The information that makes up the SDE is derived from referenced interface documents. Systems using imagery formatted according to NITF from airborne sensors should be designed to extract the needed data from the tagged records described herein.

8.1.1 Technical Assistance

The standardization, use and application of the ASDE defined in this specification is a new, largely untried venture for the airborne imaging community. The Imagery Standards Management Committee (ISMC) NITFS Technical Board (NTB) has authorized an activity within the Format Working Group (FWG) ad-hoc working group to provide technical oversight and assistance for the initial implementers of this specification. The objective of this FWG activity working group is to validate that the specification is correct, complete, consistent, unambiguous, and testable for compliance. The working group provides a forum where those implementing to the specification can come and benefit from the experience of others attempting to implement, a central place to get consolidated 'lessons learned' from other attempts to implementers. They are especially interested in specific situations where strict adherence to the specification may result in 'nonsensical' population of the data fields in image products. Users and implementers of this specification are highly encouraged to contact and participate in the NTB working group. Contact may be made through the NTB Chairman, see the NTB home page at URL://www.ismc.nima.mil/ntb/.

8.1.2 Defined Support Data Extensions

Table 8-1 lists the support data extensions described in this chapter, and whether they are required for airborne imagery. They are defined for use with EO, infrared IR and MSI collected on airborne sensor platforms. Several are similar to existing and proposed extensions developed by other programs and sensors, and can be considered aliases to those extensions (e.g., AIMIDB is nearly identical with STDIDC used for commercial satellite imagery).

Req. = Required, OPT. = OPTIONAL, N/A = NOT APPLICABLE						
TITLE	TAG	SAR	EO	IR	MSI/HSI	MTI-ONLY
Aircraft Information	ACFTA	Rea	Rea	Rea	Rea	Reg
	ACFTB	Req.	Req.	Req.	Req.	Req.
Additional Image	AIMIDA	Peg	Pag	Pag	Peg	Ont
Identification	AIMIDB	Keq.	Keq.	Keq.	Keq.	Opt.
Multispectral/ Hyperspectral	BANDSA	N/A	Opt	Opt	Ont	N/A
Band Parameters	DANDSA	\mathbf{N}/\mathbf{A}	Opt.	Opt.	Opt.	11/7
Image Block Information	BLOCKA	Opt.	Opt.	Opt.	Opt.	N/A
Exploitation Usability Optical	ΕΧΟΡΤ Δ	N/Δ	Opt	Opt	Ont	N/A
Information	LAOITA	\mathbf{N}/\mathbf{A}	Opt.	Opt.	Opt.	11/71
Exploitation Related	EXPLTA	Ont	N/A	N/A	N/A	Ont
Information	EXPLTB	Opt.	1 N / A	1 N / A	1N/A	Opt.
Airborne SAR Mensuration	MENSRA	Opt	N/A	N/A	N/A	NI/A
Data	MENSRB	Opt.	\mathbf{N}/\mathbf{A}	\mathbf{N}/\mathbf{A}	1N/A	1N/A
Exploitation Related	EXPLTA	Opt	N/A	N/A	N/A	Ont
Information	EXPLTB	Opt.	11/ Л	11/ Л	11/A	Opt.

 Table 8-1. Airborne Support Data Extensions

 Reo = Reoulder Ort = Ortional N/A = Not Applicable

TITLE	TAG	SAR	EO	IR	MSI/HSI	MTI-ONLY	
Airborne SAR Mensuration	MENSRA	Opt	N/A	N/A	N/A	N/A	
Data	MENSRB	Opt.	14/74	11/11	19/74	11/71	
Mensuration Data	MPDSRA	Opt.	N/A	N/A	N/A	N/A	
Mission Target	MSTGTA	Opt.	Opt.	Opt.	Opt.	Opt.	
Moving Target Information	MTIRPA	Ont	N/A	N/A	N/A	Rea	
Report	MTIRPB	Opt.	14/21	14/21	10/21	roq.	
Patch Information	PATCHA	TCHA Opt	N/A	N/A	N/Δ	N/A	
Taten mormation	PATCHB	Opt. N/A		14/71	11/74	11/71	
Rapid Positioning Data	RPC00B	Opt.	Opt.	Opt.	Opt.	N/A	
EO-IR Sensor Parameters	SENSRA	N/A	Req.	Req.	Req.	N/A	
Secondary Targeting Info	SECTGA	Opt.	Opt.	Opt.	Opt.	Opt.	
Stereo Information	STREOB	N/A	Opt.	Opt.	Opt.	N/A	

Each tag ends with a revision letter; the initial definition will uses the revision letter "A", and revised tags have names ending in "B" ("C","D", etc.) as revisions are approved. A transition plan for implementing tag changes will accompany any such revisions (typically, for a period of time, both the previous and subsequent versions should be supported by receivers of NITF products, while new producer implementations should use the latest versions.

The section that describes the purpose of an extension is titled without the revision letter, such that if the extension were to change, the purpose paragraph would not require changing. For example, section 8.3.3 describes the BANDS or Multispectral / Hyperspectral Band Parameters extension. The actual tag, however, is BANDSA. If in the future, a change is made, section 8.3.3 will continue to describe the BANDS or Multispectral / Hyperspectral Band Parameters extension of both the BANDSA and BANDSB tagged extensions.

8.1.3 Support Data Extension Placement

For NITF 2.0 files, ASDEs will be placed in Extended Header Data area of the respective file header or image subheader as required by each ASDE in this document. Optionally (or by necessity, due to collective byte content in the Extended Header Data area) ASDEs may be placed in appropriate "Controlled Extensions" overflow Data Extension Segment. For NITF 2.1 files, the placement will be same with one exception; in the event of the total byte count exceeding the size of the Extended Header Data area, ASDE placement may continue into the User Defined Data area before reverting to a "TRE_OVERFLOW" Data Extension Segment.

8.2 Technical Notes

8.2.1 Geospatial Coordinates

Figure 8-1 shows the earth coordinate frame, the local North-East-Down (NED) coordinate frame, and the platform location parameters: latitude and longitude. The platform location parameters define the location in earth coordinates of the sensor platform, or more specifically, the platform center of navigation. The center of navigation is the origin of the local NED coordinate frame; its location within the platform is defined uniquely for each platform and sensor. The local NED coordinates are North (N), East (E), and Down (D) as shown.

The earth surface in figure 8-1 is described in the World Geodetic System of 1984 (WGS-84) as two different model surfaces. The two surfaces are an ellipsoid and a geoid (see figure 8-2). The ellipsoid is an ideal mathematical surface; the geoid is the mean-sea-level surface of the earth as determined by gravitational potential (elevation of the geoid relative to the ellipsoid varies with location from -102 to +74 meters). Platform latitude and longitude are referenced to the ellipsoid, while platform altitude mean sea level (MSL) is defined with respect to the geoid: Altitude MSL is the vertical distance from mean sea level to the platform. The Global Positioning System is referenced to the ellipsoid.

STDI-0002, VERSION 2.1, 16 November 2000 AIRBORNE SUPPORT DATA EXTENSIONS (ASDE), VERSION 1.1, 16 NOVEMBER 2000

FIGURE 8-1. PLATFORM LOCATION COORDINATES

The Down-axis (D) of the NED coordinate frame lies normal to the geoid. That is, D lies in the direction of gravitational acceleration. The North-axis (N) and East-axis (E) lie in the geometric plane perpendicular to D (the horizontal plane), with N in the direction of True North.

8.2.2 Attitude Parameters: Heading, Pitch, And Roll

Heading, pitch, and roll relate the platform body coordinate frame to the local NED frame. Figure 8-3 shows the platform body coordinates. X_a is positive forward, along the roll axis. Y_a is positive right, along the pitch axis. Z_a is positive down, along the yaw axis. The platform body frame, like the local NED frame, has its origin at the center of navigation. Heading is the angle from north to the NED horizontal projection of the platform positive roll axis, X_a (positive from north to east). Pitch is the angle from the NED horizontal plane to the platform positive roll axis, X_a (positive when X_a is above the NED horizontal plane), and is limited to values between ±90 degrees. Roll is the rotation angle about the platform roll axis. Roll is positive if the platform positive pitch axis; Y_a (right wing) lies below the NED horizontal plane.

FIGURE 8-3. PLATFORM BODY COORDINATE FRAME

8.2.3 NITF Pixel Ordering

The NITF coordinate system is a left to right, top to bottom, coordinate system. Column numbers increase to the right, and row numbers increase downwards. The first pixel within a block is at the upper left, with subsequent pixels to the right along the row, until the last pixel of a row is followed by the left-most pixel of the next lower row. See figure 8-5.

Care must be taken to generate imagery with pixels ordered as specified by NITF.An historic coordinate system for some SAR systems is left to right, bottom up, with scan lines oriented in the direction of the radar beam (cross-track) and pixel locations representing distance (range). When mapping on the right side of the aircraft, the first pixel of each scan line is at minimum range with subsequent pixels at increasing range; when mapping on the left side, the first pixel of each scan line is at maximum range with subsequent pixels at decreasing range. See figure 8-4. Imagery from these, and other similar systems, will display *mirrored* on an NITF screen unless the pixels are reordered to be consistent with the NITF standard. Although this discussion specifically addresses some known SAR systems, similar care must be taken with EO/IR imagery to ensure correct pixel ordering within NITF files.

FIGURE 8-4. HISTORIC SAR SCANNING PATTERNS

STDI-0002, VERSION 2.1, 16 November 2000 AIRBORNE SUPPORT DATA EXTENSIONS (ASDE), VERSION 1.1, 16 NOVEMBER 2000

FIGURE 8-5. HISTORIC SAR COLLECTION RELATIONSHIP WITH THE NITF COORDINATE SYSTEM

8.2.4 Rational projection Model

The geometric sensor model describing the precise relationship between image coordinates and ground coordinates is known as a Rigorous Projection Model. A Rigorous Projection Model expresses the mapping of the image space coordinates of rows and columns (r,c) onto the object space reference surface geodetic coordinates (\boldsymbol{j} , \boldsymbol{l} , \boldsymbol{h}).

RPC00 supports a common approximation to the Rigorous Projection Models. The approximation used by RPC00 is a set of rational polynomials exp ressing the normalized row and column values, (r_n, c_n) , as a function of normalized geodetic latitude, longitude, and height, (P, L, H), given a set of normalized polynomial coefficients (LINE_NUM_COEF_n, LINE_DEN_COEF_n, SAMP_NUM_COEF_n, SAMP_DEN_COEF_n). Normalized values, rather than actual values are used in order to minimize introduction of errors during the calculations. The transformation between row and column values (r_c) , and normalized row and column values (r_n, c_n) , and between

the geodetic latitude, longitude, and height (\mathbf{j} , \mathbf{l} , h), and normalized geodetic latitude, longitude, and height (P, L, H), is defined by a set of normalizing translations (offsets) and scales that ensure all values are contained in the range -1 to +1.

P = (Latitude	- LAT_OFF)	÷ LAT_SCALE
L = (Longitude	- LONG_OFF)	÷ LONG_SCALE
H = (Height)	- HEIGHT_OFF)	÷ HEIGHT_SCALE
$r_n = (Row)$	- LINE_OFF)	÷ LINE_SCALE
$c_n = (Column$	- SAMP_OFF)	÷ SAMP_SCALE

The rational function polynomial equations are defined as:

$$r_{n} = \frac{\sum_{i=1}^{20} \text{LINE}_{NUM} \text{COEF}_{i} \cdot \rho_{i}(P, L, H)}{\sum_{i=1}^{20} \text{LINE}_{DEN} \text{COEF}_{i} \cdot \rho_{i}(P, L, H)} \text{ and } c_{n} = \frac{\sum_{i=1}^{20} \text{SAMP}_{NUM} \text{COEF}_{i} \cdot \rho_{i}(P, L, H)}{\sum_{i=1}^{20} \text{SAMP}_{DEN} \text{COEF}_{i} \cdot \rho_{i}(P, L, H)}$$

STDI-0002, VERSION 2.1, 16 November 2000 AIRBORNE SUPPORT DATA EXTENSIONS (ASDE), VERSION 1.1, 16 NOVEMBER 2000

The rational function polynomial equation numerators and denominators each are 20-term cubic polynomial functions of the form:

$$\sum_{i=1}^{20} C_i \cdot \mathbf{r}_i(P, L, H) =$$

$$C_1 + C_6 \cdot L \cdot H + C_{11} \cdot P \cdot L \cdot H + C_{16} \cdot P^3$$

$$+ C_2 \cdot L + C_7 \cdot P \cdot H + C_{12} \cdot L^3 + C_{17} \cdot P \cdot H^2$$

$$+ C_3 \cdot P + C_8 \cdot L^2 + C_{13} \cdot L \cdot P^2 + C_{18} \cdot L^2 \cdot H$$

$$+ C_4 \cdot H + C_9 \cdot P^2 + C_{14} \cdot L \cdot H^2 + C_{19} \cdot P^2 \cdot H$$

$$+ C_5 \cdot L \cdot P + C_{10} \cdot H^2 + C_{15} \cdot L^2 \cdot P + C_{20} \cdot H^3$$
Note: The order of terms different applications. This order is used with RPC00B and the Digital Point Positioning Data Base. RPC00A uses a different term order.

where coefficients $C_1 \cdots C_{20}$ represent the following sets of coefficients: LINE_NUM_COEF_n, LINE_DEN_COEF_n, SAMP_NUM_COEF_n, SAMP_DEN_COEF_n

The image coordinates are in units of pixels. The ground coordinates are latitude and longitude in units of decimal degrees and the geodetic elevation in units of meters. The ground coordinates are referenced to WGS-84.

8.2.5 Stereo Projection Model

The two images comprising a Stereo Pair are referred to as the Left and Right images; the Beginning and Ending Asymmetry, Convergence, and Bisector Elevation angles define the geometry between the two images (figure 8-7). The Beginning and Ending angles are always measured from the first and last lines, respectively, of the Left image, but measurement locations in the Right image are dependent on the rotation required to align the imagery (figure 8-

6). When the two images are collected in succession along a flight path, the fore (aft) image is the Left (Right) image.

FIGURE 8-6. LOCATION OF BEGINNING/ENDING ANGLES

STDI-0002, VERSION 2.1, 16 November 2000 AIRBORNE SUPPORT DATA EXTENSIONS (ASDE), VERSION 1.1, 16 NOVEMBER 2000

FIGURE 8-7. ASYMMETRY ANGLE, CONVERGENCE ANGLE AND BISECTOR ELEVATION ANGLE

8.2.6 Date Representations – Y2K Compliance

Several extensions contain non-standard date formats with the year represented by only two digits. In all fields containing two digit year representations, 00 through 59 indicate the years 2000 through 2059, and 60 through 99 indicate 1960 through 1999. As affected extensions evolve, the fields will be expanded to support standard date formats with four digits for the year.

8.2.7 Reduced Resolution Imagery

Large images are often processed into Reduced Resolution Data Sets (RRDS) to simplify and speed display and zooming functions. When a reduced resolution image is produced the associated mensuration data can be recalculated to be consistent with the new image, or the reduction can be flagged and the original data inserted without change into the new file. The latter approach is recommended as repeated recalculations to accommodate multiple resolution changes can result in degraded data.

Within NITF files, the image subheader IMAG field indicates the relation between image pixel spacing and associated TRE data.

IMAG = 1.0 means the TRE data apply directly (1:1) to the image – the TRE data was recalculated if the file is a member of a RRDS.

IMAG \neq 1.0 means the TRE data is not already scaled, and must be recalculated before use.

The following fields must be recalculated:

TRE	SAR Fields Altered	TRE	EO Fields Altered
ACFTB	ROW_SPACING COL_SPACING	ACFTB	ROW_SPACING COL_SPACING
EXPLTB	N_SAMP	EXOPTA	MAX_LP_SEG MEAN_GSD
BLOCKA	N_LINES		DOW CDACING
MPDSRA	ROWS_IN_BLK COLS_IN_BLK OP_ROW OP_COL	BANDSA	COL_SPACING BAND_GSD
MENSRB	ORP_ROW ORP_COL		
РАТСНВ	LNSTOP A_Z_L N_V_L NPIXEL		

Use of ICHIPB (see section 5.0) is highly recommended for reduced resolution imagery; ICHIPB <u>must</u> be used if IMAG precision is insufficient to specify the exact reduction ratio of the image.

8.3 Detailed Requirements

8.3.1 AIMID - Additional Image ID

The Additional Image ID extension is used for storage and retrieval from standard imagery libraries. AIMID is a required component of all airborne imagery files. A single AIMID is placed in the respective subheader of every NITF image segment . Data from AIMID are copied into the first forty characters of the image subheader ITITLE (NITF 2.0) or IID2 (NITF 2.1) field.

8.3.1.1 AIMIDA Format Description

The format and description for the user- defined fields of the AIMIDA extension are detailed in table 8-2. Note that the fields from MISSION_DATE through END_ROW, inclusive, shall also constitute the first forty characters of the Image Subheader ITITLE/IID2 field.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier.	6	AIMIDA	N/A	R
CEL	Length of Entire Tagged Record.	5	00069	bytes	R
	The following fields define Al	MIDA			
MISSION_DATE	<u>Aircraft T.O. Date</u> . The date of the collection mission (date of aircraft takeoff) in the format DDMMMYY, in which DD is the day of the month (01-31), MMM is the first three characters of the month (JAN – DEC), and YY is the last two digits of the year (00 – 99).	7	DDMMMYY		R
MISSION_NO	<u>Mission Identification</u> . Four character descriptor of the mission. Contents are user defined, except that at least one character must not be numeric.	4	alphanumeric		R
FLIGHT_NO	Flight Number. Each flight shall be identified by a flight number in the range 01 to 09. Flight 01 shall be the first flight of the day, flight 02 the second, etc. In order to ensure uniqueness in the image id, if the aircraft mission extends across midnight UTC, the flight number shall be 0x (where x is in the range 0 to 9) on images acquired before midnight UTC and Ax on images acquired after midnight UTC; for extended mis sions Bx, Zx shall designate images acquired on subsequent days. The value 00 indicates the flight number is unavailable.	2	00, 01 to 09 A1 to A9 B1 to B9 Z1 to Z9		R
OP_NUM	<u>Image Operation Number</u> . Reset to 001 at the start of each flight. A value of 000 indicates the airborne system does not number imaging operations.	3	000 to 999		R

Table 8-2. AIMIDA – Additional Image ID Extension Format R = REQUIRED, C = CONDITIONAL, <> = BCS SPACES ALLOWED FOR ENTIRE FIELD

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
START_SEGMENT	Start Segment ID. Identifies images as separate pieces (segments) within an imaging operation. AA is the first segment; AB is the second segment, etc. Spaces indicate the image is not segmented.	2	AA to ZZ, spaces		<r></r>
REPRO_NUM	Reprocess Number. For SAR imagery this field indicates whether the data was reprocessed to overcome initial processing failures, or has been enhanced. A "00" in this field indicates that the data is an originally processed image, a "01" indicates the first reprocess/enhancement, etc. For visible and infrared imagery this field shall contain 00 to indicate no reprocessing or enhancement.	2	00 to 99		R
REPLAY	<u>Replay</u> . Indicates whether the data was reprocessed to overcome initial processing failures, or retransmitted to overcome transmission errors. A 000 in this field indicates that the data is an originally processed and transmitted image, a value in the ranges of G01 to G99 or P01 to P99 indicates the data is reprocessed, and a value in the range of T01 to T99 indicates it was retransmitted.	3	000, G01 to G99, P01 to P99, T01 to T99		R
(reserved-001)		1	1 space		R
START_COLUMN	<u>Starting Tile Column Number</u> . For tiled (blocked) sub-images, the number of the first tile relative to start of the original image tiling within this segment. Tiles are rectangular arrays of pixels that subdivide an image. For untiled images this field shall contain 01.	2	01 to 99		R
START_ROW	<u>Starting Tile Row Number</u> . For tiled (blocked) sub-images, the number of the first tile relative to start of the original image tiling within this segment. For untiled images this field shall contain 00001.	5	00001 to 99999		R
END_SEGMENT	Ending Segment. Ending segment ID of this file. Spaces indicate the image is not segmented.	2	AA to ZZ spaces		<r></r>
END_COLUMN	Ending Tile Column Number. For tiled (blocked) sub-images, the number of the last tile relative to start of the original image tiling within this segment. For untiled images this field shall contain 01.	2	01 to 99		R

Table 8-2. <u>AIMIDA – Additional Image ID</u>	Extension Format	(continued)
--	------------------	-------------

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
END_ROW	Ending Tile Row Number. For tiled (blocked) sub-images, the numb er of the last tile relative to start of the original image tiling within this segment. For untiled images this field shall contain 00001.	5	00001 to 99999		R
COUNTRY	<u>Country Code</u> . Two letter code defining the country for the reference point of the image. Standard codes may be found in FIPS PUB 10-4.	2	AA to ZZ		<r></r>
(reserved-002)		4	4 spaces		R
LOCATION	Location of the center of the first image block, provides rough indication of geographic coverage. The format ddmmX represents degrees (00-89) and minutes (00-59) of latitude, with $X = N$ or S for north or south, and dddmmY represents degrees (000-179) and minutes (00-59) of longitude, with $Y = E$ or W for east or west, respectively.	11	ddmmXdddmmY		R
TIME	This field shall contain the collection time referenced to UTC, and accurate to 1 minute, of the first line of the image in the format hhmmZ, in which hh is the hour (00-23), and mm is the minute (00-59); the final character "Z" is required.	5	hhmmZ		R
CREATION_DATE	This field shall contain the collection date of the first line of the image in the format DDMMMYY, in which DD is the day of the month (01-31), MMM is the first three characters of the month (JAN – DEC), and YY is the last two digits of the year (00 – 99). This date is coordinated with the collection time, i.e., the date changes at midnight UTC.	7	DDMMMYY		R

Table 8-2	AIMIDA – Additional Image ID Exte	ension	Format	(continued))
					_

STDI-0002, VERSION 2.1, 16 November 2000 AIRBORNE SUPPORT DATA EXTENSIONS (ASDE), VERSION 1.1, 16 November 2000

8.3.1.2 AIMIDB Format Description

The format and description for the user- defined fields of the AIMIDB extension are detailed in table 8-3.

Note that the fields from ACQUISITION_DATE through END_TILE_ROW, inclusive, constitute the ST_ID field in the STREOB extension of a stereo mate image, and portions of these fields shall constitute the first forty characters of the Image Subheader ITITLE field. Table 8-4 illustrates the mapping between ITITLE and these fields.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Туре	
CETAG	Unique Extension Identifier.	6	AIMIDB	N/A	R	
CEL	Length of Entire Tagged Record.	5	00089	bytes	R	
The following fields define AIMIDB						
ACQUISITION_DATE	Acquisition Date and Time. This field shall contain the date and time, referenced to UTC, of the collection in the format CCYYMMDDhhmmss, in which CCYY is the year, MM is the month (01–12), DD is the day of the month (01 to 31), hh is the hour (00 to 23), mm is the minute (00 to 59), and ss is the second (00 to 59). This field is equivalent to the IDATIM field in the image subheader.	14	CCYYMMDDhhmmss		R	
MISSION_NO	<u>Mission Number</u> . Four character descriptor of the mission, which has the form PPNN, where PP is the DIA Project Code (range is AA to ZZ) or U0 if the Project Code is unknown, and "NN" is an assigned two- digit identifier, for example, the last digits of FLIGHT_NO. "UNKN" (without quotes) shall be used if no specific descriptor is known.	4	PPNN U0NN UNKN		R	
MISSION_ IDENTIFICATION	Name of the Mission. The Air Tasking Order Mission Number should be used, if available, followed by spaces. "NOT AVAIL." (two words separated by a single space and a trailing period, but without quotes) shall be used if the Mission name is unavailable.	10	Alphanumeric		R	

TABLE 8-3.	AIMIDB – ADDITIONAL IMAGE ID EXTENSION FORMAT
R = REQUIRED (= CONDITIONAL $<>$ = BCS SPACES ALLOWED FOR ENTIRE FIELD.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
FLIGHT_NO	Flight Number. Each flight shall be identified by a flight number in the range 01 to 09. Flight 01 shall be the first flight of the day, flight 02 the second, etc. In order to ensure uniqueness in the image id, if the aircraft mission extends across midnight UTC, the flight number shall be 0x (where x is in the range 0 to 9) on images acquired before midnight UTC and Ax on images acquired after midnight UTC; for extended missions Bx, Zx shall designate images acquired on subsequent days The value 00 indicates the flight number is unavailable.	2	00 01 to 09 A1 to A9 B1 to B9 Z1 to Z9		R
OP_NUM	Image Operation Number. Reset to 001 at the start of each flight and incremented by 1 for each distinct imaging operation. Reset to 001 for the imaging operation following 999. A value of 000 indicates the airborne system does not number imaging operations. For imagery derived from video systems this field contains the frame number within the ACQUISITION_DATE time.	3	000 to 999		R
CURRENT_SEGMENT	<u>Current Segment ID</u> . Identifies which segment (piece) of an imaging operation contains this image. AA is the first segment; AB is the second segment, etc. This field shall contain AA if the image is not segmented (i.e., consists of a single segment).	2	AA to ZZ		R
REPRO_NUM	<u>Reprocess Number</u> . For SAR imagery this field indicates whether the data was reprocessed to overcome initial processing failures, or has been enhanced. A 00 in this field indicates that the data is an originally processed image, a 01 indicates the first reprocess/enhancement, etc. For visible and infrared imagery this field shall contain 00 to indicate no reprocessing or enhancement.	2	00 to 99		R
REPLAY (reserved-001)	<u>Replay</u> . Indicates whether the data was reprocessed to overcome initial processing failures, or retransmitted to overcome transmission errors. A 000 in this field indicates that the data is an originally processed and transmitted image, a value in the ranges of G01 to G99 or P01 to P99 indicates the data is reprocessed, and a value in the range of T01 to T99 indicates it was retransmitted.	3	000, G01 to G99, P01 to P99, T01 to T99		⟨R⟩ R

Table 8-3. AIMIDB – Additional Image ID Extension Format (continued)
FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
START_TILE_COLUMN	<u>Starting Tile Column Number</u> . For tiled (blocked) sub-images, the number of the first tile within the CURRENT_SEGMENT, relative to tiling at the start of the imaging operation. Tiles are rectangular arrays of pixels (dimensionally defined by the NITF image subheader NPPBH and NPPBV fields) that subdivide an image. For untiled (single block) images this field shall contain 001.	3	001 to 099		R
START_TILE_ROW	<u>Starting Tile Row Number</u> . For tiled (blocked) sub-images, the number of the first tile within the CURRENT_SEGMENT, relative to tiling at the start of the imaging operation. For untiled (single block) images this field shall contain 00001.	5	00001 to 99999		R
END_SEGMENT	Ending Segment. Ending segment ID of the imaging operation. This field shall contain AA if the image is not segmented (i.e., consists of a single segment). During an extended imaging operation the end segment may not be known or predictable before it is collected; the value 00 (numeric zeros) shall indicate that the ending segment of the operation is unknown.	2	00, AA to ZZ		R
END_TILE_COLUMN	Ending Tile Column Number. For tiled (blocked) sub-images, the number of the last tile within the END_SEGMENT, relative to tiling at the start of the imaging. operation For untiled (single block) images this field shall contain 001.	3	001 to 099		R
END_TILE_ROW	Ending Tile Row Number. For tiled (blocked) sub-images, the number of the last tile within the END_SEGMENT, relative to tiling at the start of the imaging operation. For untiled (single block) images this field shall contain 00001.	5	00001 to 99999		R
COUNTRY	<u>Country Code</u> . Two letter code defining the country for the reference point of the image. Standard codes may be found in FIPS PUB 10-4.	2	AA to ZZ		$\overline{\langle R \rangle}$
(reserved-002)		4	4 spaces		R

|--|

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
LOCATION	<u>Location</u> of the natural reference point of the sensor provides a rough indication of geographic coverage. The format ddmmX represents degrees (00 to 89) and minutes (00 to 59) of latitude, with $X = N$ or S for north or south, and dddmmY represents degrees (000 to 179) and minutes (00 to 59) of longitude, with $Y = E$ or W for east or west, respectively.	11	DdmmXdddmmY, spaces		⟨R>
	For SAR imagery the reference point is normally the center of the first image block.				
	For EO-IR imagery the reference point for framing sensors is the center of the frame; for continuous sensors, it is the center of the first row of the image.				
	Note: because the location is only reported to one arc-minute, it may be more than ¹ / ₂ mile in error, and not actually represent any point within the boundary of the image.				
	Spaces indicate the location is unavailable.				
(reserved-003)		13	13 spaces		R

Table 8-3. AIMIDB – Additional Image ID Extension Format (continued)

Table 8-4. Mapping Between AIMIDB and ITITLE/IID2

ITITLE/IID2 LOCATION (BYIES)	AIMIDB FIELD
1 - 7	ACQUISITION_DATE (formatted as DDMMMYY, where:
	DD is the day of the month,
	MMM is a three letter abbreviation of the month,
	JAN, FEB, DEC,
	YY is the least significant 2 digits of the year).
8-11	MISSION_NO
12 - 13	FLIGHT_NO
14 - 16	OP_NUM
17 – 18	CURRENT_SEGMENT
19 - 20	REPRO_NUM
21 - 23	REPLAY
24	Space
25 - 26	START _TILE_COLUMN (least significant 2 bytes)
27 - 31	START _TILE_ROW
32 - 33	END_SEGMENT
34 - 35	END_TILE_COLUMN (least significant 2 bytes)
36 - 40	END_TILE_ROW

8.3.2 ACFT - Aircraft Information

ACFT provides miscellaneous information unique to airborne sensors. The ACFT extension is required. A single ACFT extension, containing information relative to the capture of its associated image data will be placed in the respective subheader of every NITF image segment.

8.3.2.1 ACFTA Format Description.

The format and descriptions for the user-defined fields of the ACFTA extension are detailed in table 8-5.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier.	6	ACFTA	N/A	R
CEL	Length of Entire Tagged Record.	5	00132	bytes	R
	The following fields d	efine A	CFTA		
AC_MSN_ID	Aircraft Mission Identification. Name of the Mission. "NOT AVAIL." (without quotes) shall be used if the Mission name is unavailable.	10	Alphanumeric, NOT AVAIL.		R
SCTYPE	<u>Scene Type</u> . C = Collection Plan R = Retasked space = Immediate, or Unplanned	1	C,R,space		<r></r>
SCNUM	<u>Scene Number</u> identifies the current scene, and is determined from the mission plan, except for immediate spot scenes, where it has the value 0000. The scene number is only useful to replay/regenerate a specific scene; there is no relationship between the scene number and an exploitation requirement.	4	0000 to 9999		R
SENSOR_ID	Sensor ID. Identifies which specific sensor produced the image. ASR = ASARS-2 APG = APG-73 DST = DarkStar Other sensors: TBD	3	alphanumeric		R
PATCH_TOT	Patch Total. Total Number of Patches contained in this image segment, and therefore, the number of PATCH extensions contained in this image subheader. Not used for EO-IR imagery.	4	SAR: Spot: 0001 Search: 0001 to 0999 EO-IR: 0000		R
MTI_TOT	<u>MTI Total</u> . Total Number of MTIRP extensions contained in this file. Each MTIRP identifies 1 to 999 moving targets. Shall contain 000 for EO-IR imagery.	3	SAR: 000 to 999 EO-IR: 000		R

Table 8-5. ACFTA – Aircraft Information Extension Format

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
PDATE	Processing Date. SAR: when raw data is converted to imagery. EO-IR: when image file is created. DD is the day of the month (01 to 31), MMM is the month (JAN – DEC), and YY contains the two least significant digits of the year. This date changes at midnight UTC.	7	DDMMMYY		R
IMHOSTNO	Immediate Scene Host. Together with Immediate Scene Request ID below, denotes the scene that the immediate was initiated from and can be used to renumber the scene, Example: If the immediate scene was initiated from scene number 123 and this is the third request from that scene, then the scene number field will be zero, the immediate scene host field will contain 123 and the immediate scene request id will contain 00003. When the scene number is greater than 999, this field will only contain the three least significant digits of the scene number; any resulting ambiguity can be resolved by comparing collection times. Shall contain 000 for Pre-Planned scenes.	3	000 to 999		R
IMREQID	Immediate Scene Request ID	5	00000 to 99999		R
SCENE_SOURCE	Scene Source.Indicates the origin of the request for the current scene. A scene is single image or a collection of images providing contiguous coverage of an area of interest.0 = Pre-Planned1 to 6 = Sensor Specific:For ASARS-2:1 = Scene Update (uplink)2 = Scene Update (manual - via pilot's cockpit display unit)3 = Immediate Scene (immediate spot or search range adjust)5 = Preplanned Tape Modification 6 = SSS Other Sensors: TBD.	1	0 to 6		R

Table 8-5. ACFTA – Aircraft Information Extension Format (continued)

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
MPLAN	Mission Plan Mode. Defines the current	2	01 to 99		R
	sensor specific collection mode.				
	For ASARS-2:				
	01 – Search				
	02 – Spot 3				
	04 – Spot 1				
	07 – Continuous Spot 3				
	08 – Continuous Spot 1				
	09 – EMTI Wide Frame Search				
	10 – EMTI Narrow Frame Search				
	11 – EMTI Augmented Spot				
	12 – EMTI Wide Area MTI (WAMTI)				
	13 – Monopulse Calibration				
	14 – 99 are reserved.				
	Other sensors: TBD				

Where the image extends along an extended path, as with SAR Search mode and EO-IR Wide Area Search modes, the entry and exit locations are the specified latitude, longitude and elevation above mean sea level (MSL) of the planned entry and exit points on the scene centerline of the area to be imaged.

Where the image is confined to the area about a single reference point, as with Spot modes and Point Target modes, the entry fields contain the specified reference point latitude/longitude/elevation, and the exit fields are not used.

The location may be expressed in either degrees-minutes-seconds or in decimal degrees.

The format ddmmss.ssX represents degrees (00 to 89), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 99) of latitude, with X = N for north or S for south, and dddmmss.ssY represents degrees (000 to 179), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 99) of longitude, with Y = E for east or W for west.

The format \pm dd.ddddd indicates degrees of latitude (north is positive), and \pm ddd.dddddd represents degrees of longitude (east is positive).

ENTLOC	Entry Location.	21	ddmmss.ssXdddmmss.ssY		R
			$\pm dd.ddddd\pm ddd.ddddd$		
ENTELV	Entry Elevation.	6	-01000 to +30000	ft.	R
EXITLOC	Exit Location.	21	ddmmss.ssXdddmmss.ssY		<r></r>
			$\pm dd.ddddd\pm ddd.ddddd$		
EXITELV	Exit Elevation.	6	-01000 to +30000	ft.	<r></r>

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
TMAP	True Map Angle.	7	000.000 to 180.000,	degrees	R
	SAK: In Search modes, the true man angle is		999.999		
	the angle between the ground projection				
	of the line of sight from the aircraft and				
	the scene centerline.				
	In Spot modes, the true map angle is the				
	angle, measured at the central reference				
	point, between the ground projection of				
	the line of sight from the aircraft and a				
	line parallel to the aircraft desired track				
	heading.				
	EO-IR:				
	The true map angle is defined in the				
	NED coordinate system with origin at				
	the aircraft (aircraft local NED), as the				
	angle between the scene entry line of				
	sight and the instantaneous aircraft track				
	heading vector. The aircraft track-				
	heading vector is obtained by rotating the				
	north unit vector of the aircraft local				
	NED coordinate system in the aircraft				
	local NE plane through the aircraft track-				
	measured in the slanted plane containing				
	the scane entry line of sight and the				
	aircraft track-heading vector. This angle				
	is always positive				
	A value of 999 999 indicates the true				
	map angle is unavailable.				
RCS	RCS Calibration Coefficient.	3	040 to 080		<r></r>
	Performance calibration value for SAR	_			
	sensor equipment.				
ROW_SPACING	Row Spacing	7	SAR:		R
	SAR: Ground plane distance between		00.0000 to 99.9999	ft	
	corresponding pixels of adjacent rows,				
	measured in feet.				
	EO-IR: Angle between corresponding		EO-IR:		
	pixels of adjacent rows, measured in		0000.00 to 9999.99	µ-radians	
	microradians at center of image.				
COL_SPACING	Column Spacing	7	SAR:		R
	SAR: Ground plane distance between		00.0000 to 99.9999	ft	
	adjacent pixels within a row, measured in				
	feet.				
	EO-IR: Angle between adjacent pixels		EO-IR:		
	within a row, measured in microradians		0000.00 to 9999.99	u-radians	
	at center of image.			r	
SENSERIAL	Sensor vendor's serial number. Serial	4	0001 to 9999		<r></r>
	number of the line replaceable unit				
	(LRU) containing EO-IR imaging				
	electronics or SAR Receiver/Exciter				
	involved in creating the imagery				
	contained in this file.				

Table 8-5. ACFTA – Aircraft Information Extension Format (continued)

STDI-0002, VERSION 2.1, 16 November 2000 AIRBORNE SUPPORT DATA EXTENSIONS (ASDE), VERSION 1.1, 16 November 2000

Table of <u>Allerian Menal Menal Menal Extension Fernal</u> (continued)						
FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре	
ABSWVER	<u>Airborne Software Version</u> . Airborne software version (vvvv) and Revision (rr) numbers.	7	vvvv.rr		<r></r>	

Table 8-5. ACFTA – Aircraft Information Extension Format (continued)

8.3.2.2 ACFTB Format Description

The format and descriptions for the user-defined fields of the ACFTB extension are detailed in table 8-6.

D				T T 	T
FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	TYPE
CETAG	Unique Extension Identifier.	6	ACFTB	N/A	R
CEL	Length of Entire Tagged Record.	5	00207	bytes	R
	The following fields a	lefine A (CFTB		
AC_MSN_ID	<u>Aircraft Mission Identification</u> . "NOT AVAILABLE" (two words separated by a single space, but without quotes) shall be used if the mission id is unavailable.	20	Alphanumeric, NOT AVAILABLE		R
AC_TAIL_NO	Aircraft Tail Number	10	alphanumeric		<r></r>
AC_TO	<u>Aircraft Take-off</u> . Date and Time, referenced to UTC, in the format CCYYMMDDhhmm, in which CCYY is the year, MM is the month (01–12), DD is the day of the month (01 to 31), hh is the hour (00 to 23), and mm is the minute (00 to 59).	12	CCYYMMDDhhmm		<r></r>

Table 8-6. ACFTB – Aircraft Information Extension Format R = Required, C = Conditional, \Rightarrow = BCS Spaces allowed for entire field

FIELD NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
THELDNAME/DESCRIPTIONSENSOR_ID_TYPESensor ID Type. Identifies which sensor type produced the image. For Radar Imagery: SAR For EO-IR: ccff where cc indicates the sensor category: IH (High Altitude / Long Range IR) IM (Medium Altitude IR) IL (Low Altitude IR) MH (Multispectral High Altitude / Long Range) MM (Multispectral Medium Altitude) ML (Multispectral Low Altitude) VH (Visible High Altitude / Long Range) VM (Visible Medium Altitude) VH (Visible High Altitude) VF (Video Frame) And ff indicates the sensor format: FR (Frame) LS (Line Scan) PB (Pushbroom) PS (Pan Scan) Content of several fields below depends	SIZE 4	VALUE RANGE Alphanumeric	UNITS	TYPE R

TABLE 8-6. ACFTB – Aircraft Information Extension Format (CONTINUED)

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
SENSOR_ID	Identifies which specific sensor	6	Alphanumeric		R
	produced the image. Currently allowable		Ĩ		
	values:				
	APG-73				
	AIP				
	ASARSI				
	ASARS2 CA236 (Dorbeter EQ)				
	CA260				
	CA261				
	CA265				
	CA270				
	CA295				
	D500				
	DB110				
	DS-SAR (Darkstar Radar)				
	GHR (Global Hawk Radar)				
	HYDICE				
	HSAK				
	IKLS (ATARS)				
	MAFO (ATARS)				
	SIR-C				
	SYERS				
	TSAR (Tactical SAR on Predator)				
	Other values are TBD.				
	Content of several fields below depends				
	upon the value of this field.				
SCENE_SOURCE	Scene Source. Indicates the origin of the	1	0 to 9		<r></r>
	request for the current scene. A scene is				
	single image or a collection of images				
	providing contiguous coverage of an				
	area of interest. 0 - Pre Planned				
	1 to 9 - Sensor Specific:				
	For ASARS-2:				
	1 = Scene Update (uplink)				
	2 = Scene Update (manual - via pilot's				
	cockpit display unit)				
	3 = Immediate Scene (immediate spot or				
	search range adjust)				
	5 = Preplanned Tape Modification				
SCNILIM	Other Sensors: IBD.	6	000000 to 000000		D
SCINUM	<u>Scene</u> and is determined from the	0	0000010999999		к
	mission plan: except for immediate				
	scenes, where it may have the value				
	000000, the scenes are numbered from				
	000001 to 999999. The scene number is				
	only useful to replay/regenerate a				
	specific scene; there is no relationship				
	between the scene number and an				
	exploitation requirement.				

TABLE 8-6. ACFTB – Aircraft Information Extension Format (CONTINUED

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
PDATE	Processing Date. SAR: when raw data is converted to imagery. EO-IR: when image file is created. CCYY is the year, MM is the month (01–12), and DD is the day of the month (00 to 31). This date changes at midnight UTC.	8	CCYYMMDD		R
IMHOSTNO	Immediate Scene Host. Together with Immediate Scene Request ID below, denotes the scene that the immediate scene was initiated from and can be used to renumber the scene, Example: If the immediate scene was initiated from scene number 000123 and this is the third request from that scene, then the scene number field will be 000000, the immediate scene host field will contain 000123 and the immediate scene request id will contain 000003. Only non-zero for immediate scenes.	6	000000, 000001 to 999999		R
IMREQID	Immediate Scene Request ID. Only non- zero for immediate scenes.	5	00000, 00001 to 99999		R

TABLE 8-6. ACFTB – Aircraft Information Extension Format (CONTINUED)

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
MPLAN	Mission Plan Mode. Defines the current	3	001 to 999		R
	sensor-specific SENSOR_TYPE /				
	SENSOR_ID collection mode.				
	For AIP:				
	013 – Monopulse Calibration				
	014 – Wide Area MTI (WAMTI)				
	015 – Coarse Resolution Search				
	016 – Medium Resolution Search				
	017 – High Resolution Search				
	018 – Point Imaging				
	019 – Swath MTI (SMTI)				
	020 – Repetitive Point Imaging				
	For ASARS-2:				
	001 – Search				
	002 – Spot 3				
	004 – Spot 1				
	007 – Continuous Spot 3				
	008 – Continuous Spot 1				
	009 – EMTI Wide Frame Search				
	010 – EMTI Narrow Frame Search				
	011 – EMTI Augmented Spot				
	012 – EMTI Wide Area MTI				
	(WAMTI)				
	013 – Monopulse Calibration				
	For APG-73:				
	001 – Strip (Search)				
	002 – Spotlight				
	Other sensors:				
	SAR – TBD				
	EO-IR:				
	001-003 – Reserved				
	004 - EO Spot				
	005 – EO Point Target				
	006 – EO Wide Area Search				
	014 - IR Spot				
	015 – IR Point Target				
	016 – IK Wide Area Search				
	017 - 999 are reserved	~		L	

TABLE 0-0. ACTID - AIICIAII IIIOIIIIAIIOII EXIEIISIOII FOIIIIAI (CONTINUEL	TABLE 8-6.	ACFTB – Aircraft Information Extension Format	CONTINUED
--	------------	---	-----------

Where the image extends along an extended path, as with SAR Search modes and EO-IR Wide Area Search modes, the entry and exit locations are the specified latitude, longitude and elevation above mean sea level (MSL) of the planned entry and exit points on the centerline of the area contained within the NITF Image Segment. Where the image is confined to the area about a single reference point, as with Spot modes and Point Target modes, the entry fields contain the specified reference point latitude/longitude/elevation, and the exit fields are filled with

The location may be expressed in either degrees-minutes-seconds or in decimal degrees.

spaces.

The format ddmmss.ssX represents degrees (00 to 89), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 99) of latitude, with X = N for north or S for south, and dddmmss.ssY represents degrees (000 to 179), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 99) of longitude, with Y = E for east or W for west.

The format \pm dd.ddddd indicates degrees of latitude (north is positive), and \pm ddd.dddddd represents degrees of longitude (east is positive).

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
ENTLOC	Entry Location.	25	ddmmss.ssssX dddmmss.ssssY or ±dd.ddddddd ±ddd.dddddddd		<r></r>
LOC_ACCY	Location Accuracy. The 90% probable circular error in ENTLOC and EXITLOC positions. Unknown=000000 or 000.00	6	000.01 to 999.99 000000, 000.00	Feet	<r></r>
ENTELV	Entry Elevation. Imaging operation entry point ground elevation.	6	-01000 to +30000	feet or meters	<r></r>
ELV_UNIT	<u>Unit of Elevation</u> . Defines unit for Entry and Exit Altitudes. f=feet, m=meters	1	f or m		<r></r>
EXITLOC	Exit Location.	25	ddmmss.ssssX dddmmss.ssssY or ±dd.ddddddd ±ddd.ddddddd		<r></r>
EXITELV	Exit Elevation. Imaging operation exit point ground elevation.	6	-01000 to +30000	feet or meters	<r></r>
ТМАР	True Map Angle. SAR: In Search modes, the true map angle is the angle between the ground projection of the line of sight from the aircraft and the scene centerline. In Spot modes, the true map angle is the angle, measured at the central reference point, between the ground projection of the line of sight from the aircraft and a line parallel to the aircraft desired track heading. EO-IR: The true map angle is defined in the NED coordinate system with origin at the aircraft (aircraft local NED), as the angle between the scene entry line of sight and the instantaneous aircraft track heading vector. The aircraft track- heading vector is obtained by rotating the north unit vector of the aircraft local NE plane through the aircraft track-heading angle. The true map angle is measured in the slanted plane containing the scene entry line of sight and the aircraft track-heading vector.	7	000.000 to 180.000	degrees	

TABLE 8-6. ACFTB – Aircraft Information Extension Format (CONTINUED)

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
ROW SPACING	Row Spacing measured at the center of	7			R
	the image.				
	Distance in the image plane between				
	corresponding pixels of adjacent rows		00.0000 to 99.9999	feet or	
	measured in feet or meters;			meters	
	or				
	Angular center-to-center distance (pitch)				
	between corresponding pixels of adjacent		0000.00 to 9999.99	µ-radians	
	rows measured in micro-radians.				
	If the actual spacing (or associated units)				
	is unknown, the default value of 0000000		0000000		
	will be entered.				
ROW_SPACING_	Unit of Row Spacing.	1	f, m, r or u		R
UNITS	f = feet				
	m = meters				
	$r = \mu$ -radians				
	u = unknown spacing				
COL_SPACING	<u>Column</u> Spacing measured at the center	7			R
	of the image.		00,0000 (, 00,0000	C .	
	Distance in the image plane between		00.0000 to 99.9999	feet or	
	adjacent pixels within a row measured in			meters	
	leet of meters,				
	or				
	Angular center-to-center distance (pitch)		0000 00 to 0000 00	u nadiana	
	massured in micro, radians		0000.00 10 9999.99	µ-raurans	
	If the actual spacing (or associated units)				
	is unknown, the default value of		000000		
	"0000000" will be entered		000000		
COL SPACING	Unit of Column Spacing	1	f m roru		R
UNITS	f = feet	1	1, 11, 1 OF U		ĸ
	m = meters				
	$\overline{r = \mu - radians}$				
	<u>u = unknown spacing</u>				
FOCAL_LENGTH	Sensor Focal Length. Effective distance	6	000.01 to 899.99,	cm	R
	from optical lens to sensor element(s),		999.99		
	used when either				
	ROW_SPACING_UNITS or				
	COL_SPACING_UNITS indicates μ -				
	radians. 999.99 indicates focal length is				
	sensor				
SENSERIAI	Sensor vendor's serial number Serial	6	000001 to 999999		<r></r>
	number of the line replaceable unit	0			~~~
	(LRU) containing EO-IR imaging				
	electronics or SAR Receiver/Exciter				
	involved in creating the imagery				
	contained in this file.				
ABSWVER	Airborne Software Version. Airborne	7	vvvv.rr		<r></r>
	software version (vvvv) and Revision				
	(rr) numbers.				

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CAL_DATE	<u>Calibration Date</u> . Date sensor was last calibrated. CCYY is the year, MM is the month $(01-12)$, and DD is the day of the month $(00 \text{ to } 31)$.	8	CCYYMMDD		<r></r>
PATCH_TOT	<u>Patch Total</u> . Total Number of Patches contained in this file, and therefore, the number of PATCH extensions. 0000 for EO-IR imagery.	4	SAR: Spot: 0000 to 0001 Search: 0000 to 9999 EO-IR: 0000		R
MTI_TOT	<u>MTI Total</u> . Total Number of MTIRP extensions contained in this file. Each MTIRP identifies 1 to 999 moving targets. 000 for EO-IR imagery.	3	SAR: 000 to 999 EO-IR: 000		R

TABLE 8-6. ACFTB – Aircraft Information Extension Format (CONTINUED)

TABLE 8-7. ROW AND COLUMN SPACING

SENSOR_ID_TYPE	ROW_SPACING	COL_SPACING
SAR	Image plane distance (ft/m)	Image plane distance (ft/m)
ccFR	Angle between pixels (µ-radians)	Angle between pixels (μ-radians)
ccLS	Angle between pixels (µ-radians)	Image plane distance (ft)
ccPB	Image plane distance (ft)	Angle between pixels (μ-radians)
ccPS	Angle between pixels (μ-radians)	Angle between pixels (μ-radians)

STDI-0002, VERSION 2.1, 16 November 2000 AIRBORNE SUPPORT DATA EXTENSIONS (ASDE), VERSION 1.1, 16 November 2000

8.3.3 BANDS - Multispectral / Hyperspectral Band Parameters

The BANDS extension is defined to or supplement information in the NITF image subheader where additional parametric data is required. This data extension is placed in each image subheader as required. Each Band must be identified either by the wavelength of peak response (BANDPEAK), or the wavelengths of its edges (BANDLBOUNDn, BANDUBOUNDn). The format and descriptions of the user-defined fields of this extension are detailed in table 8-8.

TABLE 8-8.	BANDSA - MULTISPECTRAL / HYPERSPECTRAL BAND PARAMETERS EXTENSION FORMAT
	$R = REQUIRED, C = CONDITIONAL, \iff = BCS SPACES ALLOWED FOR ENTIRE FIELD$

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier.	6	BANDSA	N/A	R
CEL	Length of Entire Tagged Record.	5	00072 to 45980	bytes	R
	The Following Fields De	fine BA	ANDSA	•	
ROW_SPACING	Row Spacing measured at the center of the image. Distance in the image plane between corresponding pixels of adjacent rows measured in feet or meters;	7	00.0000 to 99.9999	feet or meters	R
	Angular center-to-center distance (pitch) between corresponding pixels of adjacent rows measured in micro-radians (μ- radians).		0000.00 to 9999.99	µ-radians	
ROW_SPACING_ UNITS	Unit of Row Spacing. f = feet m = meters $r = \mu$ -radians	1	f, m or r		R
COL_SPACING	<u>Column</u> Spacing measured at the center of the image. Distance in the image plane between adjacent pixels within a row measured in feet or meters;	7	00.0000 to 99.9999	feet or meters	R
	Angular center-to-center distance (pitch) between adjacent pixels within a row measured in micro-radians (µ-radians).		0000.00 to 9999.99	µ-radians	
COL_SPACING_U NITS	Unit of Column Spacing. f = feet m = meters $r = \mu$ -radians	1	f, m or r		R
FOCAL_LENGTH	Sensor Focal Length. Effective distance from optical lens to sensor element(s), used when either ROW_SPACING_UNITS or COL_SPACING_UNITS indicates μ-radians. 999.99 indicates focal length is not available or not applicable to this sensor.	6	000.01 to 899.99, 999.99	cm	R

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
BANDCOUNT	<u>Number of Bands</u> comprising the image. Fields BANDPEAKn through BANDGSDn will be repeated for each band.	4	0001 to 0999	N/A	R
BANDPEAKn	Band n Peak Response Wavelength. Must be specified unless BANDLBOUNDn and BANDUBOUNDn are specified.	5	00.01 to 19.99	μm	\sim
BANDLBOUNDn	Band n Lower Wavelength Bound. The wavelength for the nth band at the lower 50% (-3db) point of the sensor spectral response.	5	00.01 to 19.99	μm	<c></c>
BANDUBOUNDn	Band n Upper Wavelength Bound. The wavelength for the nth band at the higher 50% (-3db) point of the sensor spectral response.	5	00.01 to 19.99	μm	<c></c>
BANDWIDTHn	<u>Band n Width</u> . The wavelength difference between the upper and lower bounds at the 50% (-3db) points of the sensor spectral response.	5	00.01 to 19.99	μm	<c></c>
BANDCALDRKn	<u>Band n Calibration (Dark)</u> . The calibrated receive power level for the nth band that corresponds to a pixel value of 0.	6	0000.1 to 9999.9	μw / (cm ² -sr-μm)	¢C>
BANDCALINCn	Band n Calibration (Increment). The mean change in power level for the nth band that corresponds to an increase of 1 in pixel value.	5	00.01 to 99.99	µw / (cm ² -sr-µm)	<c></c>
BANDRESPn	Band n Spatial Response. Nominal pixel size, expressed in microradians	5	000.1 to 999.9	µradians	<c></c>
BANDASDn	Band n Angular Sample Distance. The pixel center-to-center distance, expressed in microradians.	5	000.1 to 999.9	µradians	
BANDGSDn	Band n Ground Sample Distance. The average distance between adjacent pixels for the nth band.	5	00.01 to 99.99	m	<c></c>

Table 8-8. BANDSA – Multispectral / Hyperspectral Band Parameters Extension Format (continued)

8.3.4 BLOCK - Image Block Information

Image Block Information is optional, but often needed for exploitation of imagery. BLOCK is placed in the image subheader with the corresponding AIMID and ACFT extensions. The format for the user defined fields of the BLOCKA extension and a description of their contents is detailed in table 8-9.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier.	6	BLOCKA	N/A	R
CEL	Length of Entire Tagged Record.	5	00123	bytes	R
	The following fields define .	BLOCK	4		
BLOCK_INSTANCE	Block number of this image block.	2	01 to 99		R
N_GRAY	SAR: The number of gray fill pixels.	5	00000 to 99999		R
	EO-IR: 00000				
L_LINES	Row Count.	5	00001 to 99999		R
LAYOVER_ANGLE	Layover Angle. SAR: The angle between the first row of pixels (NITF row 1) and the layover direction in the image, measured in a clockwise direction. Defaults to spaces. EO-IR: spaces.	3	000 to 359, spaces	degrees	<r></r>
SHADOW_ANGLE	Shadow Angle. SAR: The angle between the first row of pixels (NITF row 1) and the radar shadow in the image, measured in a clockwise direction. Defaults to spaces. EO-IR: spaces.	3	000 to 359, spaces	degrees	<r></r>
(reserved-001)		16	16 spaces		R

Table 8-9.	BLOCKA –	Image Block	k Informatio	n Extension	I Format
R = Requi	$RED, C = CONDI^{-1}$	TIONAL, <> = BC	S SPACES ALLC	WED FOR ENTI	RE FIELD

The following four fields repeat earth coordinates image corn er locations described by IGEOLO in the NITF image subheader, but provide higher precision. Note that the order of these coordinates is different from IGEOLO. Spaces indicate the value of a coordinate is unavailable or inapplicable.

The format Xddmmss.cc represents degrees (00 to 89), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 99) of latitude, with X = N for north or S for south, and Ydddmmss.cc represents degrees (000 to 179), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 99) of longitude, with Y = E for east or W for west.

The format \pm dd.dddddd indicates degrees of latitude (north is positive), and \pm ddd.dddddd represents degrees of longitude (east is positive).

U 1				
FRLC_LOC	<u>First Row Last Column Location</u> . Location of the first row, last column of the image block.	21	XDDMMSS.SSYDDDMMSS.SS, ±DD.DDDDDD±DDD.DDDDDD spaces	<r></r>
LRLC_LOC	Last Row Last Column Location. Location of the last row, last column of the image block.	21	Xddmmss.ssYdddmmss.ss, ±dd.ddddd±ddd.ddddd spaces	<r></r>
LRFC_LOC	Last Row First Column Location. Location of the last row, first column of the image block.	21	Xddmmss.ssYdddmmss.ss, ±dd.ddddd±ddd.ddddd spaces	<r></r>
FRFC_LOC	<u>First Row First Column Location</u> . Location of the first row, first column of the image block.	21	Xddmmss.ssYdddmmss.ss, ±dd.ddddd±ddd. spaces	<r></r>
(reserved-002)		5	010.0	R

8.3.5 EXOPT - Exploitation Usability Optical Information

The Exploitation Usability Optical Information extension is optional. EXOPT provides metadata that allows a user program to determine if the image is suitable for the exploitation problem currently being performed. It contains some of the fields, which would make up a NIMA standard directory entry. The format and descriptions for the user-defined fields of the EXOPTA are detailed in table 8-10. A single EXOPT is placed in the image subheader with the corresponding AIMID and ACFT extensions.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier.	6	EXOPTA	N/A	R
CEL	Length Data Fields.	5	00107	bytes	R
	The following fields a	lefine EX	OPTA		
ANGLE_TO_NORTH	<u>Angle to True North</u> . Measured clockwise from first row of the image.	3	000 to 359	degrees	<r></r>
MEAN_GSD	<u>Mean Ground Sample Distance</u> . The geometric mean of the cross and along scan center-to-center distance between contiguous ground samples. Accuracy = $\pm 10\%$ Note: Systems requiring an extended range shall insert a default value of "000.0" for this field and utilize the PIAMC tag.	5	000.0 to 999.9	inches	<r></r>
(reserved-001)		1	1		R
DYNAMIC_RANGE	Dynamic Range of image pixels.	5	00000 to 65535		<r></r>
(reserved-002)		7	7 spaces		R
OBL_ANG	Obliquity Angle. Angle between the local NED horizontal and the optical axis of the image.	5	00.00 to 90.00	degrees	<r></r>
ROLL_ANG	Roll Angle of the platform body.	6	±90.00	degrees	<r></r>
PRIME_ID	Primary Target ID	12	alphanumeric		<r></r>
PRIME_BE	Primary Target BE / OSUFFIX (target designator)	15	alphanumeric		<r></r>
(reserved-003)		5	5 space		R
N_SEC	Number Of Secondary Targets in Image. Determines the number of SECTG extension present in the image subheader.	3	000 to 250		R
(reserved-004)		2	2 spaces		R
(reserved-005)		7	0000001		R
N_SEG	Number of Segments. Segments are separate imagery pieces within an imaging operation.	3	001 to 999		R
MAX_LP_SEG	Maximum Number of Lines Per Segment. Includes overlap lines.	6	000001 to 199999		<r></r>
(reserved-006)		12	12 spaces		R

Table 8-10.	EXOPTA -	- Exploitation	Usability	Optical	Information	Extension F	⁻ ormat
F	R = REQUIRED	C = CONDITIONAL	<> = BCS	SPACES AL	LOWED FOR EN	TIRE FIELD	

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
SUN_EL	<u>Sun Elevation</u> . Angle in degrees, measured from the target plane at intersection of the optical line of sight with the earth's surface at the time of the first image line (NITF row 1). 999.9 indicates data is not available.	5	±90.0, 999.9	degrees	R
SUN_AZ	Sun Azimuth. Angle in degrees, from True North clockwise (as viewed from space) at the time of the first image line. 999.9 indicates data is not available.	5	000.0 to 359.9, 999.9	degrees	R

Table 8-10. EXOPTA – Exploitation Usability Optical Information Extension Format (continued)

† See section 8.2.2

8.3.6 EXPLT - Exploitation Related Information

The Exploitation Related Information extension is optional. EXPLT provides metadata that allows a user program to determine if the image is suitable for the exploitation problem currently being performed. It contains some of the fields, which would make up a NIMA standard directory entry. A single EXPLT is placed in the image subheader with the corresponding AIMID and ACFT extensions.

8.3.6.1 EXPLTA Format Description

The format for the user defined fields of the EXPLTA extension and a description of their contents is detailed in table 8-11.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier	6	EXPLTA	N/A	R
CEL	Length of Entire Tagged Record	5	00087	bytes	R
	The following fields de	efine EX	PLTA		
ANGLE_TO_NORTH	Angle measured clockwise in degrees from first row of the image to True North.	3	000 to 359	degrees	R
SQUINT_ANGLE	The angle measured in degrees from crosstrack (broadside) to the great circle joining the ground point directly below the Aircraft Reference Point (ARP) to the Output Reference Point (ORP). Forward looking squint angles range from +00 (broadside) to +85 degrees; aft looking squint angles range from -00 to -60 degrees.	3	-60 to +85	degrees	R

TABLE 8-11.	EXPLTA – EXPLOITATION RELATED INFORMATION EXTENSION FORMAT
R = RF	OURED $C = CONDITIONAL \iff = BCS SPACES ALLOWED FOR ENTIRE FIELD$

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
MODE	Mode represents both the collection mode and the processing mode. For Spot imagery the first character indicates the collection mode with "1" for SPOT 1 Mode, and "3" for SPOT 3 Mode; the second and third characters indicate the processing (sampling) mode: "SP"=Slant Plane, "GP"=Ground Plane, and "ES"=Enhanced Spot. For Search mode imagery the first two characters yy represent the nominal impulse response, and the third character is "S."	3	xSP,xGP,xES,yyS		R
(reserved -001)		16	spaces		R
GRAZE_ANG	The angle, measured in degrees at the target, between the focus plane and line of sight to the radar.	2	00 to 90	degrees	R
SLOPE_ANG	The angle between the SAR plane and the focus plane. Given GRAZE_ANG ψ and SQUINT_ANGLE θ , SLOPE _ ANG = COS ⁻¹ $\left[\frac{COS}{\sqrt{(SIN^2 ySI)^2}} \right]$	$\frac{2}{\mathbf{y}\cos \mathbf{q}}$	$\frac{q}{COS^2 q}$	degrees	R
	Note: SLOPE_ANG is equal to GRA	AZE_A	ING for broadside mapping	$(\Theta = 0).$	D
FOLAR	nominal transmit polarization, and the second character indicates the nominal receive polarization. Each can be Horizontal (H) or Vertical (V).	2	пп, пv, vп, vv		к
NSAMP	Pixels per Line (includes fill)	5	00001 to 99999		R
(reserved-002)		1	0		R
SEQ_NUM	Sequence within Coupled Imagery Set	1	1 to 6		<r></r>
PRIME_ID	Target Designator of primary target	12	alphanumeric		<r></r>
PRIME_BE	Basic Encyclopedia ID / OSUFFIX (target designator) of the primary target	15	alphanumeric		<r></r>
(reserved-003)		1	0		R
N_SEC	Number of Secondary Targets in image.†	2	00 to 10		<r></r>
IPR	Commanded impulse response.††	2	00 to 99	feet	<r></r>
(reserved-004)		2	01		R
(reserved-005)		2	spaces		R
(reserved-006)		5	00000		R
(reserved-007)		8	spaces		R

Table 8-11. EXPLTA – Exploitation Related Information Extension Format (continued)

† determines number of SECTGA extensions

STDI-0002, VERSION 2.1, 16 November 2000 AIRBORNE SUPPORT DATA EXTENSIONS (ASDE), VERSION 1.1, 16 November 2000

†† replicated in each MPDSRA extension

8.3.6.2 EXPLTB Format Description

The format for the user defined fields of the EXPLTB extension and a description of their contents is detailed in table 8-12.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier	6	EXPLTB	N/A	R
CEL	Length of Entire Tagged Record	5	00101	bytes	R
	The following fields de	efine EX	PLTB		
ANGLE_TO_NORTH	Angle, measured clockwise about the origin of the image, from first row of the image to True North.	7	000.000 to 359.999	degrees	R
ANGLE_TO_NORTH_ ACCY	Angle to North Accuracy. 90% probable error value. Unknown=000000 or 00.000	6	00.001 to 44.999, 000000, 00.000	degrees	R
SQUINT_ANGLE	The angle measured in degrees from crosstrack (broadside) to the great circle joining the ground point directly below the Aircraft Reference Point (ARP) to the Output Reference Point (ORP). Forward looking squint angles range from +00.000 (broadside) to +85.000 degrees; aft looking squint angles range from -00.000 to - 60.000 degrees.	7	-60.000 to +85.000	degrees	R
SQUINT_ANGLE_ ACCY	<u>Squint Angle Accuracy</u> . 90% probable error value. Unknown=000000 or 00.000	6	00.001 to 44.999, 000000, 00.000	degrees	R

Table 8-12. EXPLTB – Exploitation Related Information Extension Format R = REQUIRED, C = CONDITIONAL, <> = BCS SPACES ALLOWED FOR ENTIRE FIELD

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
MODE	Mode represents both the collection mode and the processing mode. Subtle differences existing among legacy systems are accommodated by unique mode designations. For ASARS-2 (including AIP, the ASARS Improvement Program): For Search mode imagery the first two characters yy represent the nominal impulse response, in feet, and the third character is "S." For Spot imagery the first character x indicates the collection mode: 1 = SPOT 1 Mode 2 = Point Imaging 3 = SPOT 3 Mode 4 = Repetitive Point Imaging Mode. The second and third characters indicate the processing (sampling) mode: SP = Slant Plane GP = Ground Plane ES = Enhanced Spot PR = Preview For APG-73: 3SP = Slant Plane Spot 3GP = Ground Mode Spot yyS = Search Mode (same as ASARS-2) For Global Hawk: GSP = Spot Mode, GSH = Search Mode, and GMT = Moving Target Mode.	3	ASARS-2 & AIP: xSP, xGP, xES, xPR, yyS APG-73: 3SP, 3GP, yyS Global Hawk: GSP, GSH, GMT		R
(reserved-001)		16	spaces		R
GRAZE_ANG	The angle, measured in degrees at the target, between the focus plane and line of sight to the radar.	5	00.00 to 90.00	degrees	R
GRAZE_ANG_ACCY	<u>Accuracy of Grazing Angle</u> . 90% probable error value. Unknown=00000 or 00.00	5	00.01 to 90.00, 00000, 00.00	degrees	R
SLOPE_ANG	The angle between the SAR plane and the focus plane. Given GRAZE_ANG ψ and SQUINT_ANGLE θ , SLOPE _ ANG = COS ⁻¹ $\left[\frac{CC}{\sqrt{(SIN^2 y^2)}} \right]$	$\frac{5}{5}$	$\frac{5 \mathbf{q}}{COS^2 \mathbf{q}}$	degrees	R

Table 8-12. EXPLTB – Exploitation Related Information Extension Format (continued)

FIFLD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	TYPE
					IIIL
	Note: SLOPE_ANG is equal to GI	RAZE_A	ANG for broadside mapping	$(\theta = 0).$	
POLAR	The first character indicates the nominal transmit polarization, and the second character indicates the nominal receive polarization. Each can be Horizontal (H) or Vertical (V).	2	HH, HV, VH, VV		R
NSAMP	Pixels per Line (includes fill)	5	00001 to 99999		R
(reserved-002)		1	0		R
SEQ_NUM	Sequence within Coupled Imagery Set	1	1 to 6		<r></r>
PRIME_ID	Target Designator of primary target	12	alphanumeric		<r></r>
PRIME_BE	Basic Encyclopedia ID / OSUFFIX (target designator) of the primary target	15	alphanumeric		<r></r>
(reserved-003)		1	0		R
N_SEC	Number of Secondary Targets in image.† Default = 00.	2	00 to 99		R
IPR	Commanded impulse response.†† Unknown = 00.	2	00 to 99	feet	R

Table 8-12. EXPLTB – Exploitation Related Information Extension Format (continued)

determines number of SECTGA extensions

†† replicated in each MPDSRA extension

8.3.7 MENSR - Airborne SAR Mensuration Data

MENSR provides the collection geometry parameters required by image mensuration programs; it is optional, but its use will allow more accurate mensuration.

8.3.7.1 MENSRA Format Description

The format and description for the user defined fields of the MENSRA extension is detailed in table 8-13.

Table 8-13. MENSRA – Airborne SAR Mensuration Data Extension Format R = REQUIRED, C = CONDITIONAL, \Rightarrow = BCS SPACES ALLOWED FOR ENTIRE FIELD

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier	6	MENSRA	N/A	R
CEL	Length of Entire Tagged Record	5	00155	bytes	R
	The following fields a	lefine ME	ENSRA		
Collection Central Referent scene centerline for each progeometric center of the pro- azimuth offsets are given an acute angle with the dir In the Spot Mode, the CCI The format ddmmss.ssX r seconds (00 to 99) of latitte minutes (00 to 59) second	the Point (CCRP): In the Search mode batch. The CCRP will be near the patter occessed imagery, may be offset from in feet; Increasing range is positive, rected scene track. RP is in the exact center of the scene epresents degrees (00 to 89), minutes ude, with $X = N$ for north or S for sout is (00 to 59), and hundredths of second	e, the airl ch line ce the CCR and Azir ; therefor s (00 to 5 uth, and d	borne system chooses a CCR enter. The patch center (PC), the P along the scene centerline, muth is positive in the direction re, the offsets are both equal 9), seconds (00 to 59), and hu ddmmss.ssY represents degree p(99) of longitude with $Y = F$	P along the the actual, . The rang on that sul to 0. undredths ees (000 to	e and btends of o 179), r W
for west.		ius (00 it	())) of folightade, with $1 - 1$		1 VV
CCRP_LOC	CCRP Location.	21	ddmmss.ssXdddmmss.ssY		R
CCRP_ALT	<u>CCRP Altitude</u> . The elevation of the CCRP above mean sea level (MSL).	6	-01000 to +30000	ft.	R
OF_PC_R	Range Offset Between CCRP And Patch Center.	7	±2000.0	ft.	R
OF_PC_A	Azimuth Offset Between CCRP And Patch Center.	7	±2000.0	ft.	R
COSGRZ	Cosine of Grazing Angle. Computed by dividing the ground plane range of the CCRP to the antenna at mid collection array (RGM) by the slant range of the CCRP to the antenna at mid array (RSM). Cos (y) = RGM/RSM	7	0.00000 to 1.00000		R
RGCCRP	Range to CCRP. Estimated slant range in feet from the antenna at mid collection array to the CCRP.	7	0000000 to 3000000	ft.	R
RLMAP	Right/Left. This field indicates whether the map was imaged from the right (R) side or the left (L) side of the aircraft.	1	L or R		R

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CCRP_ROW	CCRP row number	5	00000 to 19999		R
CCRP_COL	CCRP column number	5	00000 to 19999		R
ACFT_LOC	<u>Aircraft Location</u> position at the	21	ddmmss.ssXdddmmss.ssY		R
	UTC of the Patch. The format				
	(00 to 89), minutes $(00 to 59)$.				
	seconds (00 to 59), and				
	hundredths of seconds (00 to 99)				
	of latitude, with $X = N$ for north				
	or S for south, and dddmmss.ssY				
	represents degrees (000 to 179),				
	minutes (00 to 59), seconds (00 to				
	59), and hundredths of seconds				
	(00 to 99) of longitude, with Y =				
	E for east or W for west.				
ACFT_ALT	Aircraft Altitude in feet above	5	00000 to 99999	ft.	R
	mean sea level (MSL) at the UTC				
	of the Patch.				
CCRP Unit Basis Vector:	The computations of patch paramete	rs are bas	sed on a rectangular coordina	ate system	at the
current patch CCRP. The	unit basis vectors for this local coord	linate sys	tem are the range, azimuth a	nd altitude	;
vectors. The range vector	points in the range direction away fr	om the ai	ircraft; the azimuth vector po	oints in the	cross
range direction, and subte	nds an acute angle with the directed	scene tra	ack; and the altitude vector p	oints strai	ght up.
The variables are given as	real numbers and are referred to a N	orth, Eas	t, Down coordinate system v	vhose orig	in is at
the scene entry point. The	se data have meaning in Search scen	$\frac{1}{7}$	+1 0000		D
C_R_NC	Range Unit Vector, North	/	1.0000		ĸ
C_R_EC	Range Unit Vector, East	1	±1.0000		R
C_R_DC	Range Unit Vector, Down	7	±1.0000		R
C_AZ_NC	Azimuth Unit Vector, North	7	± 1.0000		R
C_AZ_EC	Azimuth Unit Vector, East	7	±1.0000		R
C_AZ_DC	Azimuth Unit Vector, Down	7	±1.0000		R
C_AL_NC	Altitude: North Component	7	±1.0000		R
C_AL_EC	Altitude: East Component	7	± 1.0000		R
C_AL_DC	Altitude: Down Component	7	± 1.0000		R

Table 8-13. MENSRA – Airborne SAR Mensuration Data Extension Format (continued)

8.3.7.2 MENSRB Format Description

The format and description for the user defined fields of the MENSRB extension is detailed in table 8-14.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier	6	MENSRB	N/A	R
CEL	Length of Entire Tagged Record	5	00205	bytes	R
	The following fields defin	e MEN	SRB		
Aircraft Position:					
The format ddmmss.ss	ssX represents degrees (00-89), minutes (00-	59), sea	conds (00-59), and decima	l fractions	of
seconds (0000-9999) or	f latitude, with $X = N$ for north or S for south	, and do	ddmmss.ssssY represents	degrees (0	00-
179), minutes (00-59), s	seconds (00-59), and decimal fractions of sec	onds (0	000-9999) of longitude, wi	th Y = E fo	r
east or W for west.	ddd :				£
I ne format ±dd.ddddd	add indicates degrees of latitude (north is p	ositive)	, and ±ddd.ddddddd rep	resents de	grees of
ACET LOC	The aircraft position at the LITC of the	25	ddmmag aggaV		D
ACIT_LOC	Patch	23	dddmmss ssssY		К
			or		
			\pm dd.ddddddd		
			\pm ddd.ddddddd		
ACFT_LOC_ACCY	Aircraft Position Accuracy. 90% probable	6	000.01 to 999.99	feet	R
	circular error value.		000000 or 000.00		
	Unknown=000000 or 000.00				
ACFT_ALT	The aircraft altitude in feet above mean sea level (MSL) at the UTC of the Patch.	6	000000 to 999999	ft	R
Collection Reference P	oint:				
In Search modes, the a	irborne system chooses a Reference Point (F	RP) whi	ch may be at or near the c	enter of ea	ch
patch. The Patch Cente	er, the actual, geometric center of the process	ed ima	gery, may be offset from t	he RP.	
In Spot Modes, the RP	is in the exact center of the scene, so the of	fsets ar	e both equal to 0.		
The location of the RP	relative to the image is specified either by of	fset val	lues (OF_PC_R & OF-PC_	_A) or by	
row/column location (F	RP-ROW & RP_COL); at least one set of field	ds must	t contain valid information	, deterermi	ined
by individual sensor ca	apabilities.				0
The format ddmmss.ss	ssX represents degrees (00-89), minutes (00-	59), sec	conds (00-59), and decima	l fractions	ot
seconds $(0000-9999)$ o 170) minutes (00.59) s	I latitude, with $X = N$ for north or S for south seconds (00, 59), and decimal fractions of sec	i, and d	admmss.ssss Y represents	th $\mathbf{V} = \mathbf{F}$ for	000- or
east or W for west	seconds (00-59), and decimal fractions of sec	onus (o	000-9999) of folightude, wi	ui i – L io	1
The format +dd.ddddd	ddd indicates degrees of latitude (north is p	ositive), and +ddd.ddddddd ren	oresents de	grees of
longitude (east is posit	ive).		,,		8
Where accuracy of the	data does not warrant maximum precision, s	pace ch	naracters will replace fract	ional digits	s; the
decimal points are requ	ired and their position within the field will n	ot chan	ge with changing accuracy	y. For exar	nple,
"ddmmss. Xdddmms	s. Y" (with 4 spaces between decimal point	ts and X	K/Y) if position is only kno	own to with	nin
±100 ft.	I.	1		1	
RP_LOC	Reference Point Location	25	ddmmss.ssssX		R
			addmmss.ssss Y		
			+dd.ddddddd		
			+ddd.ddddddd		

TABLE 8-14.	MENSRB - AIR	BORNE SAR N	IENSURATION	DATA EXTE	NSION FORMAT
R – RE			S SPACES ALLO		

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS TYP		
RP_LOC_ACCY	Reference Point Location Accuracy.90% probable circular error value.Unknown=000000 or 000.00	6	000.01 to 999.99, 000000, 000.00	feet	R	
RP_ELV	<u>Reference Point Elevation</u> . The elevation of the reference point above mean sea level (MSL).	6	-01000 to +30000	ft	R	
OF_PC_R	Range Offset.Distance between the RPand the Patch Center.Positive valuesindicate the RP is closer than the PatchCenter to the sensor.Default = $+0000.0$	7	±9999.9	ft	<r></r>	
OF_PC_A	Azimuth Offset Distance between the RP and the Patch Center. Positive values indicate the RP occurs behind (i.e., earlier) than the Patch Center. Default = +0000.0	7	±9999.9	ft	<r></r>	
COSGRZ	Cosine of the Graze Angle. Computed by dividing the ground plane range of the RP to the antenna at mid collection array (RGM) by the slant range of the RP to the antenna at mid array (RSM):c	7	0.00000 to 1.00000		R	
RGCRP	Estimated Slant Range in feet from the antenna at mid collection array to the RP	7	0000000 to 3000000	ft	R	
RLMAP	This field indicates whether the map was imaged from the right (R) side or the left (L) side of the aircraft.	1	L, R		R	
RP_ROW	Row containing the RP	5	00001 to 99999		<r></r>	
RP_COL	Column containing the RP	5	00001 to 99999		<r></r>	
Reference Point Unit Basis The unit basis vectors need directions in the image pla images in an along-track b direction corresponds to c	vectors: ded to mensurate within a tile are the bas ane. The basis vectors point in the direction of cross-track orientation, the row direction cross-track. For images in a range by azim	is vecto on of in on corr uth orie	ors that align with the row creasing row and column esponds to along-track an entation, the row direction	v and colur indices. Fo d the colur n correspo	mn or mn nds to	

Table 8-14.	MENSRB – Airborne SAR Mensuration Data Extension Format	(continued)
		(

directions in the image plane. The basis vectors point in the direction of increasing row and column indices. For images in an along-track by cross-track orientation, the row direction corresponds to along-track and the column direction corresponds to cross-track. For images in a range by azimuth orientation, the row direction corresponds to azimuth while the column direction corresponds to range. The altitude vector is perpendicular to the row and column vectors and points up. In the unit basis vector names given below, the range vector name is tied to the column direction and the azimuth vector name is tied to the row direction. The variables are given as pure numbers in an earth-fixed NED coordinate system centered at the scene (segment) reference point.

	,			
C_R_NC	Range Unit Vector, North	10	±1.0000000	R
C_R_EC	Range Unit Vector, East	10	± 1.0000000	R
C_R_DC	Range Unit Vector, Down	10	±1.0000000	R
C_AZ_NC	Azimuth Unit Vector, North	9	± 1.000000	R
C_AZ_EC	Azimuth Unit Vector, East	9	± 1.000000	R
C_AZ_DC	Azimuth Unit Vector, Down	9	± 1.000000	R
C_AL_NC	Altitude: North Component	9	± 1.000000	R
C_AL_EC	Altitude: East Component	9	± 1.000000	R
C_AL_DC	Altitude: Down Component	9	± 1.000000	R
TOTAL_TILES_COLS	Total number of tiles in imaging operation in column direction.	3	001 to 999	<r></r>

Table 8-14.	<u>MENSRB – A</u>	<u>irborne SAR</u>	Mensuration	Data	Extension	Format	(continued))
-------------	-------------------	--------------------	--------------------	------	------------------	---------------	-------------	---

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
TOTAL_TILES_ROWS	Total number of tiles in imaging operation in row direction.	5	00001 to 99999		<r></r>

8.3.8 MPDSR - Mensuration Data

MPDSR provides additional information required by most advanced image mensuration programs, such as RULER; it is optional, but required for accurate mensuration. This extension is designed to be used with the information contained in a companion BLOCK extension (identified by BLK_NUM) supporting the same image block. The format and descriptions for the user-defined fields of the MPDSRA extension are detailed in table 8-15.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier	6	MPDSRA	N/A	R
CEL	Length of Entire Tagged Record	5	00188	bytes	R
	The following fields d	efine MF	PDSRA		
BLK_NUM	BLOCK_INSTANCE (see BLOCK) to	2	01 to 99		R
	which this mensuration data applies.				
IPR	Commanded impulse response.	2	01 to 99	feet	R
NBLKS_IN_WDG	Total number of image blocks in this	2	01 to 99		R
	imaging operation segment.				
ROWS_IN_BLK	Number of Rows in each Image Block	5	00001 to 99999		R
COLS_IN_BLK	Number of Columns in each Image Block	5	00001 to 99999		R
ORP_X	X, Y, and Z components of the Output	9	±99999999	feet	<r></r>
ORP_Y	Reference Point (ORP) position vector	9	±99999999	feet	<r></r>
ORP_Z	in the Earth Centered Fixed (ECF) coordinate system.	9	±99999999	feet	<r></r>
ORP_ROW	Row Containing ORP	5	00001 to 19999		<r></r>
ORP_COLUMN	Column Containing ORP	5	00001 to 19999		<r></r>
FOC_X	X, Y, and Z components of Focus	7	±1.0000		<r></r>
FOC_Y	Plane Normal (FPN) Vector in Earth	7	±1.0000		<r></r>
FOC_Z	Centered Fixed (ECF) coordinate system.	7	±1.0000		<r></r>
ARP_TIME	Collection Start Time in seconds past midnight UTC	9	00000.000 to 86399.999	seconds	R
(reserved-001)		14	spaces		R
The Antenna Referen	ce Point position, velocity, and accelerati	on at AR	P_TIME is given in a Nort	th, East, Dow	vn,
earth fixed coordinate modes.	e system with the origin at the scene entry	point fo	r the Search mode and at th	ne RP for the	SPOT
ARP_POS_N	Antenna Reference Point Position at	9	±99999999	feet	R
ARP_POS_E	ARP_TIME.	9	±99999999	feet	R
ARP_POS_D		9	±99999999	feet	R
ARP_VEL_N	Antenna Reference Point Velocity at	9	±99999.99	feet/sec	R
ARP_VEL_E	ARP_TIME.	9	±99999.99	feet/sec	R
ARP_VEL_D]	9	±99999.99	feet/sec	R

Table 8-15. MPDSRA – Mensuration Data Extension Format $R = REQUIRED, C = CONDITIONAL \iff = RCS SPACES ALLOWED FOR ENTIRE FIELD.$

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
ARP_ACC_N	Antenna Reference Point Acceleration at ARP_TIME.	8	±100.000	feet/sec ²	R
ARP_ACC_E		8	±100.000	feet/sec ²	R
ARP_ACC_D		8	±100.000	feet/sec ²	R
(reserved-002)		13	000.0000001.0		R

Table 8-15. MPDSRA – Mensuration Data Extension Format (continued)

8.3.9 MSTGT - Mission Target Information

MSTGT provides information from the collection plan associated with the image, and should identify specific targets contained within the image (however, due to collection geometry, a referenced target may not actually correspond to the area contained in the image). Use of MSTGT is optional. The format and description of the user-defined fields of MSTGTA are given in table 8-16. As many as 256 instances of this data extension may occur in each NITF image segment.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier.	6	MSTGTA	N/A	R
CEL	Length of Entire Tagged Record.	5	00101	bytes	R
	The Following Fields	Define M	STGTA		
TGT_NUM	Pre-Planned Target Number. A number assigned to each preplanned target, initialized at 00001. Recorded in the mission target support data block and the mission catalog support data block to associate the two groups of information. The same number may be assigned to multiple mission catalogs support blocks. Each mission target block shall have a unique number.	5	00001 to 99999		R
TGT_ID	Designator of Target	12	alphanumeric		<r></r>
TGT_BE	Basic Encyclopedia ID / OSUFFIX (target designator) of target.	15	alphanumeric		<r></r>
TGT_PRI	Pre-Planned Target Priority: 1 = top priority 2 = second, etc.	3	001 to 999		<r></r>
TGT_REQ	<u>Target Requester</u> . Identification of authority requesting targets image.	12	alphanumeric		<r></r>

TABLE 8-16. MSTGTA - MISSION TARGET INFORMATION EXTENSION FORMAT

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
TGT_LTIOV	Latest Time Information of Value. This field shall contain the date and time, referenced to UTC, at which the information contained in the file, loses all value and should be discarded. The date and time is in the format CCYYMMDDhhmm in which CCYY is the year, MM is the month (01–12), DD is the day of the month (01 to 31), hh is the hour (00 to 23), mm is the minute (00 to 59).	12	CCYYMMDDhhmm		<r>></r>
TGT_TYPE	Pre-Planned Target Type: 0 = point 1 = strip 2 = area	1	0 to 9		<r></r>
TGT_COLL	Pre-Planned Collection Technique: 0 = vertical 1 = forward oblique 2 = right oblique 3 = left oblique 4 = best possible 5 to 9 = reserved	1	0 to 9		R
TGT_CAT	Target Functional Category Codefrom DIAM-65-3-1. The fivecharacter numeric code classifies thefunction performed by a facility. Thedata code is based on an initialbreakdown of targets into nine majorgroups, identified by the first digit:1Raw Materials2Basic Processing3Basic Equipment Production4Basic Services, Research, Utilities5End Products (civilian)6End Products (military)7Places, Population, Gov't889Military Troop FacilitiesEach successive numeric character,reading from left to right, extends ordelineates the definition further.	5	10000 to 99999		<r></r>
TGT_UTC	<u>Planned Time at Target</u> . Format is hhmmssZ: hh = Hours, mm = Minutes, ss = Seconds, Z = UTC time zone.	7	hhmmssZ		<r></r>

Table 8-16. MSTGTA – Mission Target Information Extension Format (continued)

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
TGT_ELEV	<u>Target Elevation</u> , MSL. Planned elevation of point target. For strip and area targets, this corresponds to the average elevation of the target area. Measured in feet or meters, as specified by TGT_ELEV_UNIT.	6	-01000 to +30000	feet or meters	<r></r>
TGT_ELEV_UNIT	<u>Unit of Target Elevation</u> . f = feet, m = meters.	1	f or m		<r></r>
TGT_LOC	<u>Target Location</u> . Planned latitude/ longitude of corresponding portion of target. Location may be expressed in either degrees -minutes -seconds or in decimal degrees. The format ddmmss.ssX represents degrees (00 to 89), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 59) of latitude, with X = N for north or S for south, and dddmmss.ssY represents degrees (000 to 179), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 59), and hundredths of seconds (00 to 59), and hundredths of seconds (00 to 99) of longitude, with Y = E for east or W for west. The format ±dd.ddddd indicates degrees of latitude (north is positive), and ±ddd.dddddd represents degrees of longitude (east is positive).	21	ddmmss.ssXdddmmss.ssY ±dd.dddddd±ddd.dddddd		R

Table 8-16. MSTGTA – Mission Target Information Extension Format (continued)

8.3.10 MTIRP - Moving Target Report

This optional extension provides a standard format to report moving targets located by the radar system. MTIRP may accompany an associated image, in which case this extension is placed in the image subheader. If no image accompanies MTIRPB, it is placed in the file header, and the first 40 characters of the FTITLE field in the file header are filled in accordance with table 8-17. Multiple MTIRP extensions may be included in a single header (see MTI_TOT in ACFT).

FTITLE LOCATION (BYTES)	CONTENT		
1 – 3	"MTI"		
4 - 17	DATIME field from MTIRPB		
18 - 37	AC_MSN_ID field from ACFTB		
38 - 40	spaces		

Table 8-17. FTITLE Contents for MTI-only Files

8.3.10.1 MTIRPA Format Description

The format and descriptions for the user-defined fields of MTIRPA are detailed in table 8-18. As many as 256 targets may be reported in a single extension.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier	6	MTIRPA	N/A	R
CEL	Length of Entire Tagged Record	5	00072 to 08742	bytes	R
	The following fields of	define M	TIRPA		
MTI_DP	Destination Point at which the scene was collected.	2	01 to 99		<r></r>
MTI_PACKET_ID	MTI Packet ID Number	3	001 to 999		R
PATCH_NO	The number of the patch within which the targets of this report were located.	4	0001 to 0999		R
WAMTI_FRAME_NO	The number of the Frame within which the targets of this report were located. This field is only used with the Wide Area MTI mode.	5	00001 to 32767		Ŕ
WAMTI_BAR_NO	The number of the Wide Area Bar within which the targets of this report were located. This field is only used with the Wide Area MTI mode.	1	1 to 7		<r></r>
UTC	Time in seconds past midnight UTC when the sensor scanned the targets identified in this report.	8	00000.00 to 86399.99	seconds	R

 Table 8-18. MTIRPA – Moving Target Report Extension Format

 R = REQUIRED, C = CONDITIONAL, <> = BCS SPACES ALLOWED FOR ENTIRE FIELD

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
SQUINT_ANGLE	The angle measured in degrees from crosstrack (broadside) to the great circle joining the ground point directly below the Aircraft Reference Point (ARP) to the Output Reference Point (ORP). Forward looking squint angles range from +00.0 (broadside) to +85.0 degrees; aft looking squint angles range from -00.0 to -60.0 degrees.	5	-60.0 to +85.0	degrees	<r></r>
COSGRZ	$\frac{\text{Cosine of the Graze Angle}}{\text{Computed by dividing the ground}}$ plane range of the RP to the antenna at mid collection array (RGM) by the slant range of the RP to the antenna at mid array (RSM). $\cos(\psi) = \text{RGM/RSM}$	7	0.00000 to 1.00000		R
NO_VALID_TGTS	Number of MTI targets contained in this extension. Determines the number of occurrences of TGT_n_LOC, TGT_n_VEL_R, TGT_n_SPEED, TGT_n_HEADING, TGT_n_AMPLITUDE, and TGT_n_CAT fields.	3	001 to 256		R
TGT_n_LOC	<u>Target Location</u> . The format ddmmss.ssX represents degrees (00 to 89), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 99) of latitude, with $X = N$ for north or S for south, and dddmmss.ssY represents degrees (000 to 179), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 99) of longitude, with $Y =$ E for east or W for west.	21	ddmmss.ssXdddmmss.ssY		С
TGT_n_VEL_R	<u>Target Radial Velocity</u> . A positive value indicates target n is moving away from the sensor, and a negative value indicates target n is moving toward the sensor.	4	±200	feet/sec	¢C>
TGT_n_SPEED	Target Estimated Ground Speed.	3	000 to 200	feet/sec	<c></c>
TGT_n_HEADING	Target Heading. Direction that the nth target is moving rounded to the nearest degree and referenced to True North. 0=North, 90=East, 180=South, and 270=West	3	000 to 359	degrees	<c></c>

Table 8-18. MTIRPA – Moving Target Report Extension Format (continued)

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
TGT_n_AMPLITUDE	Target Signal Amplitude. Relative signal strength of the return for the moving target. A value of 00 indicates a target with a very weak return signal while a value of 15 indicates a moving target with a very strong return signal; intermediate values are scaled accordingly. Provides a coarse indication of relative size of the moving target.	2	00 to 15		¢
TGT_n_CAT	<u>Target Classification Category</u> : H = Helicopter T = Tracked U = Unknown W = Wheeled	1	H,T,U,W		¢>

Table 8-18. MTIRPA – Moving Target Report Extension Format (continued)

8.3.10.2 MTIRPB Format Description

The format and descriptions for the user defined fields of MTIRPB are detailed in table 8-19. . As many as 999 targets may be reported in a single extension;

R = Required, C = Conditional, <> = BCS Spaces allowed for entire field							
FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре		
CETAG	Unique Extension Identifier	6	MTIRPB	N/A	R		
CEL	Length of Entire Tagged Record	5	00119 to 42035	bytes	R		
	The following fields d	efine MI	TIRPB				
MTI_DP	Destination Point at which the scene was collected.	2	01 to 99		<r></r>		
MTI_PACKET_ID	MTI Packet ID Number	3	001 to 999		R		
PATCH_NO	The number of the patch within which the targets of this report were located.	4	0001 to 0999		R		
WAMTI_FRAME_NO	The number of the Frame within which the targets of this report were located. This field is only used with the Wide Area MTI mode.	5	00001 to 32767		<r></r>		
WAMTI_BAR_NO	The number of the Wide Area Bar within which the targets of this report were located. This field is only used with the Wide Area MTI mode.	1	1 to 7		<r></r>		

TABLE 8-19. MTIRPB - MOVING TARGET REPORT EXTENSION FORMAT

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
DATIME	Scan Date & Time. This field shall	14	CCYYMMDDhhmmss		R
	contain the date and time,				
	referenced to UTC, when the targets				
	identified in this report were				
	scanned by the sensor. In the format				
	CCYYMMDDhhmmss, CCYY is				
	the year, MM is the month $(01-12)$,				
	DD is the day of the month (01-31), bb is the base (00, 22) may is the				
	minute $(00, 50)$ and so is the second				
	(00-59)				
ACET LOC	The aircraft position when the	21	ddmmss ssXdddmmss ssY		R
ner i_loe	sensor scanned the targets identified	21	or		K
	in this report. The format				
	ddmmss.ssX represents degrees (00-				
	89), minutes (00-59), seconds (00-				
	59), and hundredths of seconds (00-				
	99) of latitude, with $X = N$ for north				
	or S for south, and dddmmss.ssY				
	represents degrees (000-179),				
	minutes (00-59), seconds (00-59),				
	and hundredths of seconds (00-99)				
	of longitude, with $Y = E$ for east or W for weat. The format i dd ddddd				
	w for west. The format $\pm dd.dddddd$				
	is positive) and $+ddd dddddd$				
	represents degrees of longitude (east				
	is positive).				
ACFT_ALT	Aircraft Altitude in feet above mean	6	000000 to 999999	feet	R
	sea level (MSL) at the UTC of the			or	
	Patch.			meters	_
ACFT_ALT_UNIT	Unit of Aircraft Altitude.	1	f or m		R
A CETE LIE A DINIC	f = feet, m = meters	2	000 / 250	1	D
ACFT_HEADING	Aircraft Heading.	3	000 to 359	degrees	R D
MII_LK	Side of aircraft from which the M11	1	K or L		< R >
SOLUNT ANGLE	The angle measured in degrees from	6	60.00 to +85.00	degrees	<p></p>
SQUINT_ANOLL	crosstrack (broadside) to the great	0	-00.00 10 +85.00	uegrees	$\langle V \rangle$
	circle joining the ground point				
	directly below the Aircraft				
	Reference Point (ARP) to the				
	Output Reference Point (ORP).				
	Forward looking squint angles range				
	from +00.00 (broadside) to +85.00				
	degrees; aft looking squint angles				
	range from -00.00 to -60.00				
	degrees.				
COSGRZ	Cosine of the Graze Angle.	7	0.00000 to 1.00000,		R
	Computed by dividing the ground		9.99999		
	plane range of the CCKP to the				
	(RGM) by the slant range of the				
	CCRP to the antenna at mid array				
	(RSM). $\cos(\psi) = RGM/RSM$				
	9.99999 = unknown				

Table 8-19. MTIRPB – Moving Target Report Extension Format (continued)
FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
NO_VALID_TGTS	Number of MTI targets contained in this extension. Determines the number of occurrences of TGT_n_LOC, TGT_n_LOC_ACCY, TGT_n_VEL_R, TGT_n_SPEED, TGT_n_HEADING, TGT_n_AMPLITUDE, and TGT_n_CAT fields.	3	001 to 999		R
TGT_n_LOC	<u>Target Location</u> . The format ddmmss.ssX represents degrees (00 to 89), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 99) of latitude, with X = N for north or S for south, and dddmmss.ssY represents degrees (000 to 179), minutes (00 to 59), seconds (00 to 59), and hundredths of seconds (00 to 99) of longitude, with $Y = E$ for east or W for west.	23	ddmmss.sssX dddmmss.sssY or ±dd.ddddddd ±ddd.dddddd		С
TGT_n_LOC_ACCY	Target Location Accuracy. Approximate 90% probable circular error value. Unknown=000000 or 000.00	6	000.01 to 999.99, 000000, 000.00	feet	С
TGT_n_VEL_R	<u>Target Radial Velocity</u> . A positive value indicates target n is moving away from the sensor, and a negative value indicates target n is moving toward the sensor.	4	±200	feet/sec	<c></c>
TGT_n_SPEED	Target Estimated Ground Speed.	3	000 to 200	feet/sec	<c></c>
TGT_n_HEADING	<u>Target Heading</u> . Direction that the nth target is moving rounded to the nearest degree and referenced to True North. 000=North, 090=East, 180=South, and 270=West	3	000 to 359	degrees	¢C>
TGT_n_AMPLITUDE	Target Signal Amplitude. Relative signal strength of the return for the moving target. A value of 00 indicates a target with a very weak return signal while a value of 15 indicates a moving target with a very strong return signal; intermediate values are scaled accordingly. Provides a coarse indication of relative size of the moving target.	2	00 to 15		¢
TGT_n_CAT	Target Classification Category: $H =$ Helicopter $T =$ Tracked $U =$ Unknown $W =$ Wheeled	1	H,T,U,W		<c></c>

Table 8-19. MTIRPB – Moving Target Report Extension Format (continued)

8.3.11 PATCH - Patch Information

PATCH provides information describing a portion of an image, a patch, to support exploitation. In order to achieve the specified resolution in a SAR image, the phase history data must be continuously collected over a calculated flight path distance; this batch of phase history is then processed into one SAR image patch. A search scene typically consists of many abutting or overlapping patches; each patch of the scene may be treated as an independent image and placed into a separate file, or placed into separate NITF image segments within a single file; where multiple patches of a scene exactly abut to form a mosaic image, they may all (up to 999) be placed into a single NITF image segment. PATCH contains support data pertaining to a single image patch, and one PATCH extension is created for each image patch; The PATCH_TOT field of the ACFT extension contains the total number of patches contained in the NITF image segment (and corresponding PATCH extensions contained in the image subheader). For spot modes there will normally be only one patch, and the corresponding PATCH may be omitted if all necessary information appears elsewhere in the file. PATCH extensions are placed in the subheader of the image containing the described patch.

8.3.11.1 PATCHA Format Description

The format and description for the user-defined fields of the PATCHA extension is detailed in table 8-20.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier	6	PATCHA	N/A	R
CEL	Length of Entire Tagged Record	5	00115	bytes	R
	The following fields de	efine PAT	ГСНА		
PAT_NO	Patch Number. Patches are numbered consecutively, starting with 0001 for each image within a file.	4	0001 to 0999		R
LAST_PAT_FLAG	Last Patch of Search Scene. Flag to indicate that this patch is the last in a search scene. When all patches of a scene are not contained within a single image, PATCH_TOT in ACFTB cannot indicate the total number of patches in the scene; this flag then makes it clear that the scene ends with this patch. 0 = Not End, 1 = End.	1	0 or 1		R
LNSTRT	Absolute starting and ending line	7	0000001 to 9999999		R
LNSTOP	numbers of this patch within an overall image (scene). Provides similar information to ILOC in the image subheader, but in a form more suitable for some operations. Identifies specifically where this patch fits relative to the other N patches comprising an overall scene, whereas relative values in ILOC are referenced to the object to which this patch is attached.	7	0000020 to 9999999		R

 TABLE 8-20.
 PATCHA – PATCH INFORMATION EXTENSION FORMAT

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Туре
AZL	Number of azimuth lines in current	5	00020 to99999	lines	R
	patch				
N T T			00000		
NVL	Number of valid azimuth lines.	5	00020 to 99999	lines	<r></r>
FVI	frame dimensions are 2 720	3	001 to 681		< P >
	azimuth lines by 2.720 range pixels.	5	001 10 001		$\langle v \rangle$
	In the Continuous Spot mode, the				
	Spot scene does not always				
	completely fill the frame.				
	Therefore, these variables together				
	describe the location of the valid				
	lines transformed. These variables				
	have no meaning in the Search				
	mode.				
NPIXEL	Number of image pixels per line.	5	Spot: 00170 to 06000	pixels	R
			Search:		
			00272 to 08160		
EVDIV	First Valid Dival Index Location of	5	Smoth 00001 to 02551		D
ΓΥΡΙΑ	the first pixel on a line. This	3	Spot: 00001 to 02551		ĸ
	variable with the number of pixels		Search.		
	per line, will define the location of		00001 to 07889		
	the image within the 8,160 pixels				
	per line for search and 2,720 for				
	spot.				
FRAME	Spot Frame Number. In Continuous	3	001 to 512		<r></r>
	Spot Mode, each image about the				
	same Map Center (a single scene) is				
	starts at 1 and is incremented by 1				
	for each frame of the scene.				
	Contains spaces for Search and				
	Single Spot modes.				
UTC	Coordinated Universal Time. Time	8	00000.00 to 86399.99	seconds	R
	in seconds (accurate to 0.01				
	seconds) of the start of the current				
	patch or, in the case of Spot, the				
	24-hour clock where a value of				
	00000.0 corresponds to midnight.				
SHEAD	Scene Heading. The Scene Heading	7	000.000 to 359.999	degrees	R
	is a variable that references the			U	
	scene to True North. In Search				
	scenes, it is the angle from True				
	North to the Scene CenterLine. In				
	from True North to the A zimuth				
	Vector				
GRAVITY	Local Gravity	7	31,0000 to 33,9999	fract 2	<r></r>
01011111	Loour Oravity	,	51.0000 (0 55.777)	reet/sec2	~~~

Table 8-20.	PATCHA – Patch Information Extension Forma	at (continued)
		<u></u>

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
INS_V_NC	Ins Platform Velocity,	5	±9999	feet/sec	R
INS_V_EC	North/East/Down.	5	±9999	feet/sec	R
INS_V_DC	The Inertial Navigator Platform velocity is given in a North, East, Down earth-fixed coordinate system. These parameters are valid at the time specified by UTC.	5	±9999	feet/sec	R
OFFLAT	Geodetic Latitude/Longitude	8	±80.0000	seconds	<r></r>
OFFLONG	Offset. The Geodetic Latitude/Longitude Offset is the accumulated latitude/longitude correction currently being used to correct the Inertial Navigation System (INS) aircraft position outputs. The offset is given in seconds of a degree; North and East are positive.	8	±80.0000	seconds	<r></r>
TRACK	<u>Track Heading</u> . The track heading is measured in degrees relative to true North. The measurement is clockwise about the vertical from North to the projection of the aircraft roll axis into the level plane, and is valid at the time specified by UTC.	3	000 to 359	degrees	R
GSWEEP	<u>Ground Sweep Angle</u> . The ground sweep angle is determined by the required azimuth resolution and is the angle over which phase history is collected. The measurements are given in degrees.	6	000.00 to 120.00	degrees	R
SHEAR	Patch Shear Factor. Targets areimaged in the slant planedetermined by the ProcessingCentral Reference Point and theSAR velocity vector at mid-array.The conversion from target spacingin the ground plane to targetspacing in the slant plane for eachpatch allows the optimal matchingof terrain features in one patch tothose in the next.	8	0.850000 to 1.000000		<r></r>

8.3.11.2 PATCHB Format Description

The format and description for the user-defined fields of the PATCHB extension is detailed in table 8-21.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier	6	РАТСНВ	N/A	R
CEL	Length of Entire Tagged Record	5	00121	bytes	R
	The following fields d	efine PA	ТСНВ		•
PAT_NO	Patch Number. Patches are numbered consecutively, starting with 0001, for each image within a file.	4	0001 to 0999		R
LAST_PAT_FLAG	Last Patch of Search Scene. Flag to indicate that this patch is the last in a search scene. When all patches of a scene are not contained within a single file, PATCH_TOT in ACFTB cannot indicate the total number of patches in the scene; this flag then makes it clear that the scene ends with this patch. 0 = Not End, 1 = End.	1	0 or 1		<r></r>
LNSTRT	Absolute starting and ending line	7	0000001 to 9999999		R
LNSTOP	numbers of this patch within an overall image (scene). Provides similar information to ILOC in the image subheader, but in a form more suitable for some operations. Identifies specifically where this patch fits relative to the other N patches comprising an overall scene, whereas relative values in ILOC are referenced to the object to which this patch is attached.	7	0000020 to 9999999		R
AZL	<u>Number of azimuth lines in current</u> patch	5	00020 to99999	lines	R
NVL	Number of valid azimuth lines.	5	00020 to 99999	lines	<r></r>
FVL	<u>First Valid Line</u> . some Spot modes, the Spot scene does not always completely fill the frame. Therefore, these variables together describe the location of the valid imagery within the azimuth lines transferred. These variables have no meaning in the Search modes.	3	001 to 681		<r></r>

Table 8-21. PATCHB – Patch Information Extension Format R = REQUIRED, C = CONDITIONAL, <> = BCS SPACES ALLOWED FOR ENTIRE FIELD

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
NPIXEL	Number of image pixels per line.	5	Spot:00170 to 06000Search:00272 to 43000	pixels	R
FVPIX	<u>First Valid Pixel Index</u> Location of the first pixel on a line. This variable, with the number of pixels per line, will define the location of valid data in the image	5	Spot: 00001 to 06000 Search: 00001 to 43000		R
FRAME	Spot Frame Number. In Continuous Spot Mode, each image about the same Map Center (a single scene) is called a Frame. The Frame Number starts at 001 and is incremented by 1 for each frame of the scene. Contains spaces for Search and Single Spot modes.	3	001 to 512		<r></r>
UTC	<u>Coordinated Universal Time</u> . Time in seconds (accurate to 0.01 seconds) of the start of the current patch or, in the case of Spot, the current scene or frame. UTC uses a 24-hour clock where a value of 00000.00 corresponds to midnight.	8	00000.00 to 86399.99	seconds	R
SHEAD	Scene Heading. The Scene Heading is a variable that references the scene to True North. In Search scenes, it is the angle from True North clockwise to the Scene Center Line. In Spotlight Scenes, it is the angle from True North clockwise to the Azimuth Vector (projection of the line of sight from the sensor onto a horizontal plane).	7	000.000 to 359.999	degrees	R
GRAVITY	Local Gravity	7	31.0000 to 33.9999	feet/sec ²	<r></r>
INS_V_NC	Ins Platform Velocity,	5	±9999	feet/sec	R
INS_V_EC	North/East/Down.	5	±9999	feet/sec	R
INS_V_DC	The Inertial Navigator Platform velocity is given in a North, East, Down earth-fixed coordinate system. The measurements are given in units of feet/second. These parameters are valid at the time specified by UTC.	5	±9999	feet/sec	R

Table 8-21. PATCHB – Patch Information Extension Format (continued)

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
OFFLAT	Geodetic Latitude / Longitude	8	± 80.0000	seconds	<r></r>
OFFLONG	Offset. The Geodetic Latitude/Longitude Offset is the accumulated latitude/longitude correction currently being used to correct the Inertial Navigation System (INS) aircraft position outputs. The offset is given in seconds of a degree; North and East are positive.	8	±80.0000	seconds	⊲R>
TRACK	Track Heading. The track heading is measured in degrees relative to true North. The measurement is clockwise about the vertical from North to the projection of the aircraft roll axis into the level plane, and is valid at the time specified by UTC.	3	000 to 359	degrees	R
GSWEEP	<u>Ground Sweep Angle</u> . The ground sweep angle is determined by the required azimuth resolution and is the angle over which phase history is collected. The measurements are given in degrees.	6	000.00 to 120.00	degrees	R
SHEAR	Patch Shear Factor. Targets are imaged in the slant plane determined by the Processing Central Reference Point and the SAR velocity vector at mid-array. The conversion from target spacing in the ground plane to target spacing in the slant plane for each patch allows the optimal matching of terrain features in one patch to those in the next.	8	0.850000 to 1.000000		<r></r>
BATCH_NO	Consecutive number for coherent files collected during a mission.	6	000001 to 999999		<r></r>

Table 8-21. PATCHB – Patch Information Extension Format (continued)

8.3.12 RPC00 - Rapid Positioning Capability

RPC00 contains rational function polynomial coefficients and normalization parameters that define the physical relationship between image coordinates and ground coordinates. Use of RPC00 is optional. The format and descriptions for the user-defined fields of the RPC00B extension is detailed in table 8-22. A discussion of the polynomial functions is contained in Section 8.2.4. Note that the order of terms in the polynomial in RPC00B is different from RPC00A (defined in STDI-0001).

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier.	6	RPC00B		R
CEL	Length of Entire Tagged Record.	5	01041	bytes	R
	The following fields defi	ie RPC(00B	1	
SUCCESS		1	1		R
ERR_BIAS	Error - Bias. 68% non time-varying error estimate assumes correlated images.	7	0000.00 to 9999.99	meters	R
ERR_RAND	Error - Random. 68% time-varying error estimate assumes uncorrelated images.	7	0000.00 to 9999.99	meters	R
LINE_OFF	Line Offset	6	000000 to 999999	pixels	R
SAMP_OFF	Sample Offset	5	00000 to 99999	pixels	R
LAT_OFF	Geodetic Latitude Offset	8	±90.0000	degrees	R
LONG_OFF	Geodetic Longitude Offset	9	± 180.0000	degrees	R
HEIGHT_OFF	Geodetic Height Offset	5	±9999	meters	R
LINE_SCALE	Line Scale	6	000001 to 999999	pixels	R
SAMP_SCALE	Sample Scale	5	00001 to 99999	pixels	R
LAT_SCALE	Geodetic Latitude Scale (cannot be ±00.0000)	8	±90.0000	degrees	R
LONG_SCALE	Geodetic Longitude Scale (cannot be ±000.0000)	9	±180.0000	degrees	R
HEIGHT_SCALE	Geodetic Height Scale (cannot be ±0000)	5	±9999	meters	R
LINE_NUM_COEFF_1	Line Numerator Coefficients. Twenty	12	±9.9999999 E±9		R
(through)	coefficients for the polynomial in the				
LINE_NUM_COEFF_20	Numerator of the In equation.	12	±9.9999999 E±9		R
LINE_DEN_COEFF_1	Line Denominator Coefficients. Twenty	12	±9.9999999 E±9		R
(through)	Coefficients for the polynomial in the				
LINE DEN_COEFF_20	Denominator of the In equation.	12	±9.9999999 E±9		R
SAMP_NUM_COEFF_1	Sample Numerator Coefficients. Twenty	12	±9.9999999 E±9		R
(through)	coefficients for the polynomial in the Numerator of the c equation				
SAMP_NUM_COEFF_20		12	±9.9999999 E±9		R
SAMP_DEN_COEFF_1	Sample Denominator Coefficients.	12	±9.9999999 E±9		R
(through)	the Denominator of the concentration				
SAMP_DEN_COEFF_20	the Denominator of the C _n equation.	12	±9.9999999 E±9		R

Table 8-22. RPC00B – Rapid Positioning Capability Extension Format $R = Required, C = Conditional, \Rightarrow = BCS Spaces allowed for Entire Field$

8.3.13 SECTG - Secondary Targeting Information

SECTG contains a list of secondary targets tasked in the original collection and may not be present in a derived image. Target information in exploited/derived imagery is contained in PIATG (see section 6). PIATG should be used instead of SECTG for actual target information in exploited and derived imagery. The format and description for the user-defined fields of the SECTGA are detailed in table 8-23. As many as 250 SECTGA extensions can exist in a single NITF file, with the N_SEC field of EXOPTA or EXPLTA providing the total count. Either SEC_ID, SEC_BE, or both must contain a valid identifier.

$R = Required$, $C = CONDITIONAL$, $\Rightarrow = BCS$ Spaces allowed for entire field					
FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier.	6	SECTGA	N/A	R
CEL	Length of Entire Tagged Record.	5	00028	bytes	R
	The following fields de	efine SEC	CTGA		
SEC_ID	Designator of Secondary Target	12	alphanumeric		<r></r>
SEC_BE	Basic Encyclopedia ID of secondary target, including the OSUFFIX (target designator).	15	alphanumeric		<r></r>
(reserved-001)		1	0		R

TABLE 8-23.	SECTGA - SECONDARY TARGETING INFORMATION EXTENSION FORMAT

8.3.14 SENSR - EO-IR Sensor Parameters

The SENSR provides information about the sensor and its installation. The SENSR extension is required. The format and descriptions for the user-defined fields of the SENSR extension are detailed in table 8-24. Imaging operations that require substantial time, for example push broom sensors, may require multiple SENSR extensions to adequately describe imaging geometry. The SENSR extension(s) are placed in the image subheader.

TABLE 8-24.	SENSRA - EO-IF	SENSOR PARAMETERS EXTENSION FORMAT

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier.	6	SENSRA	N/A	R
CEL	Length of Entire Tagged Record.	5	00132	bytes	R
	The Following Fields De	fine SEI	VSRA		
REF_ROW	Reference Row. Data in this extension was collected at REF_ROW, REF_COL of the imaging operation. Identifies the point at which the data of this extension was valid during extended imaging operations.	8	00000000 to 99999999		<r></r>
REF_COL	Reference Column	8	00000000 to 99999999		<r></r>
SENSOR_MODEL	<u>Sensor Model Name</u> . Identifies which specific sensor produced the image.	6	alphanumeric		<r></r>
SENSOR_MOUNT	Sensor Mounting Pitch Angle. Angle in degrees between the longitudinal centerline of the platform and the sensor scan axis. Normally only applicable to push broom sensors.	3	±45	degrees	<r></r>

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
FIELD SENSOR_LOC	NAME/DESCRIPTIONSensor Location. The earth coordinate sensor location may be expressed in either degrees- minutes-seconds or in decimal 	SIZE 21	VALUE RANGE ddmmss.ssXdddmmss.ssY ±dd.ddddd±ddd.ddddd spaces	UNITS N/A	Type
	filled with spaces if the sensor				
SENSOR_ALT_ SOURCE	Sensor Altitude Source. Identifies the source for the value in SENSOR_ALT (and associated reference level):	1	B, G, M, R		<r></r>
	B = Barometric Altimeter (MSL) G = Global Positioning System (WGS-84 Ellipsoid) M = Manual Entry (undetermined) B = Radar Altimeter (AGL)				
SENSOR_ALT	Sensor Altitude. Altitude above reference level specified by SENSOR_ALT_SOURCE; measured in feet or meters, as specified by SENSOR ALT UNIT.	6	-01000 to +99000	feet or meters	<r></r>
SENSOR_ALT_UNIT	Unit of Sensor Altitude. Applies to both SENSOR_ALT and SENSOR_AGL, and may only be null if both altitudes are null. f = feet, m =meters	1	f or m		<r></r>
SENSOR_AGL	Sensor Radar Altitude. Altitude above ground level (AGL), measured in feet or meters, as specified by SENSOR_ALT_UNIT. Filled with spaces when not available, or outside equipment operating range.	5	00010 to 99000	feet or meters	<r></r>

TABLE 8-24. SENSRA – EO-IR SENSOR PARAMETERS Extension Format (CONTINUED)

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
SENSOR PITCH	Sensor Pitch Angle Angular	7	±90.000	degrees	<r></r>
SERVICE THEM	position of the sensor optical axis	,		0	40
	about the platform pitch axis (i.e.,				
	angle from the yaw (Za) axis to the				
	projection of the sensor optical axis				
	(line of sight) onto the Xa, Za				
	plane). Measured positive from the				
	yaw axis to the positive platform				
	roll (Xa) axis. For push broom				
	sensors, the angle from the platform				
	roll axis Xa to the projection of the				
	sensor scan axis onto the Xa, Za				
	plane. †				
SENSOR_ROLL	Sensor Roll Angle. Angular	8	± 180.000	degrees	<r></r>
	position of the sensor optical axis,				
	about the platform roll axis (i.e.,				
	angle from the positive pitch (Ya)				
	axis to the projection of the sensor				
	optical axis (line of sight) onto the				
	from the positive pitch (Ve) axis				
	toward the positive pitch (1a) axis				
CENCOD VAN	Same a New Angle Angelan	0	120.000	dagraag	(D)
SENSOR_YAW	Sensor Yaw Angle. Angular	8	± 180.000	degrees	<r></r>
	about the platform your axis (i.e.				
	angle from the positive roll (Xa)				
	axis to the projection of the sensor				
	ontical axis (line of sight) onto the				
	Xa. Ya plane). Measured positive				
	from the positive roll (Xa) axis				
	toward the positive pitch (Ya)				
	axis.†				
PLATFORM_PITCH	Platform Pitch. †	7	±90.000	degrees	<r></r>
PLATFORM_ROLL	Platform Roll†	8	±180.000	degrees	<r></r>
PLATFORM_HDG	Platform Heading. †	5	000.0 to 359.9	degrees	<r></r>
GROUND_SPD _	Ground Speed Source.	1	R, N, G, M,		<r></r>
SOURCE	R = Doppler Radar		space		
	N = Navigation System				
	G = Global Positioning System				
	M = Manual Entry				
	space = unknown				_
GROUND_SPD	<u>Ground Speed</u> reported by	6	0000.0 to 9999.9		<r></r>
	GROUND_SPEED_SOURCE at				
	time of imagery collection.				_
GROUND_SPD_UNIT	Unit of Ground Speed. May be null	1	k, f, m		<r></r>
	only if GROUND_SPD is null.				
	k =knots, t =teet/sec.,				
	m =meters/sec.		000.0	1	
GROUND_TRACK	Ground Track. The angle from	5	000.0 to 359.9	degrees	<k></k>
	north to the horizontal projection of				
	the platform path (positive from				
	north to east).				

TABLE 8-24. SENSRA - EO-IR SENSOR PARAMETERS EXTENSION FORMAT (CONTINUED)

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
VERT_VEL	<u>Vertical Velocity</u> . Measured in either feet/min. or meters/min. as specified by VERT_VEL_UNIT.	5	±9999	feet or meters per min	<r></r>
VERT_VEL_UNIT	<u>Unit of Vertical Velocity</u> . May be null only if VERT_VEL is null. f =feet/min., m =meters/min.	1	f or m		<r></r>
SWATH_FRAMES	Number of Frames per Swath. A Swath is a continuous strip of frames swept out by the scanning motion of certain dynamic sensors. Platform dynamics may cause the number of frames to vary from one swath to another.	4	0001 to 9999		<r></r>
N_SWATHS	Number of Swaths.	4	0001 to 9999		<r></r>
SPOT_NUM	<u>Spot Number.</u> Number in point targets mode.	3	001 to 999		<r></r>

TABLE 8-24.	SENSRA - EO-IR SENSOR PARAMETERS EXTENSION FORMAT	(CONTINUED)
		• •

† See section 8.2.2

8.3.15 STREO — Stereo Information

The STREO extension provides links between several images that form a stereo set to allow exploitation of elevation information. Use of STREO is optional. There can be up to 3 STREO extensions per image. The format and descriptions for the User Defined fields of this extension is detailed in table 8-25.

FIELD	NAME/DESCRIPTION	SIZE	VALUE RANGE	UNITS	Түре
CETAG	Unique Extension Identifier.	6	STREOB	N/A	R
CEL	Length of Entire Tagged Record.	5	00094	bytes	R
	The Following Fields Defi	ne ST	REOB		
ST_ID	Stereo Mate. The image id of the first stereo mate. This field contains the values of the first 60 characters of the ITITLE/IID2 field in the image subheader of the stereo mate image.	60	alphanumeric		R
N_MATES	<u>Number of Stereo Mates</u> . If there are no stereo mates, there will be no STREO extensions in the file. If there is a STREO extension, then there will be at least 1 stereo mate.	1	1 to 3		R
MATE_INSTANCE	Mate Instance. Identifies which stereo mate is described in this extension. For example, this field would contain a 2 for the second stereo mate.	1	1 to 3		R

T	ABLE 8-25 .	S	TREOB – St	ERE	O INFORMATION EX	TENSION FOR	MAT
Б	DECLURER		000000000000000000000000000000000000000		DCC CRASES ALLOW		

FIELD	NAME	SIZE	VALUE RANGE	UNITS	Түре
B_CONV	Beginning Convergence Angle. Defined at the first lines of the left and /right images, unless those images are rotated more than 90 degrees to each other; If the images are rotated more than 90 degrees to each other, the last line of the right image shall be used. Accuracy of elevation measurements is reduced with large convergence angles.	5	00.00 to 99.99 100.0 to 179.9	degrees	<r></r>
E_CONV	Ending Convergence Angle. Defined at the last lines of the left and right images, unless those images are rotated more than 90 degrees to each other; If the images are rotated more than 90 degrees to each other, the first line of the right image shall be used. Accuracy of elevation measurements is reduced with large convergence angles.	5	00.00 to 99.99 100.0 to 179.9	degrees	<r></r>
B_ASYM	Beginning Asymmetry Angle. Defined at the first lines of the left and right images, unless those images are rotated more than 90 degrees to each other; If the images are rotated more than 90 degrees to each other, last line of the right image shall be used.	5	00.00 to 90.00	degrees	<r></r>
E_ASYM	Ending Asymmetry Angle. Defined at the last lines of the left and right images, unless those images are rotated more than 90 degrees to each other; If the images are rotated more than 90 degrees to each other, the first line of the right image shall be used.	5	00.00 to 90.00	degrees	<r></r>
B_BIE	Beginning Bisector Intercept Elevation less Convergence Angle of Stereo Mate. Defined at the first lines of the left and right images, unless those images are rotated more than 90 degrees to each other; If the images are rotated more than 90 degrees to each other, the last line of the right image shall be used.	6	±90.00	degrees	<r></r>
E_BIE	Ending Bisector Intercept Elevation less Convergence Angle of Stereo Mate. Defined at the last lines of the left and right images, unless those images are rotated more than 90 degrees to each other; If the images are rotated more than 90 degrees to each other, the first line of the right image shall be used.	6	±90.00	degrees	<r></r>

Table 8-25.	STREOB – Stereo Information Extension Format	(continued)
		(

STDI-0002, VERSION 2.1, 16 November 2000 AIRBORNE SUPPORT DATA EXTENSIONS (ASDE), VERSION 1.1, 16 November 2000

8.4 Definitions

Altitude	The height of an object above a given reference level. Within the Airborne SDE domain, altitude refers to the distance between the aircraft/sensor and a reference point on the Earth, as stated within a data element's definition.
Batch	One interval of SAR phase history data that is collected periodically over a given flight path.
Block	For use within the Airborne SDE domain, an image <i>BLOCK</i> represents the entire coverage of all abutting/overlapping <i>PATCH</i> es within a <i>SCENE</i> . An image <i>BLOCK</i> can also represent the coverage of a single SAR spot, or single VIMAS continuous or frame capture. Not to be confused with image Fast Access Format (FAF) blocks or tiles.
Elevation	The height of the Earth's surface at a given point above a given reference level. Within the Airborne SDE domain, elevation refers to the distance between a given point of interest on the Earth and a reference level, as stated within a data element's definition.
Flight Path	The ground path traveled by the airborne platform during an imaging collection operation.
Patch	A portion of an image created from a BATCH of SAR phase history.
Scene	A single image or a collection of images providing continuous coverage of an area of interest. In search modes, a <i>SCENE</i> may consist of one or more image segments, and comprises all imagery captured within a given scene number (SCNUM) within a given imagery operation number (OP_NUM). Within a SAR spot (or VIMAS continuous or frame capture), a scene will be typically comprised of a single image segment.
Scene Centerline	An imaginary line which runs between all patches (or single images from a SAR spot, or VIMAS continuous/frame capture) comprising a scene. The scene centerline originates at the center of the first line of pixels and terminates at the center of the last line of pixels in the scene.
Segment	(1) A section or part of a NITF file. A NITF file may contain image segments, graphic segments, text segments, data extension segments, and/or reserved extension segments. Each segment is comprised of a segment subheader followed by the data applicable to that segment.
	(2) A means to partition an imaging operation into labeled portions (segments). Specific sensor, processing, or image abstract characteristics and limitations determine segment dimensions. For example, if a sensor in a search/scan mode collects and processes 640,000 rows within an imaging operation, the resulting image <i>may</i> be partitioned into 10 segments identified 'AA' - 'AJ', each of 64,000 rows. Likewise, if a framing sensor collected 3 consecutive frames of imagery (with each frame consisting of 10K columns X 30K rows), the resulting theoretical image from the imaging operation could be 10K columns X 90K rows, and comprised of 3 segments identified 'AA' - AC'.
Tiles	Pixel ordering in a manner that allows rapid roaming within large images. A tiled image is comprised of a rectangular array of uniform, adjoining sub-images called tiles, similar to the formation of a tiled floor. Fast Access Format (FAF) blocks are tiles.
Track	The path on the earth's surface directly beneath the Flight Path of the airborne platform. The path may (or may not) be geographically coincident to that of a scene centerline.

INTENTIONALLY BLANK

9.0 IOMAPA Tagged Record Extension Description

The IOMAPA tagged extension contains the data necessary to perform the output amplitude mapping process for each scan within each image frame. This post-processing is applied after the image data has undergone the data expansion process using the 12-bit JPEG/DCT algorithm.

The output amplitude mapping function is generally the inverse of the input amplitude mapping function that is performed as a pre-processing step before the data compression process is executed.

Note: An exception to this case is when the output of the compression is scaled by a factor (S2) to change the precision of the output product relative to the input data precision.

The explanation of the input amplitude mapping is included to describe the pre-processing performed before the compression process. The pre-processing steps are shown in figure 9-1 and the post-processing steps are shown in figure 9-2 for mapping methods 1 through 3.

FIGURE 9-1. PRE-PROCESSING STEPS

FIGURE 9-2. POST-PROCESSING STEPS

9.1 Format Description and Mapping Method Functions

The IOMAPA data extension is used to transfer the required information needed for the inverse of the input mapping function, i.e., the output amplitude mapping function which is applied to the image data after expansion.

Tables 9-1 to 9-3 defines the format for the NITF controlled tagged record extensions bearing the tag of IOMAPA. The IOMAPA tag is meant to be stored in the image subheader portion of the NITFS file structure. Portions of this tagged record extension are variable depending upon the value of the MAP_SELECT field within the extension.

9.1.1 Functionality of NITF JPEG/DCT Compressor using the IOMAPA TRE

The input amplitude mapping function takes the image data with a known minimum value and performs a three step pre-processing function on each scan contained in the image frame before it is sent to the JPEG/DCT compressor.

The first operation subtracts the minimum pixel intensity for each scan from each pixel in the corresponding scan of the image frame. For example, the minimum value for scan 1 is subtracted from the pixels contained in the scan 1 data block. The minimum value for each scan is stored in the JPEG application segment, APP6/(Extension NITF0001), in order to pass this information to the expander.

The second step in the mapping process is to use a S1 factor to scale the original data up to a 12-bit precision. If the original input data has 9-bit precision, then the S1 scale factor would be set to 3.

The third step in the mapping process is to apply an input mapping function, specified as part of a compression database, to the data. The compressor fills in the values of the IOMAPA extension from the compression database defining the appropriate output amplitude mapping function to be used by the expander.

In actual practice, the second and third steps can be performed with a scaled lookup table in order to gain efficiency in the implementation of the input mapping process.

If the MAP_SELECT field is equal to 0, then the subtraction of the minimum value from each block shall not be performed. The second and third steps shall also be bypassed because the mapper type 0 is used to turn off the re-mapping process. However, the data can be scaled with the output mapper after the JPEG expansion to decrease the precision of the data if the S2 factor is non-zero.

9.1.1.1 Input Amplitude Mapping Method 0

The amplitude mapping method 0 is used to turn off the minimum value subtraction and re-mapping pre-processing options. The minimum values of the scan is loaded into APP6/(Extension NITF0001), and a non-zero S2 output scaling factor can be loaded into the IOMAPA tag, but the data remains unchanged before it is compressed.

9.1.1.2 Input Amplitude Mapping Method 1

Table 9-2 describes the format of the controlled tag extension used to pass the parameters used in the amplitude mapping method 1. The controlled tag extension (method 1) contains a value by value listing or table for the output lookup process. The output lookup table is the inverse mapping of the input lookup table used by the compressor.

The input mapping table is contained in a compressor database, but is not needed by the expander and is not included in the IOMAPA tag. The tag also contains the input scale factor value S1, and the output precision scale change value S2.

The input amplitude mapping process that uses the input amplitude-mapping table shall be defined as:

IXX = (IX - MIN) * ISF Scale the data to 12-bits after the subtraction of the minimum value

If IXX is less than 0 then IXX = 0 Clamp the value to the limits for the input amplitude function

If IXX is greater than IXMAX then IXX = IXMAX

IXXX = input_amplitude_map_table [IXX]	Input amplitude mapping table with starting index of 0 used to re-map value
Where:	
IX	Original Pixel Data
MIN	Minimum pixel value for image block and included in the NITF JPEG application segment APP6/(Extension NITF0001)
$ISF = 2^{**}(S1)$	Scale Factor Exponent where S1 is a data item included in IOMAPA
IXX	Scaled Original Pixel Data
IMAX = 4096	
IXMAX = IMAX - 1	Maximum Value for Input to Map Table
IXXX	Re-mapped Image Pixel Data
int[]	Denotes integer truncation

Note: The resultant re-mapped value shall then be clamped to ensure that it is greater than or equal to zero and less than or equal to IXMAX.

9.1.1.3 Input Amplitude Mapping Method 2

Table 9-3 describes the format of the controlled tag extension used to pass the parameters needed for amplitude mapping method 2. If the MAP_SELECT flag is set to 2, a generalized log mapping shall be utilized as the basis for the input amplitude mapping function. The parameters R, S1, and IMAX shall be used to generate the function. The parameters R, S1, and S2 shall be loaded into the IOMAPA extension. The input amplitude mapping process for when the MAP_SELECT is set to 2 is defined below:

IX :	= Original Pixel Value	
IXX	X = IX - MIN	Subtract the minimum value for the image block
If F	R is not equal to 1.0	Perform log mapping
	IXXX = int[(B * ln(1.0 + A*IXX)) + 0.5]	
Els	e	
	IXXX = IXX * ISF	Special case for log mapping if R=1.0
Wh	lere:	
	IX	Original Image Pixel Data
	IXX	Image Pixel Data after the minimum value subtraction
	MIN	Minimum pixel value for image block and included in the NITF JPEG application segment APP6/(Extension NITF0001)
	A = (R-1.0)/IXMID	
	B = IXMAX/(ln(1.0+A*ISMAX))	
	R	Log Ratio data item loaded into IOMAPA
	IMAX = 4096	IMAX shall be 4096 for 12-bit JPEG/DCT
	IXMAX = IMAX - 1	
	ISMAX = (IMAX/ISF)-1	Scaled maximum
	IXMID = (IMAX/(2*ISF))	Scaled mid-point
	$ISF = 2^{**}(S1)$	Scale Factor S1
	IXXX	Re-mapped Image Pixel Data
	int[]	Denotes integer truncation

Note: The resultant re-mapped value IXXX shall then be clamped to ensure that it is greater or equal to zero and less than or equal to IXMAX.

9.1.1.4 Input Amplitude Mapping Method 3

Table 9-4 describes the format of the controlled tag extension used to pass the parameters for amplitude mapping method 3. Mapping method 3 uses a 3-segment polynomial mapping process, where each interval is described by a fifth order polynomial. The starting point for each interval and a set of six coefficients defining the polynomial for each segment shall be database items. The coefficients stored in the IOMAPA tag are different from the ones used in the input mapping process.

The coefficients stored in the tag usually reflect the inverse mapping characteristics of the input mapper coefficients. The input mapper coefficients are stored in a compressor database, but are not needed by the expander and are not included in the IOMAPA tag.

STDI-0002, VERSION 2.0, 4 MARCH 1999 IOMAPA TAGGED RECORD EXTENSION

If the MAP_SELECT flag is set to the value 3, the following segmented polynomial mapping shall be used for each pixel before the 12-bit JPEG/DCT compression process.

IX = Original Pixel Value

IXX = IX - MIN	Subtract the minimu m value for the image block
IXXX = IXX * ISF	Shifted input value IXX is scaled by ISF

The scaled original pixel (IXXX) value shall determine which segment of the polynomial function shall be used.

Segment (J) shall be defined as

 $XIB(J-1) \le IXXX \le XIB(J)$ For J = 1, 2, and 3

Where

XIB(J) are segment bounds

XIB(0) = 0 and XIB(3) = 4096

XIB(1) and XIB(2) are contained in a compression database

The scaled input pixel value (IXXX) shall be mapped using the coefficients (ai) for the appropriate polynomial segment as defined above. These coefficients are stored in a compressor database and are not included in the IOMAPA tag. Output coefficients, which perform the inverse operation of the (ai)'s, are included in the IOMAPA tag.

The output mapping segment bounds correspond to the mapped values of the input segment bounds and are included in the NITF CDE IOMAPA. The two output segment boundaries can be calculated using the a0 input mapping coefficients for the second and third segments, respectively. The simple expressions for the output segment boundaries are due to the IZ term being equal to 0 at the XIB(1) and XIB(2) input mapping segment boundaries.

XOB(1) = int[a0 + 0.5]	where a0 is from the input mapping coefficients for segment 2
XOB(2) = int[a0 + 0.5]	where a0 is from the input mapping coefficients for segment 3

The input mapping expression for the polynomial function is given below:

IZ = IXXX - XIB(J-1)

IY = int[a0 + a1*IZ + a2*(IZ**2) + a3*(IZ**3) + a4*(IZ**4) + a5*(IZ**5) + 0.5]

Where:

IX	Original pixel value
IXX	Image Pixel Data after minimum value subtraction
MIN	Minimum pixel value for image block and included in the NITF JPEG application segment APP6/(Extension NITF0001)
IXXX	Scaled value to determine segment number
$ISF = 2^{**}(S1)$	Scale Factor (S1 from IOMAPA)
a0, a1, a2,, a5	6 Input Mapper Coefficients For Segment J{ $X(J-1) <= IXXX < X(J)$ }
XIB(J-1)	Lower Boundary for Input Mapper Segment J
XOB(J-1)	Lower Boundary for Output Mapper Segment J
IY	Re-mapped image pixel value
IMAX = 4096	
IXMAX = IMAX - 1 = 4095	
int[]	Denotes integer truncation

Note: The output of the polynomial mapping function (IY) shall be clamped to ensure that it is greater than or equal to zero and less or equal to IXMAX.

9.1.2 Functionality of NITF JPEG/DCT Expander when using the IOMAPA TRE

The output amplitude mapping function takes the reconstructed image data from the JPEG expansion process and performs a three step post-processing function on the data unless mapping method 0 is applied. The first step in the re-mapping process is to apply an output mapping function specified by the IOMAPA extension present in the NITF file. The second operation re-scales the data values using the S1 and S2 values. The final operation adds the minimum value extracted from the JPEG APP6/(Extension NITF0001) application segment to each pixel value.

If the MAP_SELECT field is equal to 0, then the re-mapping amplitude function and the addition of the minimum value shall not be performed. Only the S2 factor shall be used to change the precision of the data to (orig_precision-S2) bits.

9.1.2.1 Output Amplitude Mapping Method 0

The amplitude mapping method 0 code describes to the interpreter of the NITF file that no input or output remapping function or minimum value shift is applied to the data. However, if the S2 field is not equal to zero, the data values shall be scaled by the factor of $2^{**}S2$. The output scaled pixel value shall use the following expression:

OX = int[(IY/OSF)]

Where:

IY = Pixel Value From JPEG Expander

 $OSF = 2^{**}(S2)$

OX = Output Precision Scaled Pixel Value

9.1.2.1 Output Amplitude Mapping Method 1

Table 9-2 describes the format of the controlled tag extension for amplitude mapping method 1.

The IOMAPA tag (method 1) contains a value by value listing or table for the output lookup process. The tag also contains the input scale factor value S1, and the output precision scale change value S2.

The output amplitude mapping process, which utilizes the output amplitude-mapping table, shall be defined as:

If IY is less than 0 then $IY = 0$	Clamp the input to the output amplitude function.	
If IY is greater than IXMAX then IY = IXMAX		
IXX = output_amplitude_map_table[IY]	Virtual array with the values of the output amplitude mapping table loaded starting at index 0.	
OX = int[(IXX/(ISF*OSF)) + 0.5] + int[(MIN/OSF)+0.5]	Scaled Output Data with scaled image block minimum added.	
Where:		
IY	Pixel Data from JPEG Expander	
IMAX = 4096		
IXMAX = IMAX - 1	Maximum Value for Input to Map Table	
$ISF = 2^{**}(S1)$	Scale Factor Exponent where S1 is a data item included in IOMAPA	
OX	Re-scaled Image Pixel Data	

OSF = 2**(S2)	Scale Factor Exponent where S2 is a data item included in IOMAPA
MIN	Minimum pixel value for image block extracted from the NITF JPEG application segment APP6/(Extension NITF0001)
OMAX = (IMAX/(ISF*OSF))-1	Maximum Value Clamp for Final Output
int[]	Denotes integer truncation

Note: The resultant output shall then be clamped to ensure that it is greater than or equal to zero and less than or equal to OMAX.

9.2.2.3 Output Amplitude Mapping Method 2

Table 9-3 describes the format of the controlled tag extension for amplitude mapping method 2.

If the MAP_SELECT flag is set to 2, a generalized log mapping shall be utilized as the basis for the output amplitude mapping function. The parameters R, S1, S2, and IMAX shall be utilized to generate the function. The parameters R, S1, and S2 shall be extracted from the IOMAPA tag.

The output amplitude mapping process for when the MAP_SELECT set to 2 is defined below:

If IY is less than 0 then $IY = 0$	Clamp the input to the function.
If IY is greater than IXMAX then IY = IXMAX	
If R is not equal to 1.0	
IX = int[(((exp(IY/B)-1.0)/A)/OSF) + 0.5]	
Else	
IX = int[(IY/(ISF*OSF)) + 0.5]	
OX = IX + int[(MIN/OSF) + 0.5]	Scaled Output Data with Scaled Image Block Minimum Added
Where:	
IY	Clamped Pixel Data from JPEG Expander
R	Log Ratio data item from IOMAPA Tag
A = (R-1.0)/IXMID	
B = IXMAX/(ln(1.0+A*ISMAX))	
IXMID = (IMAX/(2*ISF))	Scaled mid-point
ISMAX = (IMAX/ISF)-1	Scaled maximum
IMAX = 4096	IMAX shall be 4096 for 12-bit JPEG/DCT
IXMAX = IMAX - 1	Maximu m input
$ISF = 2^{**}(S1)$	Scale Factor (S1 from IOMAPA)
$OSF = 2^{**}(S2)$	Scale Factor (S2 from IOMAPA)
IX	Re-scaled output mapped pixel (with minimum still subtracted)
MIN	Minimum pixel value for image block and included in the NITF JPEG application segment APP6/(Extension NITF0001)

OX	Re-scaled Image Pixel Data
OMAX = (IMAX/(ISF*OSF))-1	Maximum Value for Final Output
int[]	Denotes integer truncation
exp()	Exponential Function (e**x)

Note: The resultant output shall then be clamped to ensure that it is greater than or equal to zero and less than or equal to OMAX.

9.1.2.2 Output Amplitude Mapping Method 3

Table 9-4 describes the format of the controlled tag extension for amplitude mapping method 3. Mapping method 3 uses a 3-segment polynomial mapping process where each interval is described by a fifth order polynomial. The break point for each interval and a set of six coefficients defining the polynomial for each segment shall be extracted from the IOMAPA tag.

If the MAP_SELECT flag is set to the value 3, the following segmented polynomial mapping shall be utilized for each pixel output from the expansion process.

The output pixel (IY) from the JPEG/DCT expansion process shall determine which segment of the polynomial function shall be utilized.

Segment (J) shall be defined as

$XOB(J-1) \le IY \le XOB(J)$	For $J = 1, 2, and 3$
------------------------------	-----------------------

Where

XOB(J) are output mapper segment bounds

XOB(0) = 0 and XOB(3) = 4096

XOB(1) and XOB(2) are extracted from the NITF CDE IOMAPA

The output pixel value (IY) shall be mapped using the coefficients (bi) for the appropriate polynomial segment as defined above. The expression for the polynomial function is given below:

If IY is greater than 4095, then IY = 4095.

If IY is less than 0, then IY = 0.

IZ = IY - XOB(J-1)

IXX = int[b0 + b1*IZ + b2*(IZ**2) + b3*(IZ**3) + b4*(IZ**4) + b5*(IZ**5) + 0.5]

Where the coefficients b0 through b5 are included in the NITF CDE IOMAPA.

The output of the polynomial mapping function (IXX) shall be scaled by the following relationship:

IX = int[(IXX/(ISF*OSF)) + 0.5]

OX = IX + int[(MIN/OSF) + 0.5]

Where:

IY	Pixel value from expansion process (Determines Segment Number Location)
X(J-1)	Lower Boundary for Segment J
b0, b1, b2,, b5	6 Output Mapper Coefficients For Segment J { $X(J-1) <= IY < X(J)$ }
IXX	Intermediate value from polynomial equation

IX	Re-scaled output mapped pixel (with minimum still subtracted)
$ISF = 2^{**}(S1)$	Scale Factor (S1 from IOMAPA)
OSF = 2**(S2)	Scale Factor (S2 from IOMAPA)
OX	Re-scaled Image Pixel Data
MIN	Minimum pixel value for image lock and extracted from the NITF JPEG application segment APP6/(Extension NITF0001)
OMAX = ((IMAX/(ISF*OSF)) - 1)	Final output value clamp IMAX = 4096
int[]	Denotes integer truncation

The resultant output (OX) shall then be clamped to ensure that it is greater than or equal to zero and less than or equal to OMAX.

9.1.3 IOMAPA Tagged Record Extension Format Tables

FIELD	DESCRIPTION	LENGTH (BYTES)	VALUE RANGE	TYPE
CETAG	Unique Extension Identifier	6	IOMAPA	R
CEL	Length of CEDATA Fields	5	00006	R
BAND_NUMBER	Band Identifier (Band = 000 for Monochrome or Single Band Imagery)	3	000 to 999	R
MAP_SELECT	Mapping Method to Apply	1	0	R
S2	Scale Factor 2	2	00 to 11	R

TABLE 9-1. IOMAPA FORMAT FOR MAPPING METHOD 0 R = Required O = Optional and C = Conditional

TABLE 9-2. IOMAPA FORMAT FOR MAPPING METHOD 1

FIELD	DESCRIPTION	LENGTH (BYTES)	VALUE RANGE	TYPE
CETAG	Unique Extension Identifier	6	IOMAPA	R
CEL	Length of CEDATA Fields	5	08202	R
BAND_NUMBER	Band Identifier (Band = 000 for Monochrome or Single Band Imagery)	3	000 to 999	R
MAP_SELECT	Mapping Method to Apply	1	1	R
TABLE_ID	I/O TABLE USED (note 2)	2	00 to 99	0
S1	Scale Factor 1 (note 3)	2	00 to 11	R
S2	Scale Factor 2 (note 4)	2	00 to 11	R
OUTPUT MAP VALUE 0	First Output Mapping Value	2	(note 1)	R
OUTPUT MAP VALUE 4095	Last Output Mapping Value	2	(note 1)	R

R = Required, O = Optional, and C = Conditional

Notes: 1. Value is stored in 2 byte unsigned integer format (Most Sign. Byte First). The binary value is limited to be greater than or equal to 0 and less than or equal to 4095.

2. Table_ID is not needed to perform the output mapping function. It is used for diagnostic purposes and can be considered an optional field.

3. The value of S1 is used to scale the input data precision up to 12 bits. For the example of 8bit-input data, the S1 value would be 4.

4. The value of S2 is limited to the range where S2 < (12 - S1). Otherwise, all of the data bits would be destroyed.

FIELD	DESCRIPTION	LENGTH (BYTES)	VALUE RANGE	TYPE
CETAG	Unique Extension Identifier	6	IOMAPA	R
CEL	Length of CEDATA	5	00016	R
BAND_NUMBER	Band Identifier (Band = 000 for Monochrome or Single Band Imagery)	3	000 to 999	R
MAP_SELECT	Mapping Method to Apply	1	2	R
TABLE_ID	I/O TABLE USED (note 1)	2	00 to 99	0
S1	Scale Factor 1 (note 2)	2	00 to 11	R
S2	Scale Factor 2 (note 3)	2	00 to 11	R
R_WHOLE	R Scaling Factor – Whole Part (note 4)	3	000 to 999	R
R_FRACTION	R Scaling Factor – Fractional Part (note 4)	3	000 to 255	R

TABLE 9-3. IOMAPA FORMAT FOR MAPPING METHOD 2R = Required, O = Optional, and C = Conditional

Notes: 1. Table_ID is not needed to perform the output mapping function. It is used for diagnostic purposes and can be considered an optional field.

2. The value of S1 is used to scale the input data precision up to 12 bits. For the example of 8bit-input data, the S1 value would be 4.

3. The value of S2 is limited to the range where S2 < (12 - S1). Otherwise, all of the data bits would be destroyed.

4. The R values contain two parts, the fractional part and the whole part. The resultant of R is derived by the expression: $R = R_WHOLE + (R_FRACTION/256)$

FIELD	DESCRIPTION	LENGTH (BYTES)	VALUE RANGE	TYPE
CETAG	Unique Extension Identifier	6	IOMAPA	R
CEL	Length of CEDATA Fields	5	00091	R
BAND_NUMBER	Band Identifier (Band = 000 for Monochrome or Single Band Imagery)	3	000 to 999	R
MAP_SELECT	Mapping Method to Apply	1	3	R
TABLE_ID	I/O TABLE USED (note 1)	2	00 to 99	0
S1	Scale Factor 1 (note 2)	2	00 to 11	R
S2	Scale Factor 2 (note 3)	2	00 to 11	R
NO_OF_SEGMENTS	Number of Segments	1	3	R
XOB_1	Segment Boundary 1	4	0000 to 4095	R
XOB_2	Segment Boundary 2	4	0000 to 4095	R
OUT_B0_1	B0 Coefficient of 1st Segment	4	(note 4)	R
OUT_B1_1	B1 Coefficient of 1st Segment	4	(note 4)	R
OUT_B2_1	B2 Coefficient of 1st Segment	4	(note 4)	R
OUT_B3_1	B3 Coefficient of 1st Segment	4	(note 4)	R
OUT_B4_1	B4 Coefficient of 1st Segment	4	(note 4)	R

TABLE 9-4. IOMAPA FORMAT FOR MAPPING METHOD 3

R = Required, O = Optional, and C = Conditional

STDI-0002, VERSION 2.0, 4 MARCH 1999 IOMAPA TAGGED RECORD EXTENSION

FIELD	DESCRIPTION	LENGTH (BYTES)	VALUE RANGE	TYPE
OUT_B5_1	B5 Coefficient of 1st Segment	4	(note 4)	R
OUT_B0_2	B0 Coefficient of 2nd Segment	4	(note 4)	R
OUT_B1_2	B1 Coefficient of 2nd Segment	4	(note 4)	R
OUT_B2_2	B2 Coefficient of 2nd Segment	4	(note 4)	R
OUT_B3_2	B3 Coefficient of 2nd Segment	4	(note 4)	R
OUT_B4_2	B4 Coefficient of 2nd Segment	4	(note 4)	R
OUT_B5_2	B5 Coefficient of 2nd Segment	4	(note 4)	R
OUT_B0_3	B0 Coefficient of 3rd Segment	4	(note 4)	R
OUT_B1_3	B1 Coefficient of 3rd Segment	4	(note 4)	R
OUT_B2_3	B2 Coefficient of 3rd Segment	4	(note 4)	R
OUT_B3_3	B3 Coefficient of 3rd Segment	4	(note 4)	R
OUT_B4_3	B4 Coefficient of 3rd Segment	4	(note 4)	R
OUT_B5_3	B5 Coefficient of 3rd Segment	4	(note 4)	R

TABLE 9-4. IOMAPA FORMAT FOR MAPPING METHOD 3 (CONTINUED)

Notes: 1. Table_ID is not needed to perform the output mapping function. It is used for diagnostic purposes and can be considered an optional field.

2. The value of S1 is used to scale the input data precision up to 12 bits.

3. The value of S2 is limited to the range where S2 < (12 - S1). Otherwise, all of the data bits would be

destroyed.4. The value is stored in 4-byte IEEE single precision floating point format. Value range is the range available in the standardized 4-byte IEEE single precision floating point format. The 4 bytes are stored in "Network Transmission Order" where the 32 bits are ordered from bit 31 to bit 0 in contiguous order with no byte swapping.

Single-Precision	bit ordering
SIGN	bit 31
EXPONENT	bits 30-23 (bias 127)
FRACTION	bits 22-0

			by	te 1								byt	e 2				k	oyte	3		ł	oyte	4
31	30	29	28	27	26	25	24	2	3	22	21	20	19	18	17	16	15		8	-	7		0
S	Е	Е	Е	Е	Е	Е	Е]	Ξ	f	f	f	f	f	f	f	f		f		f		f

10.0 Profile for Imagery Archives Extensions (PIAE)

10.1 Profile for Imagery Archives Image Support Extension

This support extension is designed to provide an area to place fields not currently carried in NITF but are contained in the Standard Profile for Imagery Archives. Most imagery related information is contained in the NITF main headers and Support Data Extensions (SDEs). The purpose of this extension is to minimize redundant fields while providing space for all information. This extension shall be present no more than once for each image in the NITF file. When present, this extension shall be contained within the image extended subheader data field of the image subheader or within an overflow DES if there is insufficient room to place the entire extension within the image extended subheader data field.

Field	Name	Size	Value Range	Туре				
CETAG	Unique extension type ID	6	PIAIMB	R				
CEL	Length of PIAIMB-extension	5	00337	R				
CEDATA	User-defined data	337	See table 2 below	R				

TABLE 10-1, TROFILE FOR IMAGENT ANCHIVES IMAGE (TRAIVID	FABLE 10-1.	PROFILE FOR	IMAGERY	ARCHIVES	IMAGE	(PIAIMB)
---	--------------------	--------------------	----------------	----------	-------	----------

Field	Name	Size	Fmt	Value Range	Туре
CLOUDCVR	Cloud Cover	3	N	000-100, 999	0
SRP	Standard Radiometric	1	A/N	Y, N	0
	Product				
SENSMODE	Sensor Mode	12	A/N	WHISKBROOM, PUSHBROOM, FRAMING, SPOT, SWATH, TBD	0
SENSNAME	Sensor Name	18	A/N	Valid Sensor Name	0
SOURCE	Source	255	A/N	Alphanumeric	0
COMGEN	Compression Generation	2	N	00-99	0
SUBQUAL	Subjective Quality	1	A/N	P-Poor, G - Good, E - Excellent, F- Fair	0
PIAMSNNUM	PIA Mission Number	7	A/N	EARS 1.1 page 4-28	0
CAMSPECS	Camera Specs	32	A/N	Alphanumeric	0
PROJID	Project ID Code	2	A/N	EARS Appendix 9	0
GENERATION	Generation	1	Ν	0-9	0
ESD	Exploitation Support Data	1	A/N	Y, N	0
OTHERCOND	Other Conditions	2	A/N	EARS 1.1 page 4-28	0

TABLE 10-2. PIAIMB DATA AND RANGES

Field	Value Definitions and Constraints
CLOUDCVR	Indicates the percentage of the image that is obscured by cloud. A value of '999' indicates an unknown condition.
SRP	Indicates whether or not standard radiometric product data is available.
SENSMODE	Identifies the sensor mode used in capturing the image.
SENSNAME	Identifies the name of the sensor used in capturing the image.
SOURCE	Indicates where the image came from (e.g., magazine, trade show, etc.).
COMGEN	Counts the number of lossy compressions done by the archive.
SUBQUAL	Indicates a subjective rating of the quality of the image.
PIAMSNNUM	Indicates the mission number assigned to the reconnaissance mission.
CAMSPECS	Specifies the brand name of the camera used, and the focal length of the lens.
PROJID	Identifies collection platform project identifier code
GENERATION	Specifies the number of image generations of the product. The number (0) is reserved for the original product.
ESD	Indicates whether or not Exploitation Support Data is available and contained within the product data.
OTHERCOND	Indicates other conditions which affect the imagery over the target.

TABLE 10.3 DESCRIPTION OF PIAIMB DATA FIELDS

10.2 Profile for Imagery Archives Product Support Extension - Version C

The data found in the Product Support Extension addresses information regarding the products derived from source imagery. While there is product related data in the NITF main header and SDEs, many fields contained in the Standards Profile for Imagery Archives(SPIA) are absent. This extension aligns the SPIA and NITF for product information, and adds descriptive detail associated with products. This extension shall be present no more than once for each product. When present, this extension shall be contained within the extended header data field of the NITF file header or within an overflow DES if there is insufficient room to place the entire extension within the file's extended header data field.

TABLE 10-4. PROFILE FOR IMAGERY ARCHIVES PRODUCT (PIAPRC)									
Field	Name	Size	Value Range	Туре					
CETAG	Unique extension type ID	6	PIAPRC	R					
CEL	Length of PIAPRC extension	5	00201 - 63759	R					
CEDATA	User-defined data	201-63759	See table 5 below	R					

Field	Name	Size	Fmt	Value Range	Туре
ACCESSID	Access ID	64	A/N	Alphanumeric	0
FMCONTROL	FM Control Number	32	A/N	Alphanumeric	0
SUBDET	Subjective Detail	1	A/N	P- Poor, F - Fair, G - Good, E - Excellent	0
PRODCODE	Product Code	2	A/N	EARS 1.1 Appendix 6	0
PRODUCERSE	Producer Subelement	6	A/N	Alphanumeric	0
PRODIDNO	Product ID Number	20	A/N	Alphanumeric	0
PRODSNME	Product Short Name	10	A/N	Alphanumeric	R
PRODUCERCD	Producer Code	2	A/N	Alphanumeric	R
PRODCRTIME	Product Create Time	14	A/N	DDHHMMSSZMONYY	0
MAPID	Map ID	40	A/N	Alphanumeric	0
SECTITLEREP	SECTITLE Repititions	2	Ν	00-99	R
SECTITLE1	Section Title	40	A/N	Alphanumeric	С
PPNUM1	Page/Part Number	5	A/N	Alphanumeric	С

TABLE 10-5. PIAPRC DATA AND RANGES

Field	Name	Size	Fmt	Value Range	Туре
TPP1	Total Pages/Parts	3	Ν	001-999	С
SECTITLEnn	Section Title	40	A/N	Alphanumeric	С
PPNUMnn	Page/Part Number	5	A/N	Alphanumeric	С
TPPnn	Total Pages/Parts	3	Ν	001-999	С
REQORGREP	REQORG Repetitions	2	Ν	00-99	R
REQORG1	Requesting Organization	64	A/N	Alphanumeric	С
REQORGnn	Requesting Organization	64	A/N	Alphanumeric	С
KEYWORDREP	KEYWORD Repetitions	2	Ν	00-99	R
KEYWORD1	Keyword String 1	255	A/N	Alphanumeric	С
KEYWORDnn	Keyword String nn	255	A/N	Alphanumeric	С
ASSRPTREP	ASSRPT Repetitions	2	Ν	00-99	R
ASSRPT1	Associated Report 1	20	A/N	Alphanumeric	С
ASSRPTnn	Associated Report nn	20	A/N	Alphanumeric	С
ATEXTREP	ATEXT Repetitions	2	Ν	00-99	R
ATEXT1	Associated Text 1	255	A/N	Alphanumeric	С
ATEXTnn	Associated Text nn	255	A/N	Alphanumeric	С

TABLE 10-5. PIAPRC DATA AND RANGES (CONTINUED)

Field	Value Definitions and Constraints
ACCESSID	Contains an archive unique identifier. This could be the product filename, a record identifier, a reference number, the product id, or any other means to access the product from the archive.
FM CONTROL	Identifies foreign material associated with the product.
SUBDET	Indicates a subjective rating of useful detail available in the product.
PRODCODE	Identifies the category of product data stored in the archive.
PRODUCERSE	Identifies the element within the producing organization that created the product.
PRODIDNO	Identifies a product stored in the archive with a producer assigned number.
PRODSNME	Identifies the abbreviated name of a product stored in the archive.
PRODUCERCD	Identifies the organization responsible for creating or modifying the product.
PRODCRTIME	Identifies the date or the date and time that the product was created or last modified.
MAPID	Identifies a map associated with the product.
SECTITLEREP	Identifies the number of times the SECTITLE, PPNUM, and TPP fields repeat per extension instance.
SECTITLE1	Identifies the first user defined title of a section of a multi-section product.
PPNUM1	Identifies the first page/part number of the section identified in SECTITLE1.
TPP1	Identifies the total number of pages or parts associated with SECTITLE1 and PPNUM1.
SECTITLEnn	Identifies the nnth user defined title of a section of a multi-section product.
PPNUMnn	Identifies the nnth page/part number of the section identified in SECTITLEnn.
TPPnn	Identifies the tnnth number of pages or parts associated with SECTITLEnn and PPNUMnn.
REQORGREP	Identifies the number of times the REQORG field repeats per extension instance.

TABLE 10-6. DESCRIPTION OF PIAPRC DATA FIELDS

Field	Value Definitions and Constraints
REQORG1	Identifies the first organization requesting that an image be placed in an archive. This is the first field represented based on the value of REQORGREP.
REQORGnn	Identifies the nnth organization requesting that an image be placed in an archive. The number of REQORGs between the previous field and this is represented in the REQORGREP field.
KEYWORDREP	Identifies the number of times the KEYWORD field repeats per extension instance.
KEYWORD1	Provides the first block of a freeform text description of the product.
KEYWORDnn	Provides the nnth block of a freeform text description of the product. The number of KEYWORDSs between the previous field and this is represented in the KEYWORDREP field.
ASSRPTREP	Identifies the number of times the ASSRPTREP field repeats per extension instance.
ASSRPT1	First field for the entry of another known report associated with the product.
ASSRPTnn	Provides the nnth field of other known reports associated with the product. The number of ASSRPTs between the previous field and this is represented in the ASSRPTREP field.
ATEXTREP	Identifies the number of times the ATEXTREP field repeats per extension instance.
ATEXT1	Provides the first text block further describing the imagery product.
ATEXTnn	Provides the nnth text block further describing the imagery product. The number of ATEXTs between the previous field and this is represented in the ATEXTREP field.

10.3 Profile for Imagery Archives Target Support Extension

PERCOVER

The Target Extension is designed to accommodate more than just the essential target data. It contains descriptive data about the targets. This extension shall be present once for each target identified in the image. There may be up to 250 of these extensions for each data type in an NITF file. When present, these extension(s) shall be contained within the appropriate data type (image, symbol, label or text) extended subheader data field of the data type subheader or within an overflow DES if there is insufficient room to place the entire extension(s) within the data type extended subheader data field.

TABLE 10-7. PROFILE FOR IMAGERY ARCHIVES TARGET (PIATGA)						
Field	Name	Size	Value Range	Туре		
CETAG	Unique extension type ID	6	PIATGA	R		
CEEL	Length of PIATGA extension	5	00096	R		
CEDATA	User-defined data	96	See table 8 below	R		

TABLE 10-8. PIATGA DATA AND RANGES						
Field	Name	Size	Fmt	Value Range	Туре	
TGTUTM	Target UTM	15	A/N	XXXNNnnnnnnnn	0	
PIATGAID	Target Identification	15	A/N	6 character Area Target ID	0	
				10 Character BE, or		
				15 character BE + suffix		
PIACTRY	Country Code	2	A/N	FIPS 10-3	0	
PIACAT	Category Code	5	Ν	DIAM 65-3-1	0	
TGTGEO	Target Geographic Coordinates	15	A/N	ddmmssXdddmmssY	0	
DATUM	Target Coordinate Datum	3	A/N	In accordance with Appendix B, Attachment 10, XI-DBDD-08 93 Aug 93.	0	
TGTNAME	Target Name	38	A/N	Alphaumeric target names	0	

3

Ν

000-100

0

Percentage of Coverage

Field	Value Definitions and Constraints
TGTUTM	Identifies the Universal Transverse Mercator (UTM) grid coordinates that equate to the geographic coordinates of the target element.
PIATGAID	Identifies a point or area target (DSA, LOC or BAS)
PIACTRY	Identifies the country in which the geographic coordinates of the target element reside.
PIACAT	Classifies a target element by its product or the type of activity in which it can engage.
TGTGEO	Specifies a point target's geographic location in latitude and longitude.
DATUM	Identifies the datum of the map used to derive the target coordinates (UTM or GEO).
TGTNAME	Identifies the official name of the target element based on the MIIDS/IDB name.
PERCOVER	Percentage of the target covered by the image.

TABLE 10.9 DESCRIPTION OF PLATGA DATA FIELDS

10.4 Profile for Imagery Archives Person Identification Extension

The Person Extension is designed to identify information contained in the Imagery Archive that is directly related to a person(s) contained in adata type (image, symbol, label, text). This extension shall be present for each person identified in a data type. There may be up to 500 occurrences of this extension for each data type in an NITF file. When present, these extension(s) shall be contained within the appropriate data type (image, symbol, label or text) extended subheader data field of the data type subheader or within an overflow DES if there is insufficient room to place the entire extension(s) within the data type extended subheader data field.

T	ABLE 10-10.	PROFILE FOR 1	MAGERY	ARCHIVES	<u> PERSON (P</u>	<u>IAPEA)</u>	
		3.7		a :	X 7 1	D	

Field	Name	Size	Value Range	Туре
CETAG	Unique extension type ID	6	PIAPEA	R
CEL	Length of PIAPEA extension	5	00092	R
CEEDATA	User-defined data	92	See table 11 below	R

Field	Name	Size	Fmt	Value Range	Туре		
LASTNME	Last Name	28	A/N	Alphanumeric	0		
FIRSTNME	First Name	28	A/N	Alphanumeric	0		
MIDNME	Middle Name	28	A/N	Alphanumeric	0		
DOB	Birth Date	6	A/N	MMDDYY	0		
ASSOCTRY	Associated Country	2	A/N	Per FIPS 10-3	0		

TABLE 10-11 PIAPEA DATA AND RANGES

TABLE 10-12. DESCRIPTION OF PLAPEA DATA FIELDS

Field	Value Definitions and Constraints
LASTNME	Identifies the surname of individual captured in an image.
FIRSTNME	Identifies the first name of individual captured in an image.
MIDNME	Identifies the middle name of individual captured in an image.
DOB	Identifies the birth date of the individual captured in the image.
ASSOCTRY	Identifies the country the person captured in the image is/are associated with.

10.5 Profile for Imagery Archives Event Extension

The Event Extension is designed to provided an area for specific information about an event or events that are identified on an image. This extension shall be present for each event identified in an image. There may be up to 100 of these extensions present for each data type in an NITF file. When present, these extension(s) shall be contained within the appropriate data type (image, symbol, label or text) extended subheader data field of the data type subheader or within an overflow DES if there is insufficient room to place the entire extension(s) within the data type extended subheader data field.

TABLE 10-13 PROFILE FOR IMAGERY ARCHIVES EVENT (PIAEVA)

Field	Name	Size	Value Range	Туре
CETAG	Unique extension type ID	6	PIAEVA	R
CEL	Length of PIAEVA extension	5	00046	R
CEDATA	User-defined data	46	See table 14 below	R

TABLE 10-14 PIAEVA DATA AND RANGES

Field	Name	Size	Fmt	Value Range	Туре
EVENTNAME	Event Name	38	A/N	Alphanumeric	0
EVENTTYPE	Event Type	8	A/N	POL, DIS, COMMO, MILEX, ECON, NUC, SPACE, MILMOV, CIVIL	0

TABLE 10-15 DESCRIPTION OF PIAEVA DATA FIELDS

Field	Value Definitions and Constraints
EVENTNAME	The recognized name of the event.
EVENTTYPE	Indicates the generic type of event associated with the product.
10.6 Profile for Imagery Archives Equipment Extension

The Equipment Extension was created to provide space in the NITF file for data contained in the archive that is specifically related to equipment that is contained in an image. This extension shall be present for each instance of equipment identified in an image. There may be up to 250 occurrences of this extension for each data type in an NITF file. When present, these extension(s) shall be contained within the appropriate data type (image, symbol, label or text) extended subheader data field of the data type subheader or within an overflow DES if there is insufficient room to place the entire extension(s) within the data type extended subheader data field.

TABLE 10-16 PROFILE FOR IMAGERY ARCHIVES EQUIPMENT (PIAEQA)

Field	Name	Size	Value Range	Туре
CETAG	Unique extension type ID	6	PIAEQA	R
CEL	Length of PIAEQA	5	00130	R
CEDATA	User-defined data	130	See table 17 below	R

Field	Name	Size	Fmt	Value Range	Туре
EQPCODE	Equipment Code	7	A/N	NGIC Foreign Equipment Guide	0
EQPNOMEN	Equipment Nomenclature	45	A/N	NGIC Foreign Equipment Guide	0
EQPMAN	Equipment Manufacturer	64	A/N	Alphanumeric	0
OBTYPE	ОВ Туре	1	A/N	MIIDS/IDB	0
ORDBAT	Type Order of Battle	3	A/N	EARS 1.1	0
CTRYPROD	Country Produced	2	A/N	FIPS 10-3	0
CTRYDSN	Country Code Designed	2	A/N	FIPS 10-3	0
OBJVIEW	Object View	6	A/N	Right, Left, Top, Bottom, Front, Rear	0

TABLE 10-17 PIAEQA DATA AND RANGES

	T
Field	Value Definitions and Constraints
EQPCODE	A unique designated equipment code identifying a category of equipment.
EQPNOMEN	Nomenclature used to identify a piece of equipment.
EQPMAN	Identifies the manufacturer of a piece of equipment.
OBTYPE	Indicates the type of order of battle according to MIIDS/IDB
ORDBAT	Indicates the type of order of battle according to EARS 1.1
CTRYPROD	Identifies the country that produced the object
CTRYDSN	Identifies the country that designed the original object
OBJVIEW	View of the object.

TABLE 10-18 DESCRIPTION OF PIAEQA DATA FIELDS

10.7 Appendix A SPIA Data Element Mapping to NITFS

The following table maps all SPIA data elements to their proper location in an NITFS file when transmitting imagery data and associated metadata.

SPIA Element	NITF Element	NITF Location
ABPP (N2)	ABPP	IMAGE SUBHEADER
ACCESSID (A/N64)	ACCESSID	PIAPRC
ANGLETONORTH (N3)	ANGLE_TO_NORTH	USE26A
ASSOCTRY (A2)	ASSOCTRY	PIAPEA
ASSRPT (A/N20)	ASSRPT	PIAPRC
ATEXT (A/N255)	ATEXT	PIAPRC
AUTHORITY (A/N20)	FSCAUT	HEADER
CAMSPECS (A/N 32)	CAMSPECS	PIAIMB
CAT (N5)	PIACAT	PIATGA
CLASS (A1)	FSCLAS	HEADER
CLEVEL (N2)	CLEVEL	HEADER
CLOUDCVR (N3)	CLOUDCVR	PIAIMB
CODEWORDS (A/N40)	FSCODE	HEADER

SPIA Element	NITF Element	NITF Location
COMGEN (N2)	COMGEN	PIAIMB
CONTROL (A/N40)	FSCTLH	HEADER
CTRYCD (A2)	PIACTRY	PIATGA
CTRYDSN (A2)	CTRYDSN	PIAEQA
CTRYPROD (A2)	CTRYPROD	PIAEQA
DATUM (A3)	DATUM	PIATGA
DOB(A/N6)	DOB	PIAPEA
DWNG (A/N6)	FSDDVT	HEADER
DWNGEVT (A/N40)	FSDEVT	HEADER
EQPCODE (A/N7)	EQPCODE	PIAEQA
EQPMAN (A64)	EQPMAN	PIAEQA
EQPNOMEN (A/N45)	EQPNOMEN	PIAEQA
ESD (A1)	ESD	PIAIMB
EVENTNAME (A/N38)	EVENTNAME	PIAEVA
EVENTTYPE (A8)	EVENTTYPE	PIAEVA
FIRSTNME (A/N 28)	FIRSTNME	PIAPEA
FMCONTROL(A/N32)	FMCONTROL	PIAPRC
GENERATION(N1)	GENERATION	PIAIMB
ICAT(A8)	ICAT	IMAGE SUBHEADER
ICORDS (A1)	ICORDS	IMAGE SUBHEADER
IGEOLO (A/N60)	IGEOLO	IMAGE SUBHEADER
IMAGEID (A/N40)	ITITLE	IMAGE SUBHEADER
IREP (A8)	IREP	IMAGE SUBHEADER
KEYWORD (A/N 255)	KEYWORD	PIAPRC
LASTNME (A/N28)	LASTNME	PIAPEA
MAPID (A/N40)	MAPID	PIAPRC

SPIA Element	NITF Element	NITF Location
MEANGSD (N5)	MEAN_GSD	USE26A
MIDNME (A/N28)	MIDNME	PIAPEA
MISSION (A/N7)	PIAMSNNUM	PIAIMB
NBANDS (N1)	NBANDS	IMAGE SUBHEADER
NCOLS (N8)	NCOLS	IMAGE SUBHEADER
NIIRS (N3)	NIIRS	USE26A
NROWS (N8)	NROWS	IMAGE SUBHEADER
OBJVIEW (A6)	OBBJVIEW	PIAEQA
OBLANGLE (N5)	OBL_ANG	USE26A
OBTYPE (A1)	OBTYPE	PIAEQA
ORDBAT(A/N3)	ORDBAT	PIAEQA
OTHERCOND (A2)	OTHERCOND	PIAIMB
PERCOVER (N3)	PERCOVER	PIATGA
PPNUM (A/N4)	PPNUM	PIAPRC
PRODCODE (A2)	PRODCODE	PIAPRC
PRODCRTIME (A/N14)	PRODCRTIME	PIAPRC
PRODFMT(A9)	FHDR	HEADER
PRODFSIZE (N12)	FL	HEADER
PRODIDNO (A/N20)	PRODIDNO	PIAPRC
PRODSNME (A/N10)	PRODSNME	PIAPRC
PRODTITLE (A/N50)	FTITLE	HEADER
PRODUCERCD (A 2)	PRODUCERCD	PIAPRC
PRODUCERSE (A/N 6)	PRODUCERSE	PIAPRC
PROJID (A2)	PROJID	PIAIMB
RELEASE (A/N40)	FSREL	HEADER
REQORG (A/N64)	REQORG	PIAPRC

SPIA Element	NITF Element	NITF Location
RPC (A1)	SUCCESS	RPC00A
SECTITLE (A/N40)	SECTITLE	PIAPRC
SENSMODE (A/N12)	SENSMODE	PIAIMB
SENSNAME (A/N18)	SENSNAME	PIAIMB
SOURCE (A/N255)	SOURCE	PIAIMB
SRP (A1)	SRP	PIAIMB
STEREOID (A/N40)	ST_ID	STREOA
SUBDET (A1)	SUBDET	PIAPRC
SUBQUAL (A1)	SUBQUAL	PIAIMB
SUNAZ(N3)	SUN_AZ	MPD26A
SUNELEV (N3)	SUN_EL	MPD26A
TGTGEO (A/N15)	TGTGEO	PIATGA
TGTID (A/N15)	PIATGAID	PIATGA
TGTNAME (A/N38)	TGTNAME	PIATGA
TGTUTM (A/N16)	TGTUTM	PIATGA
TIMECOLL (A/N14)	IDATIM	IMAGE SUBHEADER
TPP (N3)	ТРР	PIAPRC

10.8 APPENDIX B: Extension Version Transition Plan

10.8.1 Purpose

The purpose of this appendix is to define a plan to facilitate migration from legacy to target baseline versions of PIAE tags. It is intended to provide general developmental guidance to the imagery community in an effort to minimize the interoperability problems that may arise from version modifications to the PIAE standard. It is provided as planning guidance to eliminate the need for program office maintenance of software elements providing support to legacy PIAE tags beyond the specified transition period.

10.8.2 Scope and Effectivity

The plan covers those PIAE versions in existence after the approval of the standard. Dated versions of PIAE tags can be identified by the last letter of the CETAG (e.g., "PIAPRC" represents version "C" of the Product tag while "PIAIMB" represents version "B" of the Image tag). The plan defines the processing requirements for legacy and target tag versions. Legacy tag versions are those that exist prior to a modification to the approved PIAE standard. Target tag versions are those resulting from approved modifications to an existing version. A target tag is a new tag version of an old tag for which a new baseline has been approved and has become the new PIAE standard. For example, if an RFC to the PIAE standard is approved (by the ISMC) that will change the PIATGA tag to a "B" version, the PIATGA tag will then be considered a "legacy" tag and the PIATGB tag will be considered the "target" tag for the transition period. After the transition period, the PIATGB tag would simply be recognized as the "baseline" tag.

The transition plan applies to the following types of modifications to PIAE tags:

- Tag placement
- Tag content (i.e., name, length, and data).

The transition plan applies to developers of Read Only (RO), Write Only (WO), and Read and Write (RW) system segments that process imagery or imagery related products. It does not apply to developers of Legacy systems who's systems are planned for replacement within the specified transition period. Legacy systems are exempt from the requirements to support PIAE tag version revisions. The transition plan is effective for the life of the PIAE standard and all approved version revisions to it.

10.8.3 Placement and Content of Controlled Tag Extensions

The placement and content of the PIAE tags within NITF files shall be as specified in the PIAE tag format definition. MIL-STD-2500A allows controlled tag extensions to be placed within the following major NITF file components:

- Field XHD of the NITF File Header
- Field IXSHD of the NITF Image Subheader
- Field SXSHD of the NITF Symbol Subheader
- Field LXSHD of the NITF Label Subheader
- Field TXSHD of the NITF Text Subheader
- The Data Extension Segment (DES) when overflow conditional exist.

10.8.4 Transition Concept

The goal of the transition plan is to gradually eliminate the presence of old PIAE tags once new tags have been approved by the standards approval process. To accomplish this goal, product WO, RO, and WR segments are directed to adopt the newest versions of all PIAE tags at the earliest time possible and to continue support for legacy tags through <u>a 12 month transition period</u>. This transition period commences with ISMC approval of tag version modifications. The following graphic provides conceptual illustration.

FIGURE 10-1 TWELVE MONTH TRANSITION 1

10.8.5 Read Only Segments

A RO segment is a system element that only receives and reads NITFS 2.0 input files. A RO segment will not create NITFS 2.0 output. RO segments shall look for, find, and read controlled tag extensions where specified by the PIAE format definition and generically authorized by MIL-STD-2500A. During the specified 12 month transition period, RO segments shall incorporate the capability to read all target tag versions while maintaining read capability for all legacy tag versions. Support to legacy tag versions shall cease at the end of the transition period.

10.8.6 Write Only Segments

A WO segment is a system element that only creates NITFS 2.0 files. A WO segment will not receive and read NITFS 2.0 input. WO segments shall generate, pack, and transmit controlled tag extensions where defined by the PIAE format definition. During the specified 12 month transition period, WO segments shall incorporate the capability to write all target tag versions while maintaining write capability for all legacy tag versions. Support to legacy tag versions shall cease at the end of the transition period.

10.8.7 Read and Write Segments:

A RW segment is a system element that receives and reads input NITFS 2.0 files and creates NITF 2.0 output files. RW segments shall perform the combined functions of RO and WO segments as specified above. In addition, if reading of the legacy version of a tag does not provide sufficient input to fill required fields to write the target versions, ASCII blanks shall be used during the transition period to fill the fields.

RW segments that store (on-line, near-line, off-line) imagery or imagery related products, shall ensure that stored products are populated with both, legacy and target, versions of the tag under transition. Product population of both tag versions shall occur once, for every product stored within the segment, for the transition period.

10.8.8 Sending Systems

Sending systems are those systems that transmit (output) imagery or imagery related NITFS products to user or archival systems. The group includes those systems that generate or format products for transmission. When

employed, the PIAE tags are packaged within the NITFS file format. Sending systems employing the tags are directed to adopt the newest version of all tags employed while simultaneously discontinuing use of older versions.

Adoption of new extension versions is to be done at the earliest time permissible within interoperability and developmental budget and timeline constraints. A concession to the adoption requirement is made when interfacing receiver systems are unable to process new tag versions. In this case, sending systems are directed to package the new and the immediate predecessor version of the new tag within transmitted products.

10.8.9 Receiving Systems

Receiving systems are those systems that accept (input) imagery or imagery related products from generating or archival systems. The group includes those systems that input NITFS formatted products for viewing, manipulation, or archival purposes. When employed, the PIAE tags, within products, are identified and read into the system for processing or storage. Receiving systems employing the tags are directed to retain the ability to concurrently identify, read, and process the immediate predecessor version of a new tag and the new tag itself.

Adoption of the ability to identify, read, and process version revisions of PIAE tags is to be at the earliest time permissible within interoperability and developmental budget and timeline constraints.

10.8.10 Final System Configuration

No system is required to process any more that the current PIAE tag version and its immediate predecessor version. In an effort to promote community-wide interoperability, development system program offices are urged to move toward the newest PIAE tag versions as soon as possible.

Modifications to the PIAE standard will not be approved without community cost and schedule impact assessments. Proposed modifications to the standard that act to impute undue implementation difficulties upon the development community will be considered for deferral.

STDI-0002, VERSION 2.0, 4 MARCH 1999 BCKGDA CONTROLLED EXTENSION

11.0 BCKGDA Controlled Extension

This extension is used for scaling NITF images and overlays for the purposes of printing and for setting background color. It provides information needed to print and scale the displayable part of an NITFS file.

11.1 BCKGDA Field Formats

FIELD	NAME	SIZE	RANGE	TYPE
CETAG	Tag Name	6	BCKGDA	R
CEL	Length of Extension Tag	5	00099	R
BGWIDTH	<u>Background Width</u> . The width, in PIXUNITS, of the complete NITF composition (This is not CLEVEL size, this is the composition (e.gpaper size))	8	00000000 to 99999999	R
BGHEIGHT	<u>Background Height</u> . The HEIGHT, in PIXUNITS, of the complete NITF composition (This is not CLEVEL size, this is the composition (e.gpaper size))	8	00000000 to 99999999	R
BGRED	Background Red. The red component of the background	8	00000000 to 00000255	R
BGGREEN	Background Green. The green component of the background	8	00000000 to 00000255	R
BGBLUE	Background Blue. The blue component of the background	8	00000000 to 00000255	R
PIXSIZE	Pixel Size. The number of pixels per PIXUNITS: "INCHES or CENTIMETERS only	8	00000000 to 99999999	R
PIXUNITS	<u>Pixel Units</u> . The unit of measure for printing of a pixel of the NITF composition	40	alphanumeric: DEVICE, PIXELS, INCHES, CENTIMETERS, or POINTS	R

 TABLE 11-1. BCKGDA - FIELD SIZES AND DEFINITIONS

 R = Required, C = Conditional

Note: The PIXSIZE is defined for PIXUNITS of INCHES or CENTIMETERS only.

If the PIXSIZE is 100 and the PIXUNITS is "INCHES" the NITF composition units of measure for printing is 100 pixels per inch (The same logic holds true for "CENTIMETERS").

If the PIXUNITS is "DEVICE PIXELS" then the composition is output to the print device with a one to one pixel correspondence.

If the PIXUNITS is POINTS then the composition units of measure for printing is 72 pixels per inch or 28.3464 pixels per centimeter.

STDI-0002, VERSION 2.0, 4 MARCH 1999 BCKGDA CONTROLLED EXTENSION

12.0 NBLOCA Tagged Record Extension

NBLOCA et of each image frame relative to each other within a NITF image. The first image frame offset is the number of bytes in the image subheader. All of the other offsets are the number of bytes in the previous image block or frame.

This extension allows the NITF image to be accessed in a random or parallel fashion by providing the ability to find the offset to the location of the first data byte of any frame or block. This offset is determined by summing the offset values for the previous blocks, and allows direct access to a frame without reading through any portion of the image frames. For JPEG applications, these offsets are to the Start Of Image (SOI) markers, which are always the first element for each JPEG compressed frame.

Table 12-1 defines the format for the NITF controlled tagged record extension bearing the tag of NBLOCA. This extension is meant to be stored in the NITF image subheader portion of the NITF file structure.

FIELD	DESCRIPTION	LENGTH (BYTES)	VALUE RANGE	TYPE
CETAG	Unique Extension Identifier	6	NBLOCA	R
CEL	Length of CEDATA Fields (note 1)	5	00008 to 99988	R
FRAME_1_OFFSET	<u>First Image Frame Offset</u> . From beginning of NITF image subheader (note2).	4	note 2	R
NUMBER_ OF_FRAMES	<u>Number of Blocks</u> . Number of blocks for which offsets are listed.	4	note 3	R
FRAME_2_OFFSET	<u>Second Image Frame Offset</u> . Offset in Bytes of the beginning of the 2^{nd} image frame from the beginning of the 1^{st} image frame (note 5).	4	note 4	С
FRAME_N_OFFSET	<u>Frame Offset</u> . Offset in bytes of the beginning of the nth image frame from the beginning of the N-1 image frame.	4	note 4	С

TABLE 12-1. NBLOCA FORMAT

R = Required, O = Optional, C = Conditional

Notes: 1. This value is dependent upon the number of image frame offsets, which are stored in this controlled data extension.

- 2. Value is stored in 4 byte unsigned binary integer representation with a range of 439 to 999999 (Bounds for image subheader size). This offset is equal to the size of the image subheader. The bytes are ordered from the most significant to the least significant.
- 3. Value is stored in 4 byte unsigned binary integer representation with a range of 1 to 24996 (Limits due to max size of CETAG). The bytes are ordered from the most significant to the least significant.
- 4. Value is stored in 4 byte unsigned binary integer representation with a range of 1 to (2**32 1). The bytes are ordered from the most significant to the least significant.
- 5. For JPEG applications, this is the offset between the SOI marker of the 2nd Image Frame from the SOI marker of the 1st Image Frame.

STDI-0002, VERSION 2.0, 4 MARCH 1999 OFFSET TAGGED RECORD EXTENSION DESCRIPTION

13.0 OFFSET tagged record extension description

This definition establishes the format and provides a detailed description of the data and data format for the CE OFFSET to the NITF 2.0. This extension defines the offset of the first pixel of an NITF 2.0 image from the first pixel of the full image described by the accompanying support data. If the NITF 2.0 image is blocked differently from the full image, or is not aligned to the full image block structure, this extension allows the NITF 2.0 image to be located relative to the full image, such that the support data can be used properly. Table 13-1 defines the format for the controlled tagged record extension to the NITF bearing tag OFFSET.

TABLE 13-1. OFFSET FORMAT DESCRIPTION

R = Required

FIELD	DESCRIPTION	SIZE	FORMAT VALUE	TYPE
CETAG	Tag Record Identifier	1 to 6	OFFSET	R
CEL	Tag Data Field Length	5	00016	R
LINE	Align-Scan Offset of First Pixel	8	00000000 to 99999999	R
SAMPLE	Cross-Scan Offset of First Pixel	8	00000000 to 99999999	R

STDI-0002, VERSION 2.0, 4 MARCH 1999 Ruler Extension

14.0 RULER Extension

For information regarding this Tag(s) (MISC) refer to following:

Call the JITC Certification Test Facility at Commercial (520) 538-5458 or DSN 879-5458

15.0 HISTOA Extension

15.1 Introduction

The purpose of the Softcopy History Tagged Record Extension, HISTOA, is to provide a history of the softcopy processing functions that have been applied to NITF imagery. It is meant to describe previous processing actions and the current state of the imagery that was distributed within the intelligence and imagery user community. To be effective, HISTOA needs to be applied to the NITF product as early as practical and <u>must</u> be updated each time the image is processed and saved by a softcopy processing system. This will allow the user to know with confidence the complete history of the imagery. HISTOA may be created as the NITF image is created, or when the imagery is first modified.

15.2 Background and Motivation

With the development of standard processing flows for national imagery, and incorporation of preprocessing to convert some baseline imagery formats into "Display-Ready" imagery, it became necessary to differentiate between the Display-Ready products and the baseline formats. Also, imagery users expressed frustration with the fact that softcopy-processing functions were being applied repeatedly to imagery, without their knowledge. This repetition of processing steps on a single image resulted in a degraded and sometimes unusable image. The users desired a method of recording the types and frequency of Softcopy processing steps applied to each image.

Based on these concerns, a BHIST Tagged Record Extension was originally developed for some national systems and approved by the NTB in 1997. The purpose of the BHIST tag was to indicate the Display-Ready status of the image, to identify any pixel remapping, and to provide a mechanism for tracking softcopy processing functions (e.g. Dynamic Range Adjustment, Sharpening, and Tonal Transfer Curve) applied to the image. (Refer to Appendix A for a complete description of these functions.) BHIST was later expanded to include imagery produced by other national systems, plus airborne and commercial imagery, and became HISTOA.

15.3 Softcopy History Tag Structure

The structure of HISTOA is based on reporting "processing events." Each processing event consists of a series of fields that indicate the type of processing that has been applied to the image at that moment in time. In order to determine what processing has been applied to the image over time, the entire set of processing events must be read. Relevant information includes tonal processing, compression, image resolution, rectification, and magnification. A comment field is also provided in each processing event to allow users to capture relevant information not accounted for in the pre-defined fields. The structure allows for up to 99 separate processing events to be recorded. The basic structure of the tag is shown in table 15-1.

The first eight fields within the tag are required to be filled when the tag is created, but are not repeated for each processing event. Therefore, when HISTOA is generated, it is structured as shown in table 15-1 and the first eight fields are filled. The population of all the fields in HISTOA shall be left justified with spaces included where necessary (a space is denoted by BCS 0x20). Leading zeros may also be necessary in some of the numeric fields. A description of the first eight fields in the tag is given in table 15-2.

To be effective, HISTOA <u>must</u> be updated each time a new NITF product (file) is formulated after the image is processed by a softcopy processing system.

FIELD	NAME	SIZE	RANGE	TYPE
CETAG	Unique Extension ID	6	HISTOA	R
CEL	Length of Extension Tag	5	00115 to 83512	R
SYSTYPE	System Type	20	alphanumeric	R
PC	Prior Compression	12	alphanumeric	R
PE	Prior Enhancements	4	alphanumeric	R
REMAP_FLAG	System Specific Remap	1	0 to 9; BCS 0x20	R
LUTID	Data Mapping ID from the ESD	2	00 to 64	R
NEVENTS	Number of Processing Events	2	01 to 99	R
EVENT01	First Processing Event	variable	alphanumeric	R
EVENTnn	Most Recent Processing Event	variable	alphanumeric	С

TABLE 15-1. HISTOA SUBHEADER FIELDS R = REQUIRED, C = CONDITIONAL

Table 15-2. HISTOA Subheader Field Descriptions

FIELD	VALUE DEFINITIONS AND CONSTRAINTS
CETAG	This field shall contain the unique extension name or ID for the Softcopy History Tag. Since
	this is version A of the history tag, this field will be filled with HISTOA.
CEL	This field shall contain the total length of the tag data (all of which follows this field), including
	all existing process events.
SYSTYPE	This field shall contain the name of the sensor from which the original image was collected. For
	national imagery, the valid field codes are contained in the NITF Implementation Requirements
	Document (S2035). The codes in the SYSTYPE field shall be left justified and the remainder of
	the field filled with spacesto 20 characters. The NTB has requested that this tag be able to
	handle other types of airborne and commercial imagery currently supported by NITF.
	Additional valid field codes are listed below:
	ASARS-2 ASARS System
	GHR Global Hawk Radar
	SYERS-EO SYERS Electro-Optical System
	SYERS-MSI SYERS Multispectral System
	SYERS-IR SYERS Infrared System
	DSR Dark Star Radar
	TSAR TESAR
DC	TBD Other
PC	This field shall contain an alphanumeric string that indicates if bandwidth
	compression/expansion was applied to the image prior to NTTF image creation. This field
	should be used in conjunction with the PE field to determine the state of the image prior to
	NTIF formation. The valid field codes for the PC field is 4 byte character strings. The first two
	indicate sither the bit rote or the quality level. The types of compression are indicated by the
	following codes:
	Value Definition
	$\frac{value}{DP/3}$ DPCM (Differential Pulse Coded Modulation) -4.3 hpp
	DC13 DCT (Discrete Cosine Transform _1.3 hnn
	DC23 DCT (Discrete Cosine Transform) – 2.3 bpp
	NINL NITFIRD.IPEG – Lossless
	NJO0 NITFIRD JPEG – Quality Level 0
	NJO1 NITFIRD JPEG – Quality Level 1
	NJO2 NITFIRD JPEG – Quality Level 2
	C11D NITF Bi-level – 1D
	C12S NITF Bi-level – 2DS
	C12H NITF Bi-level – 2DH
	M11D NITF Bi-level – 1D
	M12S NITF Bi-level with masked blocks – 2DS
	M12H NITF Bi-level with masked blocks – 2DH

FIELD		VALUE DEFINITIONS AND CONSTRAINTS
PC	C207	NITF ARIDPCM – 0.75 bpp
(continued)	C214	NITF ARIDPCM – 1.40 bpp
(continued)	C223	NITF ARIDPCM – 2.30 bpp
	C245	NITF ARIDPCM – 4.50 bpp
	C3Q0	NITF Lossy JPEG – Q0 Custom Tables
	C3Q1	NITF Lossy JPEG – Q1 Default Tables
	C3Q2	NITF Lossy JPEG – Q2 Default Tables
	C3Q3	NITF Lossy JPEG – Q2 Default Tables
	C3Q4	NITF Lossy JPEG – Q4 Default Tables
	C3Q5	NITF Lossy JPEG – Q5 Default Tables
	M3Q0	NITF Lossy JPEG with masked blocks – Q0 Custom
	M3Q1	NITF Lossy JPEG with masked blocks – Q1 Default
	M3Q2	NITF Lossy JPEG with masked blocks – Q2 Default
	M3Q3	NITF Lossy JPEG with masked blocks – Q3 Default
	M3Q4	NITF Lossy JPEG with masked blocks – Q4 Default
	M3Q5	NITF Lossy JPEG with masked blocks – Q5 Default
	C4LO	NITF Vector Quantization – Lossy
	M4LO	NITF Vector Quantization with masked blocks
	C5NL	NITF Lossless JPEG
	M5NL	NITF Lossless JPEG with masked blocks
	NC00	NITF uncompressed
	NM00	NITF with masked blocks uncompressed
	IIQ1	NITF Downsample JPEG – Q1
	I1Q2	NITF Downsample JPEG – Q2
	IIQ3	NITF Downsample JPEG – Q3
	IIQ4	NITF Downsample JPEG – Q4
	11Q5	NITF Downsample JPEG – Q5
	WVLO	Wavelet Lossy
	WVNL	Wavelet Lossless
	JP20	JPEG 2000
	NONE	No Compression
	UNKC	Unknown Compression
	The entire P	C field is 12 bytes long to allow for the concatenation of up to 3 compression
	algorithms.	Consecutive 4 byte character strings shall indicate the application of two or three
	compression	n algorithms in succession. If only one compression algorithm is applied then the
	last eight ch	aracters are zeros. If the NITF creator does not know where the image came from or
	what proces	using has been applied to it, then the code for unknown compression (UNKC) shall
	be used.	for the for the DC forther at some tests
	Examples of	t valid codes for the PU field are shown below.
	The DP43D	C130000 code indicates that a concatenation of the 4.3 DPCM and the 1.3 DCT
	Compression	n and expansion was applied to the image prior to its NITF formation.
	I ne NONE(Jubulou code indicates that no compression was applied to the image prior to its
	NITE forma	tion.

Table 15-2. Subheader Field Descriptions (continued)

FIELD	VALUE DEFINITIONS AND CONSTRAINTS		
PE	This field shall contain an alphanumeric string that indicates if any enhancements were applied		
	to the image prior to NITF image creation. This field should be used in conjunction with the PC		
	field to determine the state of the image prior to NITF formation. The valid field codes for the		
	PC field are given below		
	EH08 Enhanced 8 bpp from IDEX		
	EH11 Enhanced 11 bpp from IDEX		
	UE08 8 bpp data with DRA but no enhancements from IDEX		
	UE11 Unenhanced 22 bpp from IDEX		
	DGHC Digitized Hardcopy		
	UNKP Unknown Processing		
	NONE No prior processing		
	The first four codes explicitly define the types of ODS (Output Data Server) products that are		
	available for NITF formation. Additional codes may be added for airborne systems. If the NITF		
	creator does not know where the image came from or what processing has been applied to it,		
	then the code for unknown processing (UNKP) shall be used.		
REMAP_FLAG	This field shall indicate whether or not a system specific remap has been applied to the image.		
	The valid field codes are $0 - 9$, and a blank (BCS 0x20), but $2 - 9$ are reserved for future use. A		
	value of 0 means that no systems specific remap has been applied. A value of 1 means that		
	system specific remap has been applied to the image. For commercial and airborne imagery, this		
	field does not apply at this time and should be filled with a space. Values from $2 - 9$ are		
	reserved for future use and shall not be used at this time.		
LUTID	This field shall contain the DMID (Data Mapping ID). See section 15.4.1The valid field codes		
	are $0/$, 08, and $12 - 64$. A value of $0/$ or 08 indicates that the image is PEDF (Piecewise		
	Extended Density Format). A value between 12 and 64 indicates that the image is a Linlog		
	formatted image. A value of 00 indicates that neither Linlog nor PEDF is used for this image		
	Numbers between 01 and 06, 09, 10, and 11 are reserved and should not be used at this time.		
	There are no valid DMID values greater than 64. NITF users can use this field to help determine		
	what type of processing should be applied to the image.		
NEVENIS	This field shall contain the number of <i>processing events</i> associated with the image. The tag is		
	designed to record up to 99 separate processing events. The valid field codes are 01 to 99. The		
	processing events are listed in chronological order, starting with the first event and ending with		
	the most recent processing event. At a minimum, the <i>first processing event</i> shall be the		
	processing immediately following the generation of the NITF formatted image; however, if		
	practical, the originator of the NITF image can create the HISTOA TRE earlier - with the		
	creation of the NTTF formatted image. In that instance, the <i>first processing event</i> would be the		
	creation of the NITF formatted image. Each successive processing event is to record what		
	transformations have been applied to the image, once the image has been processed and saved.		

Table 15-2. Subheader Field Descriptions (continued)

15.3.1 Definition of the Processing Events

In addition to populating the first eight fields, the one initiating the *first processing event* will populate the first eight fields and additional applicable fields as necessary, designating NEVENT as "01". In terms of implementation, a processing event is similar to a record. The NEVENTS field is a repetition factor that determines how many records or processing events must be read. A processing event has been defined as one or more of the specific processing functions shown in table 15-3 that may be applied to the NITF formatted image. In order to determine what processing has been applied to the image over time, the entire set of processing events must be read. These functions include compression and expansion, rotation, sharpening, magnification, and are normally applied to the imagery by commercial or government softcopy packages. A description of the Processing Event Fields is given in table 15-4.

FIELD	NAME	SIZE	RANGE	TYPE
PDATE	Processing Date and Time	14	CCYYMMDDHHmmSS	R
PSITE	Processing Site	10	alphanumeric	R
PAS	Softcopy Processing Application	10	alphanumeric	R
NIPCOM	Number of Image Processing Comments	1	0 to 9	R
IPCOM1	Image Processing Comment 1	80	alphanumeric	С
IPCOMn	Image Processing Comment n	80	alphanumeric	С
IBPP	Input Bit Depth (actual)	2	01 to 64	R
IPVTYPE	Input Pixel Value Type	3	alphanumeric	R
INBWC	Input Bandwidth Compression	10	alphanumeric	R
DISP_FLAG	Display-Ready Flag	1	0 to 9, space (BCS 0x20)	R
ROT_FLAG	Image Rotation	1	0,1	R
ROT_ANGLE	Angle of Rotation	8	000.0000 to 359.9999	С
ASYM_FLAG	Asymmetric Correction	1	0, 1, BCS 0x20	R
ZOOMROW	Mag in Line (row) Direction	7	00.0000 to 99.9999	С
ZOOMCOL	Mag in Element (column) Direction	7	00.0000 to 99.9999	С
PROJ_FLAG	Image Projection	1	0, 1	R
SHARP_FLAG	Sharpening	1	0,1	R
SHARPFAM	Sharpening Family Number	2	-1, 00 to 99	С
SHARPMEM	Sharpening Member Number	2	-1, 00 to 99	С
MAG_FLAG	Symmetrical Magnification	1	0, 1	R
MAG_LEVEL	Level of Relative Magnification	7	00.0000 to 99.9999	С
DRA_FLAG	Dynamic Range Adjustment (DRA)	1	0, 1, 2	R
DRA_MULT	DRA Multiplier	7	000.000 to 999.999	С
DRA_SUB	DRA Subtractor	5	-9999 to +9999	С
TTC_FLAG	Tonal Transfer Curve (TTC)	1	0,1	R
TTCFAM	TTC Family Number	2	-1, 00 to 99	С
TTCMEM	TTC Member Number	2	-1, 00 to 99	С
DEVLUT_FLAG	Device LUT	1	0, 1	R
OBPP	Output Bit Depth (actual)	2	01 to 64	R
OPVTYPE	Output Pixel Value Type	3	alphanumeric	R
OUTBWC	Output Bandwidth Compression	10	alphanumeric	R

Table 15-3.	Processing Event Fields	5
R - REC		

FIELD	VALUE DEFINITIONS AND CONSTRAINTS
PDATE	This field shall contain the date and time (UTC) on which this processing event occurred. The valid form of the field is CCYYMMDDhhmmss, where CC is the first two digits of the year (00 to 99), YY is the last two digits of the year (00 to 99), MM is the month (01 to 12), DD is the day of the month (01 to 31), hh is the hour (00 to 23), mm is the minute (00 to 59), and ss is the second (00 to 59). UTC (Zulu) is assumed to be the time zone designator to express the time of day. This field can be used in conjunction with the FDT field in the NITF file header to determine if the History Tag has been updated each time the image was processed and saved. If the PDATE field and the FDT field are identical, the History Tag has been properly updated. If the fields are not identical, then the History Tag has not been properly updated and the data may not be accurate or timely.
PSITE	This field shall contain the name of the site or segment that performed the processing event. This 10 character alphanumeric field is free form text. Examples of PSITE entries are FOS, JWAC, or CENTCOM.
PAS	This field shall contain the processing application software used to perform the processing steps cited in the event (e.g. IDEX, VITEC, or DIEPS). The version number of the application would also be helpful to include in this field.
NIPCOM	This field shall contain the valid number of image processing comments for this processing event. The valid field codes are 0 to 9.
IPCOM1	This field shall contain the first line of comment text. The fields IPCOM1 to IPCOMn, if present shall contain free form alphanumeric text. They are intended for use as a single comment block and shall be used that way. This field shall be omitted if the value in NIPCOM field is zero. The comment field shall be used to clarify or indicate special processing not accounted for in the Processing Event Fields. Reasons for populating this field would be to indicate alternate processing for multi-spectral imagery, to indicate the order of S/C processing steps contained within a single processing event, or to inform downstream users of potential problems with the image.
IPCOMn	This field shall contain the n th line of comment text, based on the value of the NIPCOM field. See description above for IPCOM1 for usage. This field shall be omitted if the value in NIPCOM field is zero.
IBPP	This field shall contain the number of significant bits for each pixel before the processing functions denoted in the processing event have been performed and before compression. This type of pixel depth description is consistent with the ABPP field within the NITF image subheader. For exa mple, if an 11-bpp word is stored in 16 bits, this field would contain 11 and the NBPP field in the NITF image subheader would contain 16. The valid IBPP field codes are 01 to 64, indicating 1 to 64 bpp.
IPVTYPE	This field shall contain an indicator of the type of computer representation used for the value of each pixel before the processing functions denoted in the processing events have been performed and before compression. Valid entries are INT for integer, SI for 2's complement signed integer, R for real, C for complex, B for bi-level, and U for user defined. The databits of INT and SI values shall appear in the file in order of significance, beginning with the most significant bit (MSB) and ending with the least significant bit (LSB). INT and SI data types shall be limited to 16 bits. R values shall be represented according to IEEE 32-bit floating-point representation (IEEE754). C values shall be represented with the Real and Imaginary parts each represented in IEEE 32-bit floating point representation (IEEE754) and appearing adjacent fourbyte blocks, first Real, then Imaginary. B (bi-level) pixel values shall be represented as single bits with value 1 or 0.

Table 15-4. Processing Event Field Descriptions

FIELD	VALUE DEFINITIONS AND CONSTRAINTS	
INBWC	This field sh	all indicate the type of bandwidth compression or expansion that has been applied
	to the image	prior to any enhancements denoted in the processing event. The valid field codes to
	describe eac	ch type of compression are 5 byte character strings. The first two characters indicate
	the type of c	compression such as DCT or DPCM. The next two characters indicate either the bit
	rate or the q	uality level. The last character indicates if the process is compression or an
	expansion.	Compression is denoted by a C, an E denotes expansion, and 0 indicates that neither
	process occu	urred. The types of compression are indicated by the following codes:
	<u>Value</u>	Definition
	DP43	DPCM (Differential Pulse Coded Modulation) – 4.3 bpp
	DC13	DCT (Discrete Cosine Transform – 1.3 bpp
	DC23	DCT (Discrete Cosine Transform) – 2.3 bpp
	NJNL	NITFIRD JPEG – Lossless
	NJQ0	NITFIRD JPEG – Quality Level 0
	NJQ1	NITFIRD JPEG – Quality Level 1
	NJQ2	NITFIRD JPEG – Quality Level 2
	CIID	NITF Bi-level – 1D
	C12S	NITF Bi-level – 2DS
	C12H	NITF Bi-level – 2DH
	MIID	NITE Bi-level – ID
	M12S	NITF Bi-level with masked blocks – 2DS
	M12H	NITF Bi-level with masked blocks – 2DH
	C207	NITF ARIDPCM – 0.75 bpp
	C214	NITF ARIDPCM – 1.40 bpp
	C223	NITF ARIDPCM – 2.30 bpp
	C245	NITE ARIDPCM – 4.50 bpp
	C3Q0	NITE Lossy JPEG – Q0 Custom Tables
	C3Q1	NITE Lossy JPEG – QI Default Tables
	C3Q2	NTTF LOSSY JPEG – Q2
	C2O2	NITE Lossy IDEC 02 Default Tables
	$C_{3}Q_{3}$	NITE Lossy JPEG – Q2 Default Tables
	C3Q4 C3O5	NITE Lossy IPEG OS Default Tables
	M300	NITE Lossy JEC – Q5 Default Tables
	M3Q0	NITE Lossy JPEC with masked blocks – QU Custolli NITE Lossy JPEC with masked blocks – Q1 Default
	M3Q1 M3Q2	NITE Lossy JPEG with masked blocks – Q1 Default
	M3Q2 M3Q3	NITE Lossy IDEG with masked blocks – Q2 Default
	M3Q3	NITE Lossy JPEG with masked blocks – Q5 Default
	M3Q4 M3O5	NITE Lossy IPEG with masked blocks Q4 Default
	C4LO	NITE Vector Quantization – Lossy
	M4LO	NITE Vector Quantization with masked blocks
	C5NL	NITE Lossless JPEG
	M5NL	NITE Lossless IPEG with masked blocks
	NC00	NITE uncompressed
	NM00	NITF with masked blocks uncompressed
	1101	NITF Downsample JPEG – O1
	1102	NITF Downsample JPEG – O2
	1103	NITF Downsample JPEG – Q3
	1104	NITF Downsample JPEG – Q4
	11Q5	NITF Downsample JPEG $-Q5$
	WVLO	Wavelet Lossy
	WVNL	Wavelet Lossless
	JP20	JPEG 2000
	NONE	No Compression

Table 15-4. Processing Event Field Descriptions (continued)

INBWC	UNKC Unknown Compression
(continued)	technique er course
	OTNI Unknown logalass compression requires mondatory IDCOM entry to explain
	technique or source
	The entire BWC field is 10 bytes long to allow for the concetenation of up to 2 compression
	algorithms. Two consecutives 5 bute character strings shall indicate the application of two
	compression algorithms in succession. If only one operation is performed, then the remaining 5
	characters are zeros. Examples of valid codes for the BWC field are shown below
	The DP/3E00000 code indicates that a 4.3 DPCM compressed input image was expanded prior
	to NITE formation
	The DC13E00000 code indicates that 1.3 DCT compressed input image was expanded prior to
	NITE formation
	The NONE000000 code indicates that the input image to the NITF formation process was
	uncompressed.
DISP FLAG	This field shall indicate if the image is "Display-Ready." The DISP_FLAG field applies only to
	systems that do not inherently produce displayable imagery. Display-Ready data has had a
	system-specific transformation applied to it that is described in section 15.4.1. The valid field
	codes are 0 to 9 and a blank (BCS 0x20) A value of 0 means that image is not Display-Ready
	and must be converted to a displayable format, using the pre-defined mappings for Linlog or
	PEDF formats. A value of 1 means that the image is Display-Ready and needs only basic tonal
	processing and device compensation for correct display. A value of space (BCS0x20) means the
	image is inherently displayable. Values 2 to 9 are reserved for future use and shall not be used
	at this time
ROT_FLAG	This field shall indicate if the image has been rotated. The valid field codes are 0 and 1. A value
	or 0 means that the image has not been rotated. A value of 1 means that the image has been
	rotated. If this field is equal to 1, then the ROT_ANGLE field must be filled with the angle of
	rotation.
ROT_ANGLE	This field shall contain the angle in degrees that the image has been rotated, where a positive
	angle denotes clockwise rotation. The valid field codes are 000.0000 to 359.9999. This field is
	conditional on the ROT_FLAG field being equal to 1. If the rotation has included an
	interpolation, then the interpolation method shall be described in the comment sections.
ASYM_FLAG	This field shall indicate if asymmetric correction has been applied to the image. This processing
	step only applies to certain types of imagery. The valid field codes are 0 and 1, and a blank
	(BCS 0x20). A value of 0 means that asymmetric correction has not yet been applied to the
	image. A value of 1 means that asymmetric correction has been applied to the image. A value of
	space (BCS 0x20) means the imagery did not need correcting. If this field is equal to 1, the
	ZOOMROW and ZOOMCOL fields must be filled with the magnification levels in the row
	(line) and column (element) directions, respectively.
ZOOMROW	This field shall contain the level of magnification that was applied to the image in the line (row)
	direction, if asymmetric correction was applied. The valid field codes are 00.0000 to 99.9999.
	The level of magnification is relative to the input image at this processing step. This field is
	conditional on the ASYM_FLAG field.
ZOOMCOL	This field shall contain the level of magnification that was applied to the image in the element
	(column) direction, if asymmetric correction was applied. The valid field codes are 00.0000 to
	99.9999. The level of magnification is relative to the input image at this processing step. This
	field is conditional on the ASYM_FLAG field.
PROJ_FLAG	This field shall indicate if the image has been projected from the collection geometry into
	another geometry more suitable for display. The valid field codes are 0 and 1. A value of 0
	means that no geometric transformation has been applied to the image, meaning it is probably
	still in the collection geometry. A value of 1 means that the image has been projected into
	another geometry. If this field is equal to 1, then a description of the projection or rectification
	shall be given in the comment section.

Table 15-4 Processing Event Field Descriptions (continued)

FIELD	VALUE DEFINITIONS AND CONSTRAINTS
SHARP_FLAG	This field shall indicate if the image has been passed through a sharpening operation. The valid field codes are 0 and 1. A value of 0 means that no sharpening has been applied to the image. A value of 1 means that sharpening has been applied to the image. If this field is equal to 1, then the SHARPFAM and SHARPMEN fields must be filled with the appropriate numbers. Refer to paragraph 15.5 for a more complete description of the sharpening kernel database.
SHARPFAM	This field shall contain the number of the sharpening family, if a sharpening operation was applied to the image. The valid field codes are -1 , 00 to 99. This field is conditional on the SHARP_FLAG field. Although the IDEX sharpening family numbers are one-based, many commercial softcopy systems use a zero-based system for their databases. For example, IDEX family 5 would be family 4 for many other softcopy systems. If the sharpening kernel is not a part of the existing group of families and members, a value of -1 shall be placed in this field and the nature of the sharpening kernel specified in the comment section. Refer to paragraph 15-5 for a more complete description of the sharpening kernel database.
SHARPMEM	This field shall contain the number of the sharpening member, if a sharpening operation was applied to the image. The valid field codes are -1 , 00 to 99. This field is conditional on the SHARP_FLAG field. If the sharpening kernel is not a part of the existing group of families and members, a value of -1 shall be placed in this field and the nature of the sharpening kernel shall be specified in the comment section. Refer to 15.5 for a more complete description of the sharpening database.
MAG_FLAG	This field shall indicate if the image has been symmetrically (same amount in each direction) magnified during this processing step. The valid field codes are 0 and 1. A value of 0 means that the image was not magnified. A value of 1 means that the image has been magnified. If this field is equal to 1, then the MAG_LEVEL field shall be filled with the level of magnification.
MAG_LEVEL	This field shall contain the level of symmetrical magnification that has been applied to the image relative to the input image at this processing step. For example, a value of 02.0000 would indicate a 2X magnification relative to the input image. The valid field codes are 00.0000 to 99.9999. This field is conditional on the MAG_FLAG field. A value greater than 1 shall indicate that the image was magnified to a size larger than its previous size and a value less than 1 shall indicate the image size was decreased. The method of magnification shall be described in the comment section.
DRA_FLAG	This field shall indicate if a dynamic Range Adjustment (DRA) has been applied to the image. DRA is an affine transformation of the image pixel values of the form $Y = DRA_MULT^*(X - DRA_SUB)$, where X is the input pixel value, DRA_SUB is the DRA subtractor, DRA_MULT is the DRA multiplier, and Y is the output pixel value. The DRA is said to be spatially invariant when the DRA subtractor and DRA multiplier do not depend on pixel position. If the DRA subtractor and DRA multiplier do depend on pixel position, the DRA is said to be spatially variant. The valid field codes are 0, 1, and 2. A value of 0 means that a DRA has not been applied to the image. A value of 1 means that a spatially invariant DRA has been applied to the image. In this case, the DRA_SUB and DRA_MULT fields shall be filled with the appropriate codes. A value of 2 means that a spatially variant DRA has been applied to the image. In cases where DRA_FLAG equals 0 or 2, the DRA_SUB and DRA_MULT fields shall not be filled.
DRA_MULT	This field shall contain the multiplier value of the DRA. The valid field codes are 000.000 to 999.999. This field is conditional on the DRA_FLAG field being equal to 1.
DRA_SUB	This field shall contain the subtractor value of the DRA. The valid field codes are 000.000 to 999.999. This field is conditional on the DRA_FLA G field being equal to 1.
TTC_FLAG	This field shall indicate if a TTC (Tonal Transfer Curve) has been applied to the image. The valid field codes are 0 and 1. A value of 0 means that a TTC has not been applied to the image. A value of 1 means that a TTC has been applied to the image. If a TTC has been applied, then the TTCFAM and TTCNUM fields shall be filled with the appropriate codes. Refer to paragraph 15-5 for more complete description of the TTC database.

Table 15-4. Processing Event Field Descriptions (continued)

Table 15-4.	Processing Event Field Descriptions (continued)
	VALUE DEFINITIONS AND CONSTRAINTS

FIELD	VALUE DEFINITIONS AND CONSTRAINTS
TTCFAM	This field shall contain the number of the TTC family, if a TTC was applied to the image. The valid field codes are -1 , 00 to 99. This field is conditional on the TTC_FLAG field. Although the IDEX TTC family numbers are one-based, many commercial softcopy systems use a zero-based system for their databases. For example, IDEX family 5 would be family 4 for many other softcopy systems. If the TTC is not a part of the existing group of families and members, a value of -1 shall be placed in this field and the nature of the TTC shall be specified in the comment section. Refer to paragraph 15-5 for a more complete description of the TTC database.
TTCMEM	This field shall contain the number of the TTC member, if a TTC was applied to the image. The valid field codes are 00 to 99. This field is conditional on the TTC_FLAG field. If the TTC is not a part of the existing group of families and members, a value of –1 shall be placed in this field and the nature of the TTC shall be specified in the comment section. Refer to paragraph 15-5 for a more complete description of the TTC database.
DEVLUT_FLAG	This field shall indicate if device compensation LUT has been applied to the image. The valid field codes are 0 and 1. A value of 0 means that a device LUT has not been applied to the image. A value of 1 means that t device LUT has been applied to the image. The nature of the LUT may be specified in the comment section and should include the device for which the LUT is applied. If the device is not known, an appropriate method for describing the LUT shall be given.
OBPP	This field shall contain the number of significant bits for each pixel after the processing functions denoted in the processing event have been performed, but prior to any output compression. For example, if an 8 bpp image is mapped into Display-Ready space using the proper 8 to 11 bpp transformation (see section 15.4), the IBPP field would contain 08 and the OBPP field would contain 11. The OBPP shall contain the actual number of data bits, not the word length; for example, if an 11-bpp pixel were stored in 16 bits, this field would contain 11. The valid OBPP field codes are 01 to 64, indicating 1 to 64 bpp. In many cases, this field will match the IBPP field.
OPVTYPE	This field shall contain an indicator of the type of computer representation used for the value of each pixel after the processing functions denoted in the processing event have been performed, but prior to any output compression. Valid entries are INT for integer, B for bi-level, SI for 2's complement signed integer, R for real, U for user-defined, and C for complex. The data bits of INT and SI values shall appear in the file in order of significance, beginning with the MSB and ending with the LSB. INT and SI data types shall be limited to 16 bits. R values shall be represented according to IEEE 32-bit floating-point representation (IEEE754). C values shall be represented with the Real and Imaginary parts each 32-bit floating point representation (IEEE754) and appearing adjacent four-byte blocks, first Real, then Imaginary. B (bi-level) pixel values shall be represented as single bits with value 1 or 0.
OUTBWC	This field shall indicate the type of bandwidth compression or expansion that has been applied to the image after any enhancements denoted in the processing event. The valid field codes to describe each type of compression are 5 byte character strings. The first two characters indicate the type of compression such as DCT or DPCM. The next two characters indicate either the bit rate or the quality level. The last character indicates if the process is compression or an expansion. Compression is denoted by a C, an E denotes expansion, and 0 indicates that neither process occurred. The types of compression are indicated by the same codes used in the INBWC field and can be found in the field description for INBWC. The entire BWC field is 10 bytes long to allow for the concatenation of up to 2 compression algorithms. Two consecutive 5 byte character strings shall indicate the application of two compression algorithms in succession. If only one operation is performed, then the remaining 5 characters are zero. Examples of valid codes for the BWC field are shown below. The NJQ1C00000 code indicates that the processed image was saved as a NITFIRD JPEG compressed image at quality level 1. The NJNLC00000 code indicates that the processed image was saved as a NITFIRD JPEG lossless compressed image. The C3Q3C00000 code indicates that the processed image was saved as a NITFIS JPEG compressed image.

15.3.2 Use of the Comments Field

The comment field within HISTOAis consistent with the current NITFS image subheader. The NIPCOM field indicates how many lines of comments are utilized in each processing event. Each line of comments is 80 bytes and the maximum number of lines is 9. These lines of comments within the tag are provided in each processing event to allow users to capture relevant information not accounted for in the pre-defined fields. The types of information that might be included are an unknown input data format, a compression algorithm not accounted for in the BWC field, or details on the interpolation algorithm used for image rotation. If warping or magnification is performed on the image, the details of these functions could be described in the comment section. HISTOA assumes that the ELT package is using the IDEX-based sharpening kernels and TTCs. If an ELT package is using another type of sharpening kernel or tonal adjustment, the comment field could be used to describe these functions.

Another use for the comments field would be to describe processing functions on imagery that have not yet been standardized or well-defined. One such example is multi-spectral image products. Softcopy processing of MSI products is still in the experimental stages and a standard processing flow has not been defined. If the Softcopy History Tag is used with an MSI product, the comment section could be used to describe new processing techniques developed for this imagery.

15.4 Additional Information

The following information is from the <u>Softcopy Image Processing Chain Baseline</u> document developed by the Image Chain Analysis group at Eastman Kodak, dated January 27, 1998.

15.4.1 Display-Ready Transformations

The Display-Ready transformations to be applied to certain imagery depend on the format, as indicated by the DMID (Data Mapping Identifier) in the ESD (Exploitation Support Data). A DMID value of 7 or 8 indicates that the image is in PEDF (Piecewise Extended Density Format), while a DMID value between 12 and 64 indicates that the image is in Linlog format.

15.4.2 PEDF Data

PEDF is the default format for some systems. The 8 bpp PEDF data must be transformed into a displayable density format commonly called Display-Ready, prior to enhancement and display. The equations below are used to expand the 8 bpp PEDF data to displayable 11 bpp or 8 bpp density format data. The recommended transformation from 8 bpp PEDF is the 11-bpp-density format mapping (11bDF), shown in equation A.1. Softcopy exploitation systems limited to an 8-bpp-bit depth should use the 8-bpp conversion, shown in equation A.2, to convert 8 bpp PEDF to 8-bpp density format (8bDF).

These equations are used to expand the 8 bpp PEDF data to displayable 11 bpp or 8 bpp density format data.

11 bpp Density Format (11bDF)

11 bDF (i) =
$$\frac{2047}{382.5} \cdot \begin{cases} i & i \le 127.5 \\ 2 \cdot (i - 127.5) + 127.5 & i > 127.5 \end{cases}$$
 (A.1)

The input range is $0 \le i \le 255$. The output is an 11-bpp integer.

8 bpp Density Format (8bDF)

8bDF (i) = min
$$(max (i, 2 \cdot (i - 127.5) + 127.5), 255)$$
 (A.2)

The input range is $0 \le i \le 255$. The output is an 8-bpp integer.

15.4.3 Linlog Data

Linlog format is the 8-bpp-default format for some systems. The 8 bpp Linlog format must be transformed into a displayable format, referred to as Display-Ready. The equations below are used to expand the 8 bpp Linlog data to displayable 11 bpp or 8-bpp log format data. The recommended transformation from 8 bpp Linlog is the 11-bpp-log format mapping (11bLF), shown in equation A.3. Softcopy exploitation systems limited to an 8 bpp bit depth should use the 8 bpp conversion, shown in equation A.4, to convert 8 bpp Linlog to 8 bpp log format (8bLF).

These equations are used to expand the 8-bpp Linlog data to displayable 11 bpp or 8-bpp-log format. 11 bpp Log Format (11bLF):

$$11bLF(i) = \frac{2047}{15} \begin{cases} 0 & i = 0\\ \log_2(i) & 0 < i \le 117\\ \log_2\left[2^{\frac{i}{(17)}} - 1\right] & i > 117 \end{cases}$$
(A.3)

The input range is $0 \le i \le 255$. The output is an 11-bpp integer. 8 bpp Log Format (8bLF):

ſ

$$8bLF(i) = \frac{255}{15} \begin{cases} 0 & i = 0\\ \log_2(i) & 0 < i \le 117\\ \log_2\left[2^{\frac{i}{(17)}} - 1\right] & i > 117 \end{cases}$$
(A.4)

The input range is $0 \le i \le 255$. The output is an 8-bpp integer.

15.5 Sharpening Families

The Sharpening Family 0 provides control of the modulation in the high frequency region of the scene spectrum. The strength of the sharpening kernels varies from moderate blurring, using a gain of 0.6 to very strong edge enhancement, and using a gain of 32. Family 0 provides adequate sharpness for all modes of imagery and is the default family for all image sources. Figure 15-1 depicts Sharpening Family 0: members 0 to 63. Each member increases in gain in equal log steps. This is done in order to achieve equal changes in perception of sharpness. These kernels are actually 3x3 kernels in a 5x5 filter design; i.e. the outside values of the kernel are zero and may be omitted for fast processing.

The Sharpening Family 1 provides the same type of control as Family 0, but with a much finer control. The strength of the compensation ranges from a blurring kernel with a gain of 0.8 to a maximum edge enhancement using a gain of 25. Figure 15-2 depicts Sharpening Family 1: members 0 through 63. Each member increases in gain at the Nyquist frequency in equal log steps.

FIGURE 15-1. SHARPENING FAMILY 0: MEMBERS 0 TO 63

FIGURE 15-2. SHARPENING FAMILY 1: MEMBERS 0 TO 63

15.6 TTC Families

The default TTC family can be used for all image sources and modes. The TTCs are designed to allow the user to manipulate the contrast of a displayed image by redistributing the image's histogram. The contrast can be changed to allow the visualization of scene characteristics. This includes shadow regions, highlights, and mid-tone regions in the image. The default TTC family is shown in figure B-3. This TTC family has 64 members that vary from member 0, improving the shadow regions to member 32, providing no additional contrast to member 63, improving the highlight regions. All members in between these ranges offer slightly improved contrast and can be used for all image sources. All of the TTC families are available from the Government upon request.

FIGURE 15-3. DEFAULT TCC FAMILY

16.0 Support Data Extension

For information regarding this National SDE contact National Imagery and Mapping Agency, Attn: NIMA Customer Support/COD, Mail Stop P-38, 12310 Sunrise Valley Drive, Reston VA 20191-3449

17.0 CMETAA SUPPORT DATA EXTENSION

17.1 INTRODUCTION

As Synthetic Aperture Radar (SAR) complex imagery becomes increasingly available to intelligence activities, separate organizations, each serving its own community, independently advance their ability to sense, process, disseminate, and exploit complex SAR data.

Typically, complex data from one class of sources can only supply one class of users. Although sophisticated processing and exploitation algorithms exist for end-to-end transmission, these sources can not exchange information from the sensor to multiple classes of users, or from user to user, because a standard format does not exist.

An increasing number of MASINT algorithms require Complex SAR Data (Complex Image (CI) Data and SAR Video Phase History (VPH)) as input. There is a growing need for a common data file to support interoperability capabilities between users, since a variety of platforms and processors generate this data.

The Complex SAR Data Format Standard Initiative (CDFI) effort developed the CMETAA Tagged Record Extension (TRE) to satisfy this interoperable need. Used in conjunction with the NITF file format, CMETAA provides the structure for complex SAR data metadata while NITF provides the data formatting structure.

17.2 PURPOSE OF THIS SECTION

This section establishes the specification of the CMETAA TRE which has been developed to provide a foundation for interoperability in the interchange of Synthetic Aperture Radar (SAR) imagery and SAR imagery related data among applications. The CMETAA preamble provides a detailed description of the background and structure of the format, as well as specification of the valid data and format for all fields defined with CMETAA.

CMETAA conforms to the architectural and data object specifications of the National Imagery Transmission Format Version 2.1 (NITF 2.1). NITF 2.1 is a profile of the International Standard ISO/IEC 12087-5, the Basic Image Interchange Format (BIIF).

Compliance with this specification will support consistent community implementation of CMETAA.

17.3 BACKGROUND

Under the Complex SAR Data Format Standard Initiative (CDFI), established in the Fall of 1997, a team of engineers from TASC (prime contractor), ERIM and Eastman Kodak Company was tasked to select an existing or create a new file format appropriate for housing VPH, and pre- and post-autofocus CI data.

CDFI activities began by characterizing the present sources of complex SAR data. This task was broken down into three areas: 1) determining the SAR processing chains for a variety of space/airborne commercial and government SAR platforms including: Dark Star, Global Hawk, ASARS 2 Legacy, AIP, RADARSAT 2) identifying the complex data port of each processing chain and 3) ascertaining the file format of each SAR data port.

Next, CDFI examined the SAR exploitation algorithms, specifically MASINT algorithms, noting their metadata requirements and comparing them to the formats now used in SAR sources.

Once the various SAR platforms, file formats and exploitation algorithms metadata requirements had been identified, the CDFI program proceeded to identify a flexible file format that was inclusive of present formats and requirements. Nine candidate file formats were reviewed and compared against an ideal format. At the conclusion of the process, the NITF file format was identified as being best suited for SAR complex data.

Finally, with the file format identified, CDFI developed potential migration strategies for each SAR system. This included identifying obstacles which might hinder a SAR system ability to comply with the standard, and proposing methods to overcome these obstacles. In summary, CDFI four tasks were as follows:

- a Review current and future SAR platforms and document processing chains, data ports and types of complex data products.
- b Document the input signal and metadata requirements of today's major SAR exploitation algorithms with particular emphasis on MASINT algorithms.
 - 1) Review current and future SAR file formats; select the format most appropriate for the CDFI effort;
 - 2) Prepare a CDFI Tagged Record Extension (TRE CMETAA) for registration after selecting NITF as the format;
 - 3) Document existing SAR complex data compression techniques; make recommendations for complex metadata parameters.
- c Develop a convergence strategy for the interoperable use of the new CDFI metadata file format.

Running concurrent to the CDFI TRE development activities was the CMPLXA TRE. Designed to support the down link activities of the ASARS Improvement Program (AIP), CMPLXA specifically addressed the metadata needs of the ASARS platform. As both the CMPLXA and CMETAA tags matured, the NITF Technical Board (NTB) requested that the two tags merge to better support community interoperability requirements. As part of this task, the AIP contractor and CDFI personal organized joint editing sessions. One of the tools used during these sessions was a field-by-field rating system of the CMETAA TRE to indicate the level of difficulty the AIP contractor expected to encounter during CMETAA implementation. A copy of rating definitions and field ratings can be found in 17.12 Annex E.

CMETAA STRUCTURE

The CMETAA TRE data structure is divided into the following 2 sections.

Section 1 - General SAR information.

(indices 100 - 700)

This section contains general descriptive information about the SAR complex data contained in the NITF file structure e.g. collection mode, center frequency, processor version number. It also contains two fields (RELATED_TRES and ADDITIONAL_TRES) which indicates if the NITF file contains additional TREs related to SAR processing. The TREs listed in these fields are done so with the approval of the CMETAA document custodian. To date, the following TREs have been approved by the CMETAA custodian: AIMIDA, AIMIDB (Support Data Extensions for Airborne Sensors STDI-0002), MTXFIL and AIPBCA. For more information on these TREs see the NITF Tag Registry: http://jitc.fhu.disa.mil/nitf/tag_reg/tag_reg.htm

Section 2 - Complex Image Data.

(indices 800 - 19300)

This section contains the CMPLXA TRE and additional complex data metadata.

17.4 TERMS, DEFINITIONS, AND ABBREVIATIONS

17.4.1 DEFINITIONS

For the purposes of the CMETAA TRE, the following definitions apply.

a. **2D-FFT.** Two dimensional Fast Fourier Transform. Transforms spatial domain data into the frequency domain using the discrete Fourier transform as defined below:

$$F(u,v) = \Im(f(m,n)) = \left(\frac{1}{MN}\right) \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f(m,n) e^{-j2p \left[\frac{u \cdot m \cdot \bullet IF_{-} AFFTS}{M} + \frac{v \cdot \bullet n \cdot IF_{-} RFFTS}{N}\right]}$$

where CMETAA fields IF_AFFTS and IF_RFFTS are equal to one another and have a value of ± 1

- b. Antenna Aim Point. The Antenna Aim point is the location on the ground of the center of the antenna beam pattern at the sensor reference point. The values are given in degrees and/or meters depending on the choice of the nominal geometry reference.
- c. Band. One of the two-dimensional (row/column) arrays of pixel sample values that comprise an image. For the basic use of NITF, the band values are homogeneous data types for each band. In the case of monochrome or indexed color images (single 2-dimensional array of pixel values with possible look-up-tables), the image array consists of one band. In the case of RGB images (three 2-dimensional arrays of pixel values; 8 bits each of Red, Green and Blue values for each pixel), the image consists of three bands. In the case of complex data, it is possible to specify inphase (I) and quadrature (Q) samples as separate bands, or alternatively, magnitude (M) and phase (P) as separate bands.
- d. **The Basic Character Set.** This character set is selected from ISO/IEC 646. Valid BCS character codes range from 20 through 0xFF and line feed (0x0A), form feed (0X0B), and carriage return (0X0C).
- e. **Basic Character Set-Alphanumeric.** A subset of the Basic Character Set. The range of allowable characters consists of space through tilde (single bytes with values ranging from 20 to 7E) from the Basic Latin Collection.
- f. **Basic Character Set-Numeric.** A subset of the Basic Character Set which consists of the digits '0' through '9', 'plus sign', 'minus sign', 'decimal point', and 'slash'.
- g. **Block.** A rectangular array of pixel values within a NITF file which is a subset of an image. An image consists of the union of non-overlapping blocks.
- h. **Channel.** A channel, in this context, is mapped to the transmit and receive signal modes in the radar hardware. For example, the transmitted signal could be through a horizontally-polarized transmit antenna and the received signal through a vertically-polarized receive antenna. This specifies a specific polarimetric channel, typically written, HV. An HH channel could have the same transmitted signal, but a received signal through a horizontally-polarized receive antenna. Other channels might include VV and VH. Note that a collection of polarimetric channels might be related, but each is given its own CMETAA header. The balancing of the polarimetric channels can be included in the CMETAA header, however. Note that there is no balancing field for interferometric (up-and-down antenna) and bistatic (side-by-side antenna) channels, however.

STDI-0002, VERSION 2.1, 16 November 2000

COMPLEX SAR DATA FORMAT INITIATIVE (CDFI), VERSION 1.31C, 1 SEPTEMBER 2000

- i. **Complex SAR Data.** Complex SAR Data traditionally takes the form of Complex Image (CI) Data or Video Phase History (VPH) Data. While both data are represented as complex numbers, the CI data has gone through a 2D-FFT and can be viewed as an image, while VPH data has not been through a 2D-FFT and therefore is not viewable as an image.
- j. **Conditional.** An adjective applied to data fields whose existence depends on the value of the designated Required field preceding the Conditional field.
- k. **Coordinated Universal Time.** The time scale maintained by the Bureau International de L'Heure (International Time Bureau) that forms the basis of a coordinated dissemination of standard frequencies and time signals. UTC is equivalent to the mean solar time at the prime meridian at Greenwich, England.
- 1. **Data Extension Segment.** Data Extension Segment is a construct used to encapsulate different data types where each type is encapsulated in its own DES.
- m. **Displayable.** Information that can be exhibited in visual form.
- n. Field. Logically primitive item of data, sometimes referred to as an attribute.
- o. Focus Plane. The focus plane is defined to be the XY plane in an orthogonal XYZ coordinate system with its origin at the center of the scene being imaged. The focus plane normal unit vectors describe this XY plane. The Image Formation Processor (IFP) selects parameters to optimally focus scatterers located in this plane. The focus plane is defined to be the same as the ground plane, even though the term 'ground plane' has some geographical notions associated with it. Sometimes IFPs include a 'height-of-focus' from some nominal geographical ground plane to focus scatterers at a certain height, but here the ground plane and focus plane definition includes this height-of-focus.
- p. **Frame Image.** A Synthetic Aperture Radar (SAR) data collection in which the sensor steers its antenna beam to continuously illuminate the area being imaged.
- **q.** Ground Plane. One of the two most common viewing perspectives for SAR imagery. The ground plane is defined to be the same as the focus plane.
- r. **Image**. A representation of physical visualization, for example, a picture. An image is the computer (digital) representation of a picture. An image is comprised of discrete picture elements called pixels structured in an orderly fashion consisting of pixel value arrays formatted using bands and blocks.
- s. **Image Display Plane.** The plane that the Image Formation Processor (IFP) projects or positions scatters in the three dimensional scene. One common choice for the Image Display Plane is a close fit to the nominal data collection surface, defined here to be the slant plane. Another common choice for the Image Display Plane is the focus plane or, equivalently, the ground plane.
- t. **Imaging Operation.** Refers to all of the SAR coverage necessary to satisfy one tasking assignment. Note: a tasking assignment may be one frame image or one scan image. An imaging operation is composed of one or more image segments.
- u. **Image Output Reference Point.** The Image Output Reference point is defined to be the same as the scene center.

- v. **Non-blank.** Non-blank indicates that the field cannot be filled entirely by the BCS-A space character (0x20). It may contain space characters when included with other characters.
- w. **Patch.** An image formation processing element (i.e. that portion of the SAR data segment that undergoes a 2D-FFT). In some systems the patch size and the segment size will be the same (e.g. Source 1); for other systems patches will be smaller (e.g. AIP).
- x. Pixel. An abbreviation for the term "picture element".
- y. **Profile.** A set of one or more base standards, and where applicable, the identification of chosen classes, subsets, options, and parameters of those base standards, necessary for accomplishing a particular function.
- z. **Required.** An adjective applied to data fields that must be present and filled with valid data or default data.
- aa. **Scan Image.** A SAR data collection in which antenna pointing is fixed relative to the flight line resulting in a moving antenna footprint that sweeps along a strip of terrain parallel to the path of motion.
- bb. SARIQ. Radio hologram (initial phase information) from a synthetic aperture radar.
- cc. **Scene Center.** The scene center is defined to be the center of a spotlight SAR image. It is also known as the motion compensation point and central reference point. For a strip map image, the scene center is defined to be the intersection of the motion compensation line with the line down the center of the azimuth collection aperture.
- dd. **Segment.** Definition 1: An instance of a data type that is contained in a NITF file. A segment is comprised of a subheader and associated data (e.g., an image subheader together with image data comprises an image segment).

Definition 2: An instance of an imaging operation. A segment is as large a phase continuous portion of the scene as the sensor can generate. The following actions cause a segment change to occur:

1) Vehicle re-aiming

- 2) Segment size exceeds file constraints of the systems.
- ee. Sensor Reference Point. The Sensor Reference point is defined to be the position of the sensor at aperture center. These values can be expressed in meters or degrees and meters, depending on the nominal geometry reference that is specified.
- ff. **Slant Plane.** The Slant Plane is defined to be the instantaneous slant plane at aperture center. The instantaneous slant plane is the plane containing the instantaneous antenna phase center velocity vector and the instantaneous slant range vector, which is the line-of-sight vector from scene center to the antenna phase center. Since the antenna phase center velocity vector is changing over time, the reference point is just chosen to be at aperture center to give a close fit to the nominal data collection surface.
- gg. Sub-Patch. Aggregate of data that is smaller than a patch.
- hh. **Swath/Swath Width.** In strip map mode, the Swath Width is defined to be the width in range of the image in the slant plane. Usually, it corresponds to a range gate or time window in the sensor hardware that is centered around the nominal motion compensation line (or, equivalently, motion compensation time).

- ii. **Tagged Record Extension.** A means to provide additional attributes about standard data segments not contained in the standard NITF header or sub-header fields.
- jj. **Tile.** A subsection of the patch containing a single NITF file used during down link by some systems (e.g. AIP). Not o be confused with the NITF "blocking" structure within an NITF file.

17.4.2 ABBREVIATIONS:

a	ASCII America	n National Standard Code for Information Interchange
b	BCS	Basic Character Set
c	BCS-A	Basic Character Set - Alphanumeric
d	BCS-N	Basic Character Set - Numeric
e	С	Conditional
f	CI	Complex Image
g	CMETAA	Complex Metadata Tagged Record Extension Version A
h	CS	Character String
i	DES	Data Extension Segment
j	FFT	Fast Fourier Transform
k	NITF	National Imagery Transmission Format
1	NITFS	National Imagery Transmission Format Standard
m	R	Required field that must be filled by a value
n	<r></r>	Required field that may be filled with zeros if BCS-N or spaces if BCS-A.
		<r> fields should be populated with non-space or non-zero values whenever possible.</r>
0	SAR	Synthetic Aperture Radar
р	TRE	Tagged Record Extension
q	UTC	Coordinated Universal Time
r	UTM Universa	al Transverse Mercator
S	VPH	Video Phase History Data

17.5 SPECIFICATION

17.5.1 SCOPE

17.5.1.1 SYSTEM APPLICABILITY

The goal of the CMETAA specification is to provide a common data format that increases interoperability among disparate SAR collectors and processing/exploitation systems; and to facilitate the full understanding of a complex scene (e.g., as part of a battlefield, intelligence, commercial or military situation). Only when <u>all</u> data from SAR sources can be successfully brought to <u>each</u> user to provide a total picture can a situation be fully understood.

Complex SAR data preserves both the phase and the magnitude information of the returned signal, as contrasted with magnitude-detected SAR data, in which an image is produced that corresponds to the point-by-point magnitude of the complex data, but from which all phase information has been removed. Thus, CMETAA is applicable to <u>all</u> SAR collection systems – those that preserve phase history data and provide it to users along with imagery, as well as those that provide only magnitude-detected SAR data (i.e., imagery alone).

17.5.1.2 MODEL FOR USING CMETAA

Some of the terms used in CMETAA refer to a generic SAR data collection model. This model was designed to aid interoperability processes between different SAR systems by providing a common frame of reference to discuss a wide range of SAR data collections. The terms used to describe the CMETAA data model are as follows:

a **Imaging operation**: Refers to all of the SAR coverage necessary to satisfy one tasking assignment. Note: a target may be one frame image or one scan image. An imaging operation is composed of one or more segments.

b **Segment**: The largest phase continuous portion of an imaging operation.

c **Patch**: An image formation processing element, i.e. that portion of the image segment which undergoes a 2D-FFT. In some systems the patch and the segment will be the same size.

d **Tile**: A subsection of the patch. Patch size is directly correlated to downlinking, communications, or hardcopy processing requirements.

Figures 17-1 and 17-2 illustrate CMETAA data model. Since the AIP program will be the first system to use CMETAA operationally, Figures 17-3 and 17-4 demonstrate how the generic model can be applied to an existing SAR system.

FIGURE 17-1. GENERIC COMPLEX DATA MODEL FOR A SCAN COLLECTION

Broadside Scene

Squinted Scene

FIGURE 17-2. GENERIC COMPLEX DATA MODEL FOR A FRAME COLLECTION

FIGURE 17-3. AIP REPRESENTATION OF A SCAN IMAGE, BROADSIDE AND SQUINTED

174

FIGURE 17-4. AIP REPRESENTATION OF A FRAME IMAGE, BROADSIDE AND SQUINTED

17.6 APPLICABILITY

17.6.1 PURPOSE OF CMETAA

CMETAA is a complex SAR data format specification, consistent with NITF 2.0/2.1, that describes both SAR phase history data, SAR complex imagery data, the magnitude of complex imagery data, or the phase of complex imagery data, that can provide a common data format framework for all users of SAR complex data.

17.6.2 FUNCTIONALITY PROVIDED BY CMETAA

In the past, complex SAR information was transformed to magnitude-detected data at the source with the resulting real imagery from a single source being transmitted directly to only one user. Currently, if complex data (i.e., complex imagery data or complex phase history data) from a single source is desired, then its sensor-specific format must be understood and handled by the end-user.

CMETAA's vision for the future is the total interoperability of complex SAR data, where data can be exchanged among sources and users, and where all users can receive complex data in a standard format from all sources and platforms, whether airborne or spaceborne, commercial- or government-operated.

CMETAA will support the transition from point-to-point dissemination (where less metadata is needed, since both sides know about the system) to broadcast (where recipients need more metadata across diverse communities). The standard consists of product data (VPH, Complex Image, detected in various forms) and product support data (metadata or auxiliary data).

The standard will accommodate data collected to optimize response to a particular exploitation algorithm. For example, since different exploitation algorithms excel under different collection parameters, CMETAA can provide the information that allows a user to know which exploitation algorithm governed the collection of a particular data set. It will also simplify data representation from current and future sources, since CMETAA can reduce the large amount of AUX information and system-specific knowledge needed to be transmitted to a user.

Also, in keeping with evolving security considerations, CMETAA will make it easier to generate exploitation products using published algorithms on unprotected data. This is because classification is moving toward restrictions based on content (e.g., target) rather than type of data (e.g., VPH). Finally, CMETAA will ultimately lead to a complex SAR data dissemination environment dominated by "user pull of data", incremental transmission, and automated target/data identification and extraction, all crucial to handling the growing volume of data that will test the resources of government and commercial users.

17.6.3 FORMAT

The format of the NITF file consists of a header, followed by data type segments with their associated subheaders. The header specifies profile and structural information that allows proper interpretation of the rest of the header and subheaders.

A TRE that pertains to the entire file is typically part of the User Defined Header Data field (UDHD) in the file header. If the TRE pertains to individual images, the TRE can be found in the User Defined Image Data field in the IXSHD field of each image subheader. If the TRE does not fit in these fields it will overflow into a Data Extension Segment (DES). Complex Image Data will be placed in the image segment data field with the CMETAA TRE in the image segment subheader while Video Phase History Data and its auxiliary metadata will be placed in a DES that is defined in a separate document. The CMETAA TRE will be placed in the IXSHD field of each appropriate image subheader.

All headers and subheaders have their character data specified in the lexical constraints of BCS-A or BCS-N (See definitions 17.4.1d, 17.4.1e and 17.4.1f).

17.6.3.1 ENCODING

This section describes the six columns comprising the CMETAA TRE which is in paragraph 17.7 of this document.

Column I Index: A numbered index used to locate fields.

Column II	Field name: A short name used for references in the text descriptions. For most field names, the
	first part of the field name gives the classification of the field:
	• RD Radar Parameters
	CMPLX Complex Image
	• IF Image Format
	POL Polarimetrics
	• T Time Parameters
	CG Collection Geometry
	• MC MOCOMP, Motion Compensation
	• CA Calibration
	• WF Waveform Parameters
	• VPH Video Phase History
	• RF_Interference
	PP_Per Pulse Descriptors
Column III	Description: A short descriptive name, followed by a more detailed definition.
Column IV	CE/Size: Character Encoding: A = BCS-A; N = BCS-N. Size: Equals the number of bytes that are
	reserved for the field. Size is fixed and must be filled with valid data or the specified default. For those "Required" fields BCS-A "trailing spaces" will be applied to fill the field, for fields labeled BCS-N "leading zeros (0)" will be applied to fill the field
	2 cs 1 (louding zeros (o) ((in ce upplied to in the field
Column V	Value Range: Valid information must fall within the ranges identified and may be a range, an enumerated set, or a single value.
Column VI	Type: A selection from the following codes:
	R: Required element It must be present.
	<r> Required element that has a default value of zero if BCS-N, or spaces if BCS-A. The intent of these optional fields is to fill them with appropriate values whenever possible.</r>
	C: Conditional element; this element is omitted based on the value of its "dependent element". For example, if IF_MAP_TYPE is not MGRS than no MGRS Coordinates (IF_MGRSZONE, etc.) are present in the file. A conditional field may or may not be present depending on the value of one or more preceding required fields.

The data that appears in all fields specified in the tables, including numbers, shall be represented using the basic character set with eight bits (one byte) per character. All field size specifications given specify a number of bytes.

17.6.3.2 HEADER/SUBHEADER

Each NITF file begins with a header whose fields contain identification, origination information, security information, and the number and size of data items contained in file structure. Figure 17-5 provides an overview of a NITF 2.1 file as well as the organization of the Image Segment component. As the figure 17-5 shows, the CMETAA TRE will be housed in the IXSHD field of the image subheader. A more complete representation of a NITF 2.1 header can be found in Annex C. Note: Some controlled extensions may appear in the UDID field of the image subheader. VPH metadata will be housed in a different portion of the NITF 2.1 file structure, the Data Extension Segment (DES), which will be described under a separate text.

Image Segment Structure

FIGURE 17-5. HEADER/SUBHEADER STRUCTURE

17.6.4 IMAGE DATA FIELD

The complex image data is found in the image data section following the appropriate image subheader.

17.6.5 COMPLEX SAR DATA

Complex SAR data is generally found in one of two data formats, In-phase and Quadrature phase (IQ) or Magnitude and Phase (MP) data, where IQ and MP are related as follows:

$$M = \sqrt{I^2 + Q^2} \qquad P = a \tan 2(I, Q)$$

In CMETAA, the format type is indicated in the CMPLX DOMAIN field. This field not only informs the user whether the data is in IQ or MP format but also describes the data ordering. Choices for CMPLX_DOMAIN are as follows:

- IQ – I and Q interleaved data, I values are the first pixel component
- QI Q and I interleaved data, Q values are the first pixel component •
- MP Magnitude and Phase interleaved data, Magnitude values are the first pixel component
- M Magnitude only •
- P Phase Only
- IIQ2 I and Q data in the 1st and 2nd bands, respectively. •
- Q1I2 Q and I data in the 1st and 2nd bands, respectively. •
- M1P2 M and P data in the 1st and 2nd bands, respectively. P1M2 P and M data in the 1st and 2nd bands, respectively •
- •

As shown in Figure 17-5, complex data is located within the NITF file after the image subheader. Possible formats for complex data storage include the following:

- IQ interleaved I and Q data values are interleaved and stored sequentially in one image data file. •
- QI interleaved Q and I data values are interleaved and stored sequentially in one image data file. •

- IQ banded I and Q data values are stored separately i.e. all of the I data is stored sequentially in the first band followed by all of the Q data is stored sequentially in the second band. This format is similar to NITF multispectral imagery.
- QI banded Q and I data values are stored separately i.e. all of the Q data is stored sequentially in the first band followed by all of the I data is stored sequentially in the second band. This format is similar to NITF multispectral imagery.
- MP interleaved– M and P data values are interleaved and stored sequentially in one image data file.
- MP banded M and P data values are stored separately i.e. all of the M data is stored sequentially in the first band followed by all of the P data is stored sequentially in the second band. This format is similar to NITF multispectral imagery and is the format selected by the AIP platform.
- M, Magnitude only Only M values stored sequentially in one image data file.
- P Phase Only Only P values stored sequentially in one image data file.

Sizes of each I,Q,M,P components range from 04 to 64 bits with 8, 16, 32 bits per complex data component being the most common.

Note that when the data is interleaved, the number of columns (NCOLS) in the NITF image subheader refers to the number of data pairs (I, Q, or M, P). Also, the block size element (NPPBH) refers to the number of data pairs in a block. In addition, the CMETAA fields include the number of bits per first component and the number of bits per second component. In the NITF image subheader, the number of bits per pixel would be the sum of bits in these two components (e.g., 8 bits magnitude and 12 bits phase would translate to 20 bits per pixel (NBPP)). However, the two components would occupy the nearest byte boundary to store the data. In other words, in the example, the 8 bits magnitude component would occupy one byte, while the 12 bits phase component would occupy 2 bytes. Note that this overrides the definition of 'INT' in the NITF image subheader field PVTYPE which denotes 16 bits or 2 bytes.

17.6.6 DEFINITIONS FOR FFT & ZERO PADDING

The 2D-FFT of motion-compensated (and possibly polar-formatted) phase history data produces a complex image which, after additional enhancement processing, produces an exploitable SAR image. The phase history is often "zero padded" to increase the sampling density of the complex SAR image. For many exploitation algorithms, it is important to know the exact details of the zero-padding, so that approximations do not introduce unwanted phase contributions.

Figure 8.2 shows an exact specification of zero padding, where the signal data is denoted as gray and the zeros as white in the diagram. The record and element (row, column) locations of the DC point (zero frequency) and the corner locations of the signal data is specified in the CMETAA header. These locations are sufficient to describe the signals and zeros from any processor.

The header row and column notation apply to whatever data enters the 2D-FFT. If the input into the 2D-FFT is a subsection of a larger data array then the location of the zero pad and signal location reported in the header correspond to this subsection, not the full-sized data array.

The first example depicts the DC in the data center with phase history data in the slant plane.

The second example depicts the DC in the data corner with phase history in the slant plane.

The third example depicts the DC in the data center with phase history data in the ground plane.

The fourth example depicts the DC in the data corner with phase history data in the ground plane.

STDI-0002, VERSION 2.1, 16 November 2000

COMPLEX SAR DATA FORMAT INITIATIVE (CDFI), VERSION 1.31C, 1 SEPTEMBER 2000

FIGURE 17-6. SIGNAL HISTORIES

Note: Definitions for Magnitude Imagery Pixel Value Representation based on Complex I and Q Values, formally contained in 17.7 and 17.8 have been moved to Annex A (17.8).

17.7 CMETAA

The following table contains all of the fields for CMETAA. Questions regarding this tag may be referred to Robert Garneau of Litton TASC (781-942-2000 ext. 2935) or Elizabeth Frey of Eastman Kodak (716-253-6074).

<R> = Indicated default value may occupy this field with the intent to ease early implementation of the CDFI TRE.

Alphabetic fields are left justified and spacefilled, numeric fields are right justified and zero filled

D
Л
R
R
R
R
R
_

STDI-0002, VERSION 2.1, 16 November 2000

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
500	RD_CEN_FREQ	Nominal Center Frequency Band	A/4	L	R
		Describes the nominal center		С	
		frequency band. This list is		Р	
		extensible through the document		S	
		custodian.		SC	
		L		Х	
		С		KA	
		Р		KU	
		S			
		SC			
		X			
		KA			
		KU			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BVTES	VALUE RANGE	TYPE
600	RD MODE	Collection Mode Describes the	A/5	0FR	R
000	1021	collection mode. This list is	11/0	OFG	
		extensible through the document		1FR	
		custodian.		1FG	
		0FR - Mode 0, slant plane		2FR	
		0FG - Mode 0, ground plane		2FG	
		1FR - Mode 1, slant plane		22FR	
		1FG - Mode 1, ground plane		22FG	
		2FR - Mode 2, slant plane		07A	
		2FG - Mode 2, ground plane		07L	
		22FR - Mode 5, slant plane		14A	
		22FG - Mode 5, ground plane		14L	
		07A - Mode 3 area, slant plan		1SP	
		07L - Mode 3 LOC, slant plan		3SP	
		14A - Mode 4 area, slant plane		10S	
		14L - Mode 4 LOC, slant plane		GSP	
		1SP - ETP, spotlight 1, slant		GSH	
		3SP - ETP, spotlight 3, slant		AIP13	
		10S - ETP, scan, slant		AIP14	
		GSP - Tier 2+ spot mode		AIP15	
		GSH - Tier 2+ search mode		AIP16	
		AIP13 - Monopulse Calibration		AIP17	
		AIP14 - Wide Area MTI (WAMTI)		AIP18	
		AIP15 - Coarse Resolution Search		AIP19	
		AIP16 -Medium Resolution Search		AIP20	
		AIP17 - High Resolution Search		AS201	
		AIP18 - Point Imaging		AS202	
		AIP19 - Swath MTI (SMTI)		AS204	
		AIP20 - Repetitive Point Imaging		AS207	
		AS201 - Search		AS208	
		AS202 - Spot 3		AS209	
		AS204 - Spot 1		AS210	
		AS207 - Continuous Spot 3		AS211	
		AS208 - Continuous Spot 1		AS212	
		AS209 - EMTT Wide Frame Search		AS213	
		AS210 - EMTI Narrow Frame			
		Search			
		AS211 - EMTI Augmented Spot			
		AS212 - EM11 Wide Area MT1			
		(WAMIII)			
700	DD DATCH NO	AS213 - Monopulse Calibration	NT / 4	0001 0000	- D
/00	KD_PATCH_NO	Data Patch Number Field	N/4	0001-9999	<k></k>
		ratch instance for an imagery		OF UUUU	
		operation.			
		$<\kappa>=0000$ = Not Applicable			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
INDEX 800	FIELD CMPLX_DOMAIN	FIELD NAME AND DESCRIPTIONComplex Domaindefines whetherthe two components form arectangular (IQ) or a polar (MP)coordinate system and whichcomponent are present in this image.Operational and efficiencyconsiderations may dictate that themagnitude and phase components becontained in a separate files with theM or P defining the content of thisimage type of image samples. Thislist is extensible through thedocument custodian.IQ = I and Q interleaved data, note Ivalues = first pixel componentQ values = first pixel componentMP = Magnitude and Phaseinterleaved data, note IValues = first pixel componentMP = Magnitude and Phaseinterleaved data, note Magnitudevalues = first pixel componentMP = Magnitude and Phaseinterleaved data, note Magnitudevalues = first pixel componentMP = Magnitude and Phaseinterleaved data, note Magnitudevalues = first pixel componentMP = Magnitude and Phaseinterleaved data, note Magnitudevalues = first pixel componentMP = Magnitude and Phaseinterleaved data, note M	SIZE BYTES A/5	IQ QI MP I1Q2 Q112 M1P2 P1M2 M P	TYPE R
		IQ2 - I and Q data stored in the Iand 2nd bands, respectivelyQ1I2 - Q and I data stored in the 1stand 2nd bands, respectivelyM1P2 - M and P data stored in the1st and 2nd bands, respectivelyP1M2 - P and M data stored in the1st and 2nd bands, respectivelyM = MagnitudeP = Phase			
900	CMPLX_MAG_RE MAP_TYPE	Type of <u>Magnitude Mapping</u> applied to M pixel component values. This list is extensible through the document custodian. NS = No Scaling LINM = Linear Magnitude LINP = Linear Power LOGM = Log Magnitude LOGP = Log Power LLM = Lin-Log Magnitude Default = NA = Not Applicable	A/4	NS LINM LINP LOGM LOGP LLM or NA	<r></r>
1000	CMPLX_LIN_SCA LE	Complex Linear Scale Factor Complex Linear Scale Factor applied to each pixel in the image or image block. Used for LINM, LINP and LLM mapping in index 900. Default = 1.00000	N/7	.000001 to 99999.9 or 1.00000	R

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
1100	CMPLX_AVG_PO WER	<u>Average Power</u> of the image data associated with the NITF IM sub- header containing CMETAA. Avg. Power = $S(I^2 + Q^2)/n$ Default = 0000000, unknown Avg. Power	N/7	.000001 to 99999.9	<r></r>
1200	CMPLX_LINLOG _TP	Complex LinLog Transition Point Refers to the pixel value where linear scaling is applied to pixels less than the Transition Point (TP) value. Log scaling is applied to pixel values larger than the TP. Applied to LLM data denoted in field CMPLX_MAG_SCALE_TYPE (Index 900). Default = 00000 = Not Applicable	N/5	00000 to 65535	<r></r>
1300	CMPLX_PHASE _QUANT_FLAG	Phase Quantization Flag Quantization Flag Indicates whether the phase data has been quantized. This list is extensible through the document custodian. NS = No Scaling UQ1 = Uniformly Sampled (low) Quantizer UQ2 = Uniformly Sampled (center) Quantizer	A/3	NS UQ1 UQ2	R
1400	CMPLX _PHASE_QUANT _BIT_DEPTH	Phase Quantization Bit Depth: The number quantizer bits used in UQ1 or UQ2 in index 1300. If "CMPLX _PHASE _QUANT_FLAG" = NS than field contains 00.	N/2	01 to 32, or 00 if field 1300 is NS	R
1500	CMPLX _SIZE_1	Size of First Pixel Component in <u>Bits</u> . The Inphase component when CMPLX_DOMAIN is IQ; The Quadrature component when CMPLX_DOMAIN is QI; The magnitude component when CMPLX_DOMAIN is MP. Note: component sizes will be identical for I and Q	N/2	04 to 64 Commonly 8,16,32	R

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
INDEX 1600	FIELD CMPLX_IC_1	FIELD NAME AND DESCRIPTION Data Compression of First Pixel Component. Magnitude only (M) or the magnitude portion of the Magnitude/Phase (MP). No Compression (NC) for IQ or Phase (P) until standard compression available. This list is extensible through the document custodian. NC = No compression C3 = JPEG Lossy (as defined in MIL- STD-188-198A) C5 = JPEG Lossless (as defined in MIL-STD-188-198A) I1 = Downsampled JPEG Data Compression Information (as defined by NIMA N0106-97) C4 = Vector Quantizer (as defined in MIL-STD-188-199) C6 = JPEG 2000 (currently being reviewed by the NTB) C7 = Complex Data Compression (designator reserved for future complex data compression) Note the following compression alg. currently have no assigned standards but are currently being investigated. TC = Trellis Coded Quantizer	SIZE BYTES A/2	VALUE RANGE NC C3 C5 C6 I1 C4 C7 TC NS US	R
		US = Uniform Scalar Quantized Default = NC			
1700	CMPLX _SIZE_2	Size of Second Pixel Component in Bits. The Quadrature component when CMPLX_DOMAIN is IQ; The Inphase component when CMPLX_DOMAIN is QI; The phase component when CMPLX_DOMAIN is MP Use spaces for either mag or phase alone (as the only component) Default = 00 Note: component sizes will be identical for I and Q.	N/2	04 to 64 Commonly 8,16,32 or 00 indicating no second component	<r></r>

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
1800	CMPLX IC 2	Data Compression, second pixel	A/2	NC	R
		component. Phase compression. No		C3	
		Compression (NC) for IO until		C5	
		standard compression available		C6	
		Spaces indicate that field is not		I1	
		applicable. This list is extensible		C4	
		through the document custodian.		C7	
		NC = No compression		TC	
		C3 = JPEG Lossy (as defined in		NS	
		MIL-STD-188-198A)		US	
		C5 = JPEG Lossless (as defined in			
		MIL-STD-188-198A)			
		I1 = Downsampled JPEG Data			
		Compression Information			
		(as defined by NIMA N0106-			
		97)			
		C4 = Vector Quantizer (as defined			
		in MIL-STD-188-199)			
		C6 = JPEG 2000 (currently being			
		reviewed by the NTB)			
		C7 = Complex Data Compression			
		(designator reserved for future			
		complex data compression)			
		Note the following compression alg.			
		currently have no assigned standards			
		but are currently being worked by			
		the NTB.			
		TC = Trellis Coded Quantizer			
		NS = Nonlinear Scalar Quantized			
		US = Uniform Scalar Quantized			
1000		Default = NC	21/5	0.001	D
1900	CMPLX_IC_BPP	Complex Imagery Compressed Bits	N/5	0.001 to 64.00	<r></r>
		<u>per Pixel</u> . The average bits per pixel		or	
		for the complex pixels after		00000	
		compression.			
		compression			
2000	CMDLV WEICHT	Type of Weighting applied to date	A /2	LINT	D
2000	CMPLA_WEIGHT	<u>Type of weighting applied to data</u> .	A/3	UWI	ĸ
		prior to conversion to MP data. This			
		list is extensible through the			
		document custodian			
		UWT = Unweighted uniform			
		(default)			
		SVA = Spatially Variant			
		Apodization			
		TAY = Taylor Weighting			
		HNW = Hanning Window			
		HMW = Hamming Window			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
2100	CMPLX_AZ_SLL	<u>Azimuth (AZ) Sidelobe Level</u> .	N/2	00 to 99	R
		Absolute value of the level that the azimuth $(\Lambda \mathbf{Z})$ sidelobe response is		(decibers)	
		below that of the main return			
		Applies only to Taylor weighted			
		data.			
		Default = 00 = Unweighted or other			
2200	CMPLX RNG SL	Range (RNG) Sidelobe Level.	N/2	00 to 99	R
	L	Absolute value of the level that the		(decibels)	
		range (RNG) sidelobe response is			
		below that of the main return.			
		Applies only to Taylor weighted			
		data. Default = 00			
2300	CMPLX_AZ_TAY	Azimuth Taylor nbar. Number of	N/2	00 to 99	R
	_NBAR	sidelobes affected by weighting.			
		Applies only to Taylor weighted			
		data.			
2400		Default = $00 = Unweighted or other$	NI/O	00 / 00	D
2400	CMPLX_RNG_IA	Range Taylor nbar. Number of	N/2	00 to 99	K
	I_NBAK	Applies only to Taylor weighted			
		data			
		Default $= 00 = $ Unweighted			
2500	CMPLX WEIGHT	Complex Weight Normalization	A/3	AVG	< R >
2000	NORM	function for Taylor weighting. This	11,5	RMS	
		list is extensible through the		or 3 spaces	
		document custodian.			
		AVG: Average normalization			
		RMS: Root Mean Square			
		normalization			
		Default = Three spaces if not			
		applied			
2600	CMPLX_SIGNAL	Plane of the complex image	A/1	S/G	R
	_PLANE	S = Slant plane			
		G = Ground Plane			
2700	IF_DC_SF_ROW	Sample Location of DC (zero	N/6	000000 to 999999	R
		<u>Irequency</u>) in row dimension in the			
		spatial frequency domain for the 2-D			
2800	IE DC SE COL	FF1 of the patch.	N/6	000000 to 000000	D
2000	II_DC_SF_COL	fraguency) in column dimension in	11/0	00000 10 222299	ĸ
		the spatial frequency domain for the			
		2-D FFT of the patch.			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
2900	IF PATCH 1 RO	Sample Location of the signal corner	N/6	000000 to 9999999	<r></r>
	W	in the row dimension, upper left in		or -99999	
		the spatial frequency domain for the			
		2-D FFT of the patch. Origin (0,0) is			
		located at the upper left corner of the			
		patch. Note: The row coordinate			
		shown			
		in this field is a localized value			
		specific to one patch. It does not			
		correspond to a multiple patches			
		row/col coordinate system.			
		Default = -99999 = NA = Not			
		Applicable			_
3000	IF_PATCH_1_CO	Sample Location of the signal corner	N/6	000000 to 999999	<r></r>
	L	in the column dimension, upper left		or -99999	
		in the spatial frequency domain for			
		the 2-D FFT of the patch. Origin $(0,0)$ is located at the upper left			
		(0,0) is located at the upper left			
		column coordinate shown in this			
		field is a localized value specific to			
		one patch. It does not correspond to			
		a multiple patches row/col			
		coordinate system.			
		Default = -99999 = NA = Not			
		Applicable			
3100	IF_PATCH_2_RO	Sample Location of the signal corner	N/6	000000 to 9999999	<r></r>
	W	in the row dimension, upper right in		or -99999	
		the spatial frequency domain for the			
		2-D FFT of the patch. Origin (0,0) is			
		located at the upper left corner of the			
		patch. Note: The row coordinate			
		shown in this field is a localized			
		value specific to one patch. It does			
		not correspond to a multiple patches			
		$Pof_{out} = 00000 - NA - Not$			
		$\Delta \mathbf{pplicable}$			
3200	IF PATCH 2 CO	Sample Location of the signal corner	N/6	00000 to 999999	<r></r>
5200	L	in the column dimension, upper right	14/0	or -99999	
	2	in the spatial frequency domain for			
		the 2-D FFT of the patch. Origin			
		(0,0) is located at the upper left			
		corner of the patch. Note: The			
		column coordinate shown in this			
		field is a localized value specific to			
		one patch. It does not correspond to			
		a multiple patches row/col			
		coordinate system			
		Default = -99999 = NA = Not			
		Applicable			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
3300	IF_PATCH_3_RO	Sample Location of the signal corner	N/6	000000 to 9999999	R
	W	in the row dimension, bottom right		or -99999	
		in the spatial frequency domain for			
		the 2-D FFT of the patch. Origin			
		(0,0) is located at the upper left			
		corner of the patch. Note: The row			
		coordinate shown in this field is a			
		localized value specific to one patch.			
		It does not correspond to a multiple			
		patches row/col coordinate system.			
		Default = -99999 = NA = Not			
		Applicable			_
3400	IF_PATCH_3_CO	Sample Location of the signal corner	N/6	000000 to 999999	<r></r>
	L	in the column dimension, bottom		or -99999	
		right in the spatial frequency domain			
		for the 2-D FF1 of the patch.			
		Origin $(0,0)$ is located at the upper			
		left corner of the patch. Note: The			
		field is a localized value amazific to			
		neid is a localized value specific to			
		a multiple patches row/col			
		coordinate system			
		Default = -99999 = NA = Not			
		Applicable			
3500	IF PATCH 4 RO	Sample Location of the signal corner	N/6	000000 to 999999	<r></r>
5500	W	in the row dimension, bottom left in	10/0	or -99999	40
		the spatial frequency domain for the			
		2-D FFT of the patch. Origin (0.0)			
		is located at the upper left corner of			
		the patch. Note: The row coordinate			
		shown in this field is a localized			
		value specific to one patch. It does			
		not correspond to a multiple patches			
		row/col coordinate system.			
		Default = -99999 = NA = Not			
		Applicable			
3600	IF_PATCH_4_CO	Sample Location of the signal corner	N/6	000000 to 9999999	<r></r>
	L	in the column dimension, bottom left		or -99999	
		in the spatial frequency domain for			
		the 2-D FFT of the patch. Origin			
		(0,0) is located at the upper left			
		corner of the patch. Note: The			
		column coordinate shown in this			
		field is a localized value specific to			
		one patch. It does not correspond to			
		a multiple patches row/col			
		D_{a} Default = 00000 = NA = Nat			
		Detault = -99999 = INA = INOt			
		Applicable			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
3700	IF DC IS ROW	Sample Location of DC (zero	N/8	00000000 to 99999999	R
		frequency) in row dimension in the			
		image space relevant to the origin of			
		the full image (i.e. image segment).			
		Origin $(0,0)$ is located at the upper			
		left corner of the image segment			
3800	IF_DC_IS_COL	Sample Location of DC (zero	N/8	00000000 to 99999999	R
		frequency) in column dimension in			
		the image space relevant to the			
		origin of the full image (i.e. image			
		segment). Origin (0,0) is located at			
		the upper left corner of the image			
		segment			
3900	IF_IMG_ROW_DC	Row Location of Patch (IM) relative	N/8	00000001 to 99999999	<r></r>
		to the full image (image segment). If		or 00000000	
		this image is the entire image			
		segment use 00000000. Origin (0,0)			
		is located at the upper left corner of			
		the image segment			
		Default = 00000000			
4000	IF_IMG_COL_DC	Column Location of Patch (IM)	N/8	00000001 to 999999999	<r></r>
		relative to the full image (image		or 0000000	
		segment). If this image is the entire			
		image segment use 00000000.			
		Origin $(0,0)$ is located at the upper			
		left corner of the image segment			
4100	IE THE 1 DOW	Default = 0000000	NIC	000000 +- 000000	<i>D</i> >
4100	IF_TILE_I_KOW	Sample Location of Vand the data in	10/0	0000010 999999	< K >
		(0,0) is located at the upper left		01 -999999	
		corner of the tile			
		Default $= -99999 = NA = Not$			
		Applicable			
4200	IF TILE 1 COL	Sample Location of valid tile data in	N/6	000000 to 999999	<r></r>
	<u></u>	the column direction, upper left.	1 0 0	or -99999	
		Origin (0.0) is located at the upper			
		left corner of the tile			
		Default = -99999 = NA = Not			
		Applicable			
4300	IF_TILE_2_ROW	Sample Location of valid tile data in	N/6	000000 to 999999	<r></r>
		the row direction, upper right.		or -99999	
		Origin (0,0) is located at the upper			
		left corner of the tile			
		Default = -99999 = NA = Not			
		Applicable			
4400	IF_TILE_2_COL	Sample Location of valid tile data in	N/6	000000 to 999999	<r></r>
		the column direction, upper right.		or -99999	
		Origin $(0,0)$ is located at the upper			
		left corner of the tile			
		Default = -99999 = NA = Not			
		Applicable			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
4500	IF_TILE_3_ROW	Sample Location of valid tile data in	N/6	000000 to 999999	<r></r>
		the row direction, lower right.		or -99999	
		Origin $(0,0)$ is located at the upper			
		left corner of the tile			
		Default = -99999 = NA = Not			
1.000		Applicable	NT/C	000000 000000	
4600	IF_TILE_3_COL	Sample Location of valid tile data in	N/6	000000 to 999999	<r></r>
		the column direction, lower right.		or -99999	
		laft corner of the tile			
		D_{a} Default = 00000 = NA = Not			
		$\Delta nnlicable$			
4700	IF TILE 4 ROW	Sample Location of valid tile data in	N/6	000000 to 999999	<r></r>
1700		the row direction lower left Origin	10/0	or -99999	40
		(0.0) is located at the upper left			
		corner of the tile			
		Default = -99999 = NA = Not			
		Applicable			
4800	IF_TILE_4_COL	Sample Location of valid tile data in	N/6	000000 to 999999	<r></r>
		the column direction, lower left.		or -99999	
		Origin $(0,0)$ is located at the upper			
		left corner of the tile			
		Default = -99999 = NA = Not			
4000	III DD	Applicable	A /1	X DI O	
4900	IF_RD	Range Deskew	A/1	Y/N/O	R
		Indicates whether range deskew has			
		V = Ves range deskewed applied			
		$N = N_0$ range deskewed still exists			
		$\Omega = \Omega$ by a test of the state			
		necessary/not applicable)			
5000	IF RGWLK	Range Walk Correction	A/1	Y/N/O	R
	_	$\overline{Y} = yes$, range walk applied			
		N = no, range walk exists in image			
		O = Obviated (not necessary/not			
		applicable)			
5100	IF_KEYSTN	Range Curvature and Keystone	A/1	Y/N/O	<r></r>
		Distortion Correction		or 1 space	
		Y = yes, range curvature and			
		keystone distortion correction			
		applied			
		N = no, range curvature and			
		Registered distortion exists in image $\Omega = \Omega$ by interval (not necessary/not			
		applicable)			
		Default = One space			
5200	IF LINSFT	Residual Linear Shift Correction	A/1	Y/N/O	<r></r>
5200		Y = Yes, correction applied	11/1	or 1 space	40
		N = No, correction not applied		~r	
		O = Obviated (not necessary/not			
		applicable)			
		Default = One space			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
5300	IF_SUBPATCH	Sub-patch Phase Correction	A/1	Y/N/O	<r></r>
		Y = Yes, sub-patch phase correction		or 1 space	
		applied			
		$\hat{N} = No$, correction not applied			
		O = Obviated (not necessary/not			
		applicable)			
		Default = One space			
5400	IF_GEODIST	Other Deterministic Geometric	A/1	Y/N/O	<r></r>
		Distortion Corrections		or 1 space	
		Y = Yes, correction applied			
		N = No, correction not applied			
		O = Obviated (not necessary/not			
		applicable)			
		Default = One space			
5500	IF_RGFO	Range Fall-off Correction	A/1	Y/N/O	R
		(Sensitivity Time Control)			
		Y = Yes, correction applied			
		N = No, correction not applied			
		O = Obviated (not necessary/not			
		applicable)			_
5600	IF_BEAM_COMP	Antenna Beam Pattern	A/1	Y/N/O	R
		Compensation Applied Image			
		amplitude deshading applied to			
		compensate for antenna pattern			
		Y = Yes, correction applied			
		N = No, correction not applied			
		O = Obviated (not necessary/not employed)			
5700	IE DCDES	Range Direction Resolution (a.g.	NI/9	0000 000 to 0000 000	D
5700	IF_KOKES	cross track cross scan)	11/0	(meters)	к
		Resolution of the main lobe of the		(increas)	
		SAR IPR at the -3db range			
		direction Note: This definition			
		pertains to the image plane of the			
		image, mmmm.mmm			
5800	IF AZRES	Azimuth Resolution (e.g. along	N/8	0000.000 to 9999.999	R
		track)		(meters)	
		Resolution of the main lobe of the		()	
		SAR IPR at the -3db, azimuth			
		direction. Note: This definition			
		pertains to the image plane of the			
		image. mmmm.mmm			
5900	IF_RSS	Range Sample Spacing (e.g. cross	N/8	00.00000 to 99.99999	R
		track, cross scan)		(m/pix)	
		Note: This definition pertains to the			
		image plane of the image.			
		mmmm.mmm			
6000	IF_AZSS	Azimuth Sample Spacing, (e.g.	N/8	00.00000 to 99.99999	R
		along track)		(m/pix)	
		Note: This definition pertains to the			
		image plane of the image.			
		mmm.mmm			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
6100	IF RSR	Range Sample Rate	N/8	00.00000 to 99.99999	R
		(samples/ commanded IPR)		(samples/IPR)	
		Note: This definition pertains to the			
		image plane of the image.			
		mmmn.mmm			
6200	IF AZSR	Azimuth Sample Rate (samples/	N/8	00.00000 to 99.99999	R
		Commanded IPR)		(samples/IPR)	
		Note: This definition pertains to the			
		image plane of the image.			
		mmmm.mmm			
6300	IF_RFFT_SAMP	Original Range (e.g. cross scan,	N/7	0000001 to 9999999	R
		cross-track) FFT Non-zero Input			
		Samples			
		The original number of input FFT			
		range samples prior to zero padding			
		(e.g. at polar format).			
6400	IF_AZFFT_SAMP	Original Azimuth (e.g. along track)	N/7	0000001 to 9999999	R
		FFT Non-zero Input Samples			
		The original number of input FFT			
		azimuth samples prior to zero			
		padding (e.g. at polar format).			
6500	IF_RFFT_TOT	Total Range (e.g. cross scan, cross-	N/7	0000001 to 9999999	R
		track) FFT Length			
		The total number of input FFT range			
		samples (e.g. at polar format).			_
6600	IF_AZFFT_TOT	<u>Total Azimuth (e.g. along track)</u>	N/7	0000001 to 9999999	R
		FFT Length			
		The total number of input FFT			
		azimuth samples (e.g. at polar			
6700	IE SUDD DOW	Iorinat).	N/6	000001 to 000000 (rivela)	<d></d>
0700	IF_SUDF_KUW	Sub-patch Size, Kow (Kalige	11/0	000001 to 999999 (pixels)	$\langle \mathbf{V} \rangle$
		<u>Direction</u> Number of row pixels (i.e. pixels per		000000	
		row) in one processing sub-patch		00000	
		(size and locations of phase			
		discontinuities)			
		Default = 000000, no sub-patch			
6800	IF SUBP COL	Sub-patch Size Column (Azimuth	N/6	000001 to 999999 (pixels)	<r></r>
0000	IL_DODI_COL	Direction)	10/0	or	40
		Number of column pixels (i.e. pixels		000000	
		per column) in one processing sub			
		patch (size and locations of phase			
		discontinuities)			
		Default = 000000, no sub-patch			
6900	IF_SUB_RG	Subpatch Counts, Range, (e.g. cross	N/4	0001 to 1000	<r></r>
		scan, cross-track)		or	
		Number of processing sub patches in		0000	
		the range direction (size and			
		locations of phase discontinuities)			
		Default = 0000, no sub-patch			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
7000	IF_SUB_AZ	Subpatch Counts, Azimuth, (e.g.	N/4	0001 to 1000	<r></r>
		along track)		or	
		Number of processing sub patches in		0000	
		the azimuth direction (size and			
		locations of phase discontinuities)			
		Default = 0000, no sub-patch			
7100	IF_RFFTS	FFT Sign Convention in Range (e.g.	A/1	+, -	R
		cross scan, cross-track)			
		Defines sign of exponent in kernel			
		for range FFT. $exp \pm j2p$			
		+ = positive			
7200		- = negative	A /1		D
7200	IF_AFF15	FF1 Sign Convention in Azimuth	A/1	+, -	ĸ
		(e.g. along track)			
		for azimuth EET exp +i2p			
		to azimum 1111. exp $\pm j2p$			
		- = positive			
7300	IF RANGE DATA	Range Data Range (e.g. cross-scan	A/7	ROW INC	R
1500		cross-track)	11, 7	ROW DEC	
		Indicates range orientation of the		COL INC	
		data		COL DEC	
		ROW INC = range increases as row		—	
		index increases			
		ROW_DEC = range decreases as			
		row index increases			
		COL_INC = range increases as			
		column index increases			
		$COL_DEC = range decreases as$			
		column index increases			
7400	IF_INCPH	Increasing phase	A/1	+,-	<r></r>
		Flag to indicate whether phase		or 1 space	
		increases or decreases with			
		increasing range (e.g. cross-scan,			
		cross-track).			
		+ = Increases with distance			
		- = Increases with distance			
7500	IE SP NAME1	Super Resolution Algorithm Name	Λ/9	S SVA	_D>
7500	II'_SIK_NAMET	First Iteration	A/ o	NLS	$\langle V \rangle$
		This list is extensible through the		HDI	
		document custodian.		HDSAR	
		S-SVA = Super SVA		CLEAN	
		NLS = Non Linear Least Squares		SPECEST	
		HDI = High Definition Imaging		or	
		HDSAR = High Definition SAR		8 spaces	
		CLEAN = Point Return Cleaning			
		SPECES I = General Spectrum			
		Esumation Default - Fight appage - Not			
		Default = Eight spaces = Not			
		applied			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
7600	IF_SR_AMOUNT1	Amount or Factor of Super <u>Resolution Applied to the Image,</u> <u>First Iteration</u> Amount or Factor of Super Resolution Applied to image. ss.ssss Default = 01.00000	N/8	01.00000 to 99.99999	R
7700	IF_SR_NAME2	Super Resolution Algorithm Name. Second Iteration This list is extensible through the document custodian. S-SVA = Super SVA NLS = Non Linear Least Squares HDI = High Definition Imaging HDSAR = High Definition SAR CLEAN = Point Return Cleaning SPECEST= General Spectrum Estimation Default = Eight spaces = Not applied	A/8	S-SVA NLS HDI HDSAR CLEAN SPECEST or 8 spaces	<r></r>
7800	IF_SR_AMOUNT2	Amount or Factor of Super <u>Resolution Applied to the Image,</u> <u>Second Iteration</u> Amount or Factor of Super Resolution Applied to image. ss.sssss Default = 01.00000	N/8	01.00000 to 99.99999	R
7900	IF_SR_NAME3	Super Resolution Algorithm Name, <u>Third Iteration</u> This list is extensible through the document custodian. S-SVA = Super SVA NLS = Non Linear Least Squares HDI = High Definition Imaging HDSAR = High Definition SAR CLEAN = Point Return Cleaning SPECEST= General Spectrum Estimation Default = Eight spaces = Not applied	A/8	S-SVA NLS HDI HDSAR CLEAN SPECEST or 8 spaces	<r></r>
8000	IF_SR_AMOUNT	Amount or Factor of Super Resolution Applied to the Image, Third Iteration Amount or Factor of Super Resolution Applied to image. ss.ssss Default = 01.00000	N/8	01.00000 to 99.99999	R

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
8100	AF_TYPE1	First Autofocus Iteration	A/5	N	R
		This list is extensible through the		MD	
		document custodian.		PGA	
		N = None		PHDIF	
		MD = Mapdrift		HOAF	
		PGA = Phase Gradient Autofocus			
		PHDIF = Phase Difference			
		Autofocus HOAF = High Order Auto Focus			
8200	AF_TYPE2	Second Autofocus Iteration	A/5	Ν	R
		This list is extensible through the		MD	
		document custodian.		PGA	
		N = None		PHDIF	
		MD = Mapdrift		HOAF	
		PGA = Phase Gradient Autofocus PHDIF = Phase Difference			
		Autofocus			
		HOAF = High Order Auto Focus			
8300	AF_TYPE3	Third Autofocus Iteration	A/5	Ν	R
		This list is extensible through the		MD	
		document custodian.		PGA	
		N = None		PHDIF	
		MD = Mapdrift		HOAF	
		PGA = Phase Gradient Autofocus			
		PHDIF = Phase Difference			
		Autofocus HOAF = High Order Auto Focus			
8400	POL_TR	Transmit Polarization Describes	A/1	H, V, L, R, T, P	R
		polarization of the electromagnetic			
		plane wave transmitted from the			
		antenna. This list is extensible			
		through the document custodian.			
		V = Vertical polarization			
		H = Horizontal polarization			
		L = Left Circular			
		R = Right Circular			
		T = Theta (described in reference to)			
		an X-Z coordinate system plane)			
		P = Phi (described in reference to an X V accordinate system plane)			
9500	DOL DE	A-1 coordinate system plane)	A /1		D
8500	POL_RE	<u>Receive Polarization</u> Describes the	A/ 1	H, V, L, K, I, P	ĸ
		the polarized plane wave. This list is			
		avtensible through the document			
		extensible through the document			
		V = Vertical polarization			
		H = Horizontal polarization			
		I = I eft Circular			
		R = Right Circular			
		T = Theta (described in reference to)			
		an X-Z coordinate system plane)			
		P = Phi (described in reference to an			
		X-Y coordinate system plane)			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
8600	POL REFERENC	Polarization Frame of Reference	A/40		<r></r>
8000	POL_REFERENC E	Polarization Frame of Reference Describes the polarization frame of reference Examples: ANT = Antenna pointing coordinates (e.g. H and V referenced to the face of a phased array antenna). SCN = Scene or Target centered coordinates (e.g. H and V referenced to local gravity and ground plane). User may spacefill or add additional data. XYZ = General reference frame describing Theta Phi coordinate frames (XYZ directions specified in the user defined data of this field). Entries left justified, space filled to the right.	A/40	ANT (plus user defined data) SCN (plus user defined data) XYZ (plus user defined data) or 40 spaces	
8700	POL	Default = 40 spaces Polarimetric Data Set Is this image part of a polarimetric data set? P = Yes, a fully polarimetric data set. Like and cross poles simultaneously transmitted and received. D = Yes, a polarimetrically diverse data set. Like and cross poles alternately transmitted; simultaneously received. N = No polarimetric	A/1	P, D, N	R
8800	POL_REG	Pixel Registered Are the images in the polarimetric data set pixel to pixel registered and overlapping? Y = Yes N = No Default = Space. Space is required when POL (index 8700) = N	A/1	Y/N/space	<r></r>
8900	POL_ISO_1	Minimum Polarization Isolation between this image / signal channel and the other channels. dd.dd Default = 00000. 00000 required when POL (index 8700) = N	N/5	00.00 to 99.99 (decibels) or 00000	<r></r>

INDEX		FIELD NAME AND	SIZE		
INDEA	FIELD	DESCRIPTION	BYTES	VALUE RANGE	IYPE
9000	POL_BAL	RCS Gray Level Balancing	A/1	А	<r></r>
		Indicated if the pixel radar cross		В	
		section (gray level) has been		С	
		balanced against other channels,		U	
		requires balancing and if the		or space	
		balancing coefficients are present in this file			
		A = Balancing coefficients have not			
		been applied and are provide in fields 9100-9200.			
		B = Data has balanced channels,			
		coefficients not provided in fields 9100-9200.			
		C = Balancing coefficients have			
		been applied and are provide in fields 9100-9200.			
		U = Unbalanced channels, no			
		coefficients given; no balancing			
		applied.			
		Default = Space. Space is required			
		when POL (index 8700) = N			
9100	POL_BAL_MAG	Pixel Amplitude Balance Coefficient	N/8	0.000000 to 0.999999	<r></r>
		Coefficient to be applied for pixel		or	
		RCS amplitude balance of this		0000000	
		channel against the others (at least 1			
		polar channel has $mag = 1$) where a			
		channel is a collection specified by			
		polarization of the antenna on			
		transmit and receive.			
		Default = 0000000 when POL			
		$(\text{index 8/00}) = \text{N or POL}_BAL$			
		(1ndex 9000) is U. c.cccccc			
		Default = $0000000.00000001s$			
		required when POL (index $8/00$) =			
0200		N OI POL_BAL (IIIdex 9000) IS U.	N/8		<d></d>
9200	rol_dal_rns	Coefficient to be applied for pixel	11/0	<u>+</u> 11.11111111 0 000000 to 9 000000	$\langle \mathbf{V} \rangle$
		hase balance of this channel against		(radians)	
		the others (at least 1 polar channel		(radialis)	
		has phase $= 0$		0000000	
		Default = 00000000, 00000000 is			
		required when POL (index 8700) =			
		N or POL_BAL (index 9000) is U.			

127

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
9300	POL HCOMP	Radar Hardware Phase Balancing	A/1	А	<r></r>
		Radar hardware phase balancing		В	
		required to give a flat response in		С	
		fast time to a sphere return.		U	
		A = Balancing coefficients have not		space	
		been applied and are provided in fields 9400-9500.			
		B = Data has balanced channels, coefficients not provided in fields 9100-9200.			
		C = Balancing coefficients have been applied and are provide in fields 9100-9200			
		U = Unbalanced channels, no coefficients given; no balancing applied Default = Space. Space is required			
0400	DOL LICOMD DA	when POL (index $8/00$) = N	A /10	LECENDDE	<u>ر</u> م ک
9400	FOL_HCOMP_BA	Dasis Sei Name of the basis set for phase	A/10	POI VNOMIAI	< K >
	515	balancing coefficients. This list is		or 10 spaces	
		extensible through the document		01 10 spaces	
		custodian.			
		LEGENDRE			
		POLYNOMIAL			
		Default = 10 spaces. 10 spaces are			
		required when POL (index 8700) =			
		N or POL_BAL (index 9000) is U.			
9500	POL_HCOMP_CO	Radar Hardware Phase Balancing	N/9	-999999999 to 999999999	<r></r>
	EF_1	Radar hardware phase balancing		(may include explicit	
		first coefficient needed to give a flat response in fast time to a sphere		decimal point) or	
		return		00000000	
		Default = 00000000. 00000000 is			
		required when POL (index 8700) =			
		N or POL_BAL (index 9000) is U.			_
9600	POL_HCOMP_CO EF_2	Radar Hardware Phase Balancing Radar hardware phase balancing second coefficient needed to give a flat response in fast time to a sphere	N/9	-999999999 to 999999999 (may include explicit decimal point) or	<r></r>
		$D_{a}f_{a}u^{1}t = 00000000, 00000000000000000000000000$		0000000	
		Default = 00000000. 000000000 is			
		required when POL (index $8/00$) = N			
9700	POL_HCOMP_CO	Radar Hardware Phase Balancing	N/9	-999999999 to 999999999	<r></r>
	EF_3	Radar hardware phase balancing third coefficient needed to give a flat response in fast time to a sphere		(may include explicit decimal point) or	
		return Default = 000000000. 000000000 is required when POL (index \$700)		00000000	
		N			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
9800	POL AFCOMP	Radar Autofocus Phase Balancing	A/1	А	<r></r>
		Autofocus has been done the same		D	
		or differently for each channel,		М	
		where a channel is a collection		Ν	
		specified by polarization of the		space	
		antenna on transmit and receive.		°F	
		This list is extensible through the			
		document custodian.			
		A = Autofocus applied to this			
		channel using the same methods and			
		coefficients as for the other			
		channels.			
		D = Different autofocus applied to			
		this channel than to the other			
		channels.			
		M= Master autofocus channel.			
		Autofocus derived from this channel			
		is used on the other channels.			
		N = No autofocus applied to this			
		channel			
		Default = Space. Space is required			
		when POL (index 8700) = N			
9900	POL SPARE A	Spare alpha field	A/15	15 spaces	<r></r>
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	102_011102_11	Default = 15 spaces	11/10	ie spaces	
10000	POL_SPARE_N	Spare numeric field	N/9	00000000	<r></r>
		Default = 000000000			
10100	T_UTC_YYYYM	YYYYMMMDD	A/9	YYYYMMMDD	R
	MMDD	The 4 digit year, letter month and			
		Universal Time Coordinated (UTC)			
		date. This field and the next time			
		field establishes the date/ time of			
		collection (e.g. at center of aperture			
		reference point) for complex-image			
		data contained in this file. Note: The			
		date found in this field may or may			
		not match the IDATIM field found			
		in the image subheader.			
10200	T_HHMMSSUTC	<u>UTCHHMMSS</u>	N/6	HHMMSS	R
		The UTC hours, minutes and			
		seconds, 24 hour clock, associated			
		with the data set. This field and the			
		previous date field establishes the			
		date/ time of collection (e.g. at			
		center of aperture) for complex-			
		image data contained in this file.			
		Note: The time found in this field			
		may or may not match the IDATIM			
		field found in the image subheader.			
10300	T_HHMMSSLOC	Civil Time of Collection	A/6	HHMMSS	<r></r>
	AL	Local civil time of collection, 24		or 6 spaces	
		hour clock.			
		Default = six spaces			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
10400	CG_SRAC	Slant Range at Sensor Reference Center Distance from the sensor reference point (e.g. aperture reference point) to the ground reference point. mmmmmmmmmmm	N/11	00000000.00 to 999999999.99 (m)	R
10500	CG_SLANT_CON FIDENCE	Slant Range 95% Confidence Interval The accuracy at the 95% confidence interval of the slant range measurement. This is the magnitude of the confidence interval. mmmm.mm Default = 0000000	N/7	0000.00 to 9999.99 (m) or 0000000	<i>R</i> >
10600	CG_CROSS	Cross Track Range at Sensor <u>Reference Center</u> (e.g. Aperture Center) Distance from the sensor reference point center to the broadside point on the scene center line. mmmmmmmmmmm Default = 0000000000	N/11	00000000.00 to 999999999.99 (m) or 00000000000	⊲R>
10700	CG_CROSS_CON FIDENCE	Cross Track Range at Sensor Reference Center 95% Confidence Interval (e.g. aperture reference point) The accuracy at the 95% confidence interval of the cross track range measurement. This is the magnitude of the confidence interval. Default = 0000000	N/7	0000.00 to 9999.99 (m) or 0000000	<r></r>
10800	CG_CAAC	<u>Cone Angle at Sensor Reference</u> <u>Point (</u> e.g. aperture reference point) The angle, measured at the radar, between the reference velocity vector and the reference range vector. <u>+</u> ddd.ddd	N/9	<u>+</u> ddd.dddd (deg) <u>+</u> 179.000 deg	R
10900	CG_CONE_CONF IDENCE	Cone Angle 95% Confidence The accuracy at the 95% confidence interval of the Cone Angle measurement. This is the magnitude of the confidence interval. d.dddd Default = 000000	N/6	0.0000 to 0.9999 (deg) or 000000	<r></r>

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
11000	CG GPSAC	Ground Plane Squint Angle The	N/8	+dd.dddd (deg)	R
	_	Ground Plane Squint Angle is the		_ ()	
		angle measured from cross track			
		(broadside) to the great circle			
		joining the ground point directly			
		below the Sensor Reference Point			
		(SRP) to the Output Reference Point			
		(ORP). Forward looking Squint			
		Angles range from 0 (broadside) to			
		+89 degrees and aft looking Squint			
		Angles range from broadside to -89			
		degrees. <u>+</u> dd.dddd			
11100	CG_GPSAC_CON	Squint Angle 95% Confidence	N/6	0.0000 to 0.9999 (deg)	<r></r>
	FIDENCE	The accuracy at the 95% confidence		or	
		interval of the Squint Angle		000000	
		measurement. This is the magnitude			
		of the confidence interval. d.dddd			
		Default = 000000			
11200	CG_SQUINT	Slant Plane Squint Angle The Squint	N/8	<u>+</u> dd.dddd (deg)	R
		Angle is the angle measured from			
		cross track (broadside) in the slant			
		plane to the vector joining the			
		Aperture Reference Point (ARP) to			
		the Output Reference Point (ORP).			
		Forward looking Squint Angles			
		range from 0 (broadside) to +89			
		degrees and art looking Squint			
		Angles range from broadside to -89			
		degrees.			
11200	CC CAAC	<u>+</u> du.dudu Grazing Angle at Sansor Pafaranaa	N/7	00,000, to 80,000, dag)	D
11500	CU_UAAC	Point Center (e.g. aperture center)	1 N/ /	00.0000 10 89.9999(deg)	К
		The angle measured at the Output			
		Reference Point between the ground			
		plane and the Reference Position			
		Vector, dd.ddd			
11400	CG GAAC CONF	Grazing Angle at Sensor Reference	N/6	0.0000 to 0.9999 (deg)	<r></r>
	IDENCE	Point Center 95% Confidence		or	
		The accuracy at the 95% confidence		000000	
		interval of the Grazing Angle at			
		Aperture Center measurement			
		d.dddd			
		Default = 000000			
11500	CG_INCIDENT	Incidence angle	N/7	00.0000 to 89.9999 (deg)	<r></r>
		The angle between an incoming		or	
		beam and the perpendicular to the		0000000	
		object surface at the point of			
		incidence. This value is the			
		compliment of the grazing angle			
		(index 11300). dd.dddd			
		Default = 0000000			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
11600	CG_SLOPE	Slope angle The angle between the slant plane and the focus plane of the image i.e. cross track grazing angle. <u>+</u> dd.ddd Default = 0000000	N/7	<u>+</u> dd.ddd (deg) 00.0000 to 89.9999 or 0000000	<r></r>
11700	CG_TILT	<u>Tilt angle</u> The angle between the respective Y axes of the slant plane and the focus plane coordinate systems. <u>+</u> dd.dddd Default = 00000000	N/8	<u>+</u> dd.dddd (deg) <u>+</u> 44.9999 or 00000000	<r></r>
11800	CG_LD	Look Direction Indicates which side of the imaging platform the image was taken, left or right of the velocity vector.	A/1	L, R	R
11900	CG_NORTH	North Relative to the Top Image Edge Angle from right (defined at the top edge of the image i.e. first row of the image data when the origin (0,0) is located at the upper left corner of the patch) counter-clockwise to north. e.g. On an image viewed north up, this angle is 90 deg. ddd.dddd	N/8	ddd.dddd (deg) 000.0000 to 359.9999	R
12000	CG_NORTH_CON FIDENCE	North Angle 95% Confidence The accuracy at the 95% confidence interval of the North Angle measurement. d.dddd Default = 000000	N/6	0.0000 to 9.9999 (deg) or 000000	<r></r>
12100	CG_EAST	East Relative to the Top Image Edge Angle from right (defined at the top edge of the image) counter- clockwise to east. e.g. On an image viewed north up, this angle is 0 deg. ddd.dddd	N/8	ddd.dddd (deg) 000.0000 to 359.9999	R
12200	CG_RLOS	Range LOS rel the Top Image Edge Angle from right (defined at the top edge of the image) counter- clockwise to the LOS from near range to far range. Note: This points in the general direction away from the SAR. ddd.dddd	N/8	ddd.dddd (deg) 000.0000 to 359.9999	R
12300	CG_LOS_CONFID ENCE	Range LOS 95% Confidence The accuracy at the 95% confidence interval of the range LOS angle measurement. This is the magnitude of the confidence interval. d.dddd Default = 000000	N/6	0.0000 to 9.9999 (deg) or 000000	<r></r>

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
12400	CG_LAYOVER	Layover Angle Angle from right (defined at the top edge of the image) counter- clockwise to the layover direction. Note: This points in the general direction of the SAR. ddd.ddd Default = 00000000	N/8	ddd.dddd (deg) 000.0000 to 359.9999 or 00000000	<r></r>
12500	CG_SHADOW	Shadow Angle Angle from right (defined at the top edge of the image) counter- clockwise to the angle at which shadows fall behind illuminated targets. Note: This points in the general direction away from the SAR. ddd.ddd Default = 00000000	N/8	000.0000 to 359.9999 (deg) or 00000000	<r></r>
12600	CG_OPM	Out of Plane Motion Maximum angle between the slant plane and imaging platform flight path with respect to the ground reference point. nnn.nnn Default = 0000000	N/7	nnn.nnn (miliarcsec) 000.000 to 999.999 or 0000000	<r></r>
12700	CG_MODEL	Nominal Geometry Reference Geometry Coordinate System used for the Collection Geometry Data Items. This geometry applies to fields 12800 - 137000 and 14400 - 14800 and 15900 – 16100. These fields come in triples *_X, *_Y, *_Z The X field is used for the first coordinate (WGS latitude; ECEF distance from the center of the earth to an earth surface point), The _Y field is used for the second (WGS longitude; ECEF distance from the center of the earth through the equator 90 deg. east) and _Z the third (WGS altitude; ECEF from the center of the earth through the north pole 90 deg. east). This list is extensible through the document custodian. ECEF = Earth Centered Earth Fixed (meters from geocenter) WGS84 = Latitude (deg) Longitude (deg) Alt (m) XYZSC = local flat earth coords; scene center as origin Please see Annex B for a reference text describing the above coordinate systems	A/5	XYZSC ECEF WGS84	R

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
12800	CG_AMPT_X	Aimpoint of Antenna, x (Illum. Ref	N/13	<u>+999999999999999999999999999999999999</u>	R
		<u>Pt.)</u>		or	
		x coordinate of the center of the		<u>+</u> 0089.9999999 (deg)	
		antenna beam pattern aimpoint at the			
		sensor reference point.			
		If index 12/00 has ECEF or XYZSC			
		use meters. If WGS84 use degrees.			
12000	CC AMDT V	<u>+</u> ddddddddddd or <u>+</u> dddd.dddddd	NI/12		р
12900	CG_AMP1_Y	Aimpoint of Antenna, y (Illum. Ref	N/15	<u>+99999999999</u> (meters)	к
		$\frac{1}{1}$ v coordinate of the center of the		-01 -0179 99999999 (deg)	
		antenna beam pattern aimpoint at the		$\pm 0179.99999999 (deg)$	
		sensor reference point.			
		If index 12700 has ECEF or XYZSC			
		use meters. If WGS84 use degrees.			
		+mmmmmmmmmmm or			
		<u>+</u> dddd.dddddd			
13000	CG_AMPT_Z	Aimpoint of Antenna, z (Illum. Ref	N/13	<u>+</u> 999999999999999999999999999999999999	R
		<u>Pt.)</u>			
		z coordinate of the center of the			
		antenna beam pattern aimpoint at the			
		sensor reference point.			
10100			27/6		-
13100	CG_AP_CONF_X	Aimpoint 95% Confidence	N/6	000000 to 999.99 (meters)	<r></r>
	Ĭ	States the 95% confidence at the		10	
		Circular Error distance		00000	
		Default = 000000			
13200	CG_AP_CONF_Z	Aimpoint 95% Confidence	N/6	000000 to 999.99 (meters)	<r></r>
		States the confidence at the vertical		or	
		aimpoint measurement as a Linear		000000	
		Error Percent Distance.			
10000		Default = 000000	21/10	0000000000000	
13300	CG_APCEN_X	Sensor Reference Point (x)	N/13	<u>+999999999999</u> (meters)	R
		(e.g. aperture center)		10 (
		x component of the sensor position		<u>+</u> 0089.9999999 (deg)	
		If index 12700 bas ECEE or XXZSC			
		use meters. If WGS84 use degrees			
		+mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm			
		+ddd.dddddd			
13400	CG_APCEN_Y	Sensor Reference Point (y)	N/13	+9999999999999999999999999999999999999	R
		y component of the sensor position		or	
		at the sensor reference point.		<u>+</u> 0179.9999999 (deg)	
		If index 12700 has ECEF or XYZSC		-	
		use meters. If WGS84 use degrees.			
		<u>+</u> mmmmmmmmmmm or <u>+</u> dddd.dddddd			
13500	CG_APCEN_Z	Sensor Reference Point (z)	N/13	+9999999999999999999999999999999999999	R
		z component of the sensor position		= ```	
		at the sensor reference point.			
		<u>+</u> mmmmmmmm			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
13600	CG APER CONF	Sensor Reference Point 95%	N/6	000.00 to 999.99 (meters)	<r></r>
	XY	Confidence		or	
		States the 95% confidence at the		000000	
		horizontal sensor reference point			
		(e.g. aperture center) measurement			
		Circular Error distance. mmm.mm			
		Default = 000000			
13700	CG_APER_CONF	Sensor Reference Point Center 95%	N/6	000.00 to 999.99 (meters)	<r></r>
	_Z	Confidence		or	
		States the 95% confidence at the		000000	
		vertical sensor reference point (e.g.			
		aperture center) measurement Linear			
		Error distance. mmm.mm			
		Default = 000000			
13800	CG_FPNUV_X	Focus Plane Normal Unit Vector, x	N/9	-1.000000 to +1.000000	R
		x component of the unit vector		(unitless)	
12000		perpendicular to the focus plane.	27/0	1 000000 1 000000	
13900	CG_FPNUV_Y	Focus Plane Normal Unit Vector, y	N/9	-1.00000 to $+1.00000$	R
		y component of the unit vector		(unitiess)	
1.4000	CC EDNUM 7	perpendicular to the focus plane.	N1/0	1.000000 /	D
14000	CG_FPNUV_Z	Focus Plane Normal Unit Vector, Z	IN/9	-1.000000 to +1.000000	ĸ
		z component of the unit vector		(unitiess)	
14100		Image Display Plane Normal Unit	NI/0	1 000000 to 1 000000	D
14100		Vector x	11/9	-1.00000 to +1.00000 (unitless)	к
		x component of the unit vector		(unitiess)	
		perpendicular to the plane of the			
		formed image			
14200	CG IDPNUVY	Image Display Plane Normal Unit	N/9	-1.000000 to +1.000000	R
		Vector, y		(unitless)	
		y component of the unit vector			
		perpendicular to the plane of the			
		formed image.			
14300	CG_IDPNUVZ	Image Display Plane Normal Unit	N/9	-1.000000 to +1.000000	R
		Vector, z		(unitless)	
		z component of the unit vector			
		perpendicular to the plane of the			
		formed image.			
14400	CG_SCECN_X	Scene Center (Image Output	N/13	<u>+</u> 999999999999999999999999999999999999	R
		Reterence Point), x in ground plane		or	
		Output Reference Point, x		<u>+</u> 0089.9999999 (deg)	
		coordinate.			
		If index 12/00 has ECEF or XYZSC			
		use meters, if WGS84 use degrees.			
		+mmmmmmmmmmm or			
	1	<u>+</u> aaaa.aaaaaaa			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
14500	CG SCECN Y	Scene Center (Image Output	N/13	+999999999999999999999 (meters)	R
		Reference Point), v in ground plane			
		Output Reference Point, v		+0179.9999999 (deg)	
		coordinate.		_ (0)	
		If index 12700 has ECEF or XYZSC			
		use meters, if WGS84 use degrees.			
		+mmmmmmmmmmm or			
		<u>+</u> dddd.dddddd			
14600	CG_SCECN_Z	Scene Center (Image Output	N/13	<u>+</u> 99999999999999	R
		Reference Point), z		(meters)	
		Output Reference Point, z			
		coordinate.			
		+mmmmmmmmmmmm			
14700	CG_SC_CONF_X	Scene Center 95% Confidence	N/6	000.00 to 999.99 (meters)	R
	Y	States the 95% confidence at the			
		scene center horizontal measurement			
		(ground plane) as a circular error			
		distance. mmm.mm			
14800	CG_SC_CONF_Z	Scene Center 95% Confidence	N/6	000.00 to 999.99 (meters)	R
		States the 95% confidence at the			
		scene center vertical measurement as			
		a Linear error distance. mmm.mm			
14900	CG_SWWD	Swath Width	N/8	00000.00 to 99999.99	R
		Range width for a SAR strip map or		(meters)	
		scan mode. The refers to the slant			
		plane image segment and patch			
		width in the range direction. If frame			
		image, value equals range width.			
15000	CC CNIVEL V	nininininin Sanaan Naminal Valaaita ay	NJ/10		D
15000	CG_SNVEL_A	<u>Sensor Nominal Velocity, x</u>	IN/10	<u>+</u> 999999.999 (III/sec)	ĸ
		at the sensor reference point			
		+mmmmmmmmm			
15100	CG SNVEL Y	Sensor Nominal Velocity y'	N/10	$\pm 9999999999 (m/sec)$	R
15100	CO_DITVEE_1	v component of the sensor velocity	10/10	<u>-</u>))))))(III/300)	ĸ
		at the sensor reference point			
		+mmmmmmmm			
15200	CG SNVEL Z	Sensor Nominal Velocity, z'	N/10	+99999.999 (m/sec)	R
		z component of the sensor velocity		<u> </u>	
		at the sensor reference point.			
		+mmmmmmmm			
15300	CG SNACC X	Sensor Nominal Acceleration x"	N/10	$(00,00000,(m/sa2^2))$	R
		x component of the sensor		<u>+</u> 99.999999 (III/sec)	
		acceleration at the sensor reference			
		point. <u>+</u> mmmmmmmm			
15400	CG_SNACC_Y	Sensor Nominal Acceleration y"	N/10	$+99,999999,(m/sec^2)$	R
		y component of the sensor		<u>-</u> (III/SCC)	
		acceleration at the sensor reference			
		point. <u>+</u> mmmmmmmm			
15500	CG_SNACC_Z	Sensor Nominal Acceleration z"	N/10	$+99,9999999 (m/sec^2)$	R
		z component of the sensor		<u> </u>	
		acceleration at the sensor reference			
		point. <u>+</u> mmmmmmmm			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
15600	CG_SNATT_ROL L	Sensor Nominal Attitude Roll Sensor angular attitude around the nominal velocity vector at the sensor reference point (e.g. aperture center). <u>+</u> ddd.ddd Default = -99999999 = NA = Not Applicable	N/8	<u>+</u> 179.999 (deg) or -9999999	<r></r>
15700	CG_SNATT_PITC H	Sensor Nominal Attitude Pitch Sensor angular attitude around the pitch axis at the sensor reference point. \pm ddd.ddd Default = -9999999 = NA = Not Applicable	N/8	<u>+</u> 179.999 (deg) or -9999999	<r></r>
15800	CG_SNATT_YAW	Sensor Nominal Attitude Yaw Sensor angular attitude around the yaw axis at the sensor reference point (e.g. aperture center). <u>+</u> ddd.ddd Default = -9999999 = NA = Not Applicable	N/8	<u>+</u> 359.999 (deg) or -9999999	$\langle R \rangle$
15900	CG_GTP_X	<u>Geoid Tangent Plane Normal, x</u> x component of the unit vector perpendicular to the reference geoid (reference geoid WGS84) at the output reference point. Default = 000000000	N/9	-1.000000 to +1.000000 (unitless) or 000000000	<r></r>
16000	CG_GTP_Y	<u>Geoid Tangent Plane Normal, y</u> y component of the unit vector perpendicular to the reference geoid (reference geoid WGS84) at the output reference point. Default = 000000000	N/9	-1.000000 to +1.000000 (unitless) or 000000000	$\langle R \rangle$
16100	CG_GTP_Z	<u>Geoid Tangent Plane Normal, z</u> z component of the unit vector perpendicular to the reference geoid (reference geoid WGS84) at the output reference point. Default = 000000000	N/9	-1.000000 to +1.000000 (unitless)	

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
16200	CG MAP TYPE	Mapping Coordinate	A/4	GEOD	R
		Type of mapping coordinate used		MGRS	
		This list is extensible through the		NA	
		document custodian			
		GFOD = GFOgraphic Decimal			
		degrees			
		Latitude/Longitude (deg)			
		Note: Field indexes 16300 through			
		17400 only appear when			
		CG MAP TYPE (Index 16200) has			
		value GEOD (133 bytes)			
		MGRS – Military Grid Reference			
		System UTM (Universal Transverse			
		Mercator) expressed in MGRS uses			
		the format:			
		zzBIKeeeeeennnnnn where			
		" zzBIK" represents the zone band			
		and 100 km square with in the zone			
		and "eeeeeee' and "nnnnnnn"			
		represent residuals of easting and			
		northing			
		NA = Not Applicable			
		Note: Field indexes 17500 – 18100			
		only appear when CG_MAP_TYPE			
		(Index 16200) has value MGRS			
		(133 hytes)			
		NOTE: 133 space characters if fields			
		can not be populated			
NOT	E: Field indexes 1630	through 17400 only appear when CG.	MAD TVI	PE (Index 16200) has value GE(מר
16200	CG DATCH I AT	Latitude of the Patch Contor	N/11	+ 80 0000000 (dog)	<u>л.</u>
10500	CEN	Latitude of the patch image conter	19/11	<u>+</u> 69.9999999 (deg)	C
		Latitude of the paten image center			
		\pm uu.uuuuuuu See section 17.5.1.2 for natch			
		definition			
16400	CC DATCH INC	Longitude of the Datah Contor	N/12	170 000000 (dag)	C
10400	CG_PAICH_LNG	Longitude of the patch image conter	IN/12	<u>+</u> 179.99999999 (deg)	C
	CEN	Longitude of the patch image center			
		\pm			
		definition			
16500	CC DATCH ITC	Latitude of the Datab Cormer upper	NI/11	180,000000 (dog)	C
10500		Lattude of the Fatch Corner, upper	11/11	<u>+</u> 07.7777777 (deg)	C
	UKUL				
		\pm uu.uuuuuuu See section 17.5.1.2 for potch			
		definition			
16600	CC DATCH LCC	Longitude of the Detah Corner	N/12	170 000000 (dag)	C
10000	OPUT	upper left	1N/12	<u>+</u> 1/9.9999999 (deg)	C
	OKUL				
		\pm uuu.uuuuuuu Saa saation 17512 for notoh			
		definition			
		demittion			
INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
---	--	---------------------------------------	---------------	---	------
16700	CG_PATCH_LTC	Latitude of the Patch Corner, upper	N/11	<u>+</u> 89.9999999 (deg)	С
	ORUR	right		_	
		+dd.dddddd			
		See section 17.5.1.2 for patch			
		definition			
16800	CG_PATCH_LGC	Longitude of the Patch Corner,	N/12	<u>+</u> 179.9999999 (deg)	С
	ORUR	<u>upper right</u>			
		<u>+</u> ddd.dddddd			
		See section 17.5.1.2 for patch			
1 -0 0 0		definition			~
16900	CG_PATCH_LTC	Latitude of the Patch Corner, lower	N/11	<u>+</u> 89.9999999 (deg)	С
	ORLR	right			
		$\pm aa.aaaaaaaa$			
		definition			
17000	CG PATCH LCC	Longitude of the Patch Corner	N/12	±170,0000000 (deg)	C
17000	ORLR	lower right	11/12	<u>-</u> 179.999999 (deg)	C
	ORLA	+ddd dddddd			
		See section 17.5.1.2 for patch			
		definition			
17100	CG PATCH LTC	Latitude of the Patch Corner, lower	N/11	+89.9999999 (deg)	С
	ORLL	left		_	
		+dd.dddddd			
		See section 17.5.1.2 for patch			
		definition			
17200	CG_PATCH	Longitude of the Patch Corner,	N/12	<u>+</u> 179.9999999 (deg)	С
	_LNGCOLL	lower left			
		<u>+</u> ddd.dddddd			
		See section 17.5.1.2 for patch			
17200		definition	N1/0	000000000000000000000000000000000000000	G
17300	CG_PATCH_LAT	Latitude 95% Confidence	N/9	000000000 to 9.9999999	C
	_CONFIDENCE	The accuracy at the 95% confidence		(deg)	
		interval of the patch latitude			
17400	CC DATCH LON	Ineasurement.	NI/0	0.000000 +- 0.000000	C
17400	C CONFIDENCE	<u>Longitude 95% Confidence</u>	IN/9	(dag)	C
	O_CONTIDENCE	interval of the patch longitude		(deg)	
		measurement			
NOTE: Field indexes 17500 through 18100 only appear when CG_MAP_TYPE (Index 16200) has value MGRS					RS
17500	CG MGRS CENT	MGRS Image Center	A/23	zzBJKeeeeeeeeennnnnnnn	C
17600	CG MGRSCORU	MGRS Image Upper Left Corner	A/23	zzBJKeeeeeeeennnnnnnn	C
	L				-
17700	CG_MGRSCORUR	MGRS Image Upper Right Corner	A/23	zzBJKeeeeeeeennnnnnnn	С
17800	CG_MGRSCORLR	MGRS Image Lower Right Corner	A/23	zzBJKeeeeeeeennnnnnnn	С
17900	CG_MGRCORLL	MGRS Image Lower Left Corner	A/23	zzBJKeeeeeeeennnnnnnn	С
18000	CG_MGRS_CONF	MGRS 95% Confidence	N/7	0000.00 to 9999.99 (meters)	С
	IDENCE	The accuracy at the 95% confidence			
		interval of the MGRS measurement			
		mmmm.mm			
18100	100 CG_MGRS_PAD <u>MGRS Blank Padding</u> fills MGRS		A/11	ASCII spaces	C
		conditional portion to same length as			
		the Lat/Long conditional			

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
NOTE: Field index 18150 only appears when CG MAP TYPE (Index 16200) has value NA.					
18150	CG_MAP_TYPE_	Blank fill if GEOD or MGRS are	A/133	133 spaces	С
	BLANK	Not Applicable.			
18200	CG_SPARE_A	Spare alpha field	A/144	Space	<r></r>
		Blank fill			
18300	CA_CALPA	Radiometeric Calibration Parameter	N/7	nnnnnn	<r></r>
		System specific radiometric		0.00000 to 999.999	
		calibration parameter.		or	
		Default = 0000000		0000000	_
18400	WF_SRTFR	Chirp Start Frequency	N/14	000000000000.0 to	R
		Beginning frequency of transmitted		99999999999999999999999999999999999999	
		linear chirp signal.			
10500		ННННННННННН.Н	27/14	000000000000	
18500	WF_ENDFR	Chirp End Frequency	N/14	00000000000000000000000000000000000000	R
		Ending frequency of transmitted		9999999999999999(HZ)	
18600	WE CUDDT	Chim Pata	N/10		D
18000	WI-CHIKEKI	The ramp frequency of the linear FM	11/10	<u>+</u> 99.999999 (MHz/msec)	K
		chirp signal		(WHIZ/INSEC)	
		+MM MMMMMM		00000000	
		000000000 = nonchirp signal		000000000	
18700	WF WIDTH	Pulsewidth	N/9	0.000000 to 0.9999999	R
10,00		Length of out going linear chirp	10,2	(sec)	
		pulses.			
		S.SSSSSSS			
18800	WF_CENFRQ	Center frequency	N/13	0000000000.0 to	R
	-	Center frequency of the transmitted		99999999999999 (Hz)	
		linear chirp signal.			
		НННННННННН.Н			
18900	WF_BW	Chirp Bandwidth	N/13	0000000000.0 to	R
		Bandwidth of the transmitted linear		99999999999999.9 (Hz)	
		chirp signal.			
10000		ННННННННН.Н			_
19000	WF_PRF	Pulse Repetition Frequency (PRF)	N/7	00000.0 to 99999.9 Hz	R
		Frequency of pulse in the pulse train,			
10100	WE DDI	Dulse Depatition Interval	N/0	0.000000 to 0.00000 see	D
19100	WF_PKI	Interpulse periods	IN/9	0.0000000 to 0.99999999 sec	ĸ
		- 1/DPE			
19200	WF CDP	Coherent Data Period Indicates the	N/7	000.000 to 100.000 sec	R
1,200		duration of the SAR imaging			
		operation i.e. how long the radar			
		beam painted the target.			
		SSS.SSS			
19300	WF_NUMBER_O	Number of Pulse The maximum	N/9	2 to 999999999	R
	F_PULSES	number of pulses used to form this			
		image.			

STDI-0002, VERSION 2.1, 16 November 2000

INDEX	FIELD	FIELD NAME AND DESCRIPTION	SIZE BYTES	VALUE RANGE	TYPE
19400	VPH_COND	The field is used to determine	A/1	Ν	R
		whether VPH is included in this			
		<u>support data tag.</u>			
		Y = Yes, VPH conditional fields			
		will be present			
		N = N, if VPH conditional fields			
		will be not present			

17.8 ANNEX A: DEFINITIONS FOR MAGNITUDE IMAGERY PIXEL VALUE REPRESENTATION BASED ON COMPLEX I AND Q VALUES.

Power = **Intensity** = $I^2 + Q^2$ can be 32-bit Integer or Floating Point

Voltage = **Amplitude** = $\sqrt{I^2 + Q^2}$ can be 16-bit integer or 32-bit Floating Point

A pixel **Magnitude** is either an amplitude or an intensity scaled to minimize pixel oversaturation (pixels at highest display level) and pixel under saturation (pixels at the lowest display level) when mapped into an unsigned (normally 8-bit) integer for display. **Scaling** applies a multiplication factor to the image or image block by a value chosen to maximize best use of the pixel value type's dynamic range while minimizing pixel over- and under- saturation. Scaling may be linear, logarithmic, or a combination (linlog). For lin-log, a transition point (pixel value) from linear to logarithmic representation is chosen to optimize the qualities (e.g., display) while maximizing pixels in the linear region and minimizing pixel over- and under- saturation.

The following are descriptive examples for calculating the magnitude imagery pixel values for Linear Magnitude, Linear Power, Log Magnitude, Log Power, and Lin-Log Magnitude. Actual implementations may vary.

Linear Magnitude (LINM)

$$LINM = Amplitude = \sqrt{I^2 + Q^2}$$

If LINM is outputted in N-bit unsigned integer notation and the computations were performed in IEEE 32-bit floating point notation, then

$$LINM = INT (Lin _Scale _Factor \sqrt{I^2 + Q^2})$$

where

Lin_Scale_Factor for linear magnitude is the normalization factor for the conversion and is provided in IEEE 32-bit floating point. A typical scale factor is

$$Lin _Scale _Factor = \frac{2^{N} - 1}{M_{pk}}$$

 M_{pk} is the peak magnitude of the image block.

Linear Power (LINP)

$$LINP = Intensity = I^2 + Q^2$$

If LINP is outputted in N-bit unsigned integer notation and the computations were performed in IEEE 32bit floating point notation, then

$$LINP = INT[Lin _Scale _Factor(I^2 + Q^2)]$$

where Scale_Factor for linear power is the normalization factor for the conversion and is provided in IEEE 32-bit floating point. A typical scale factor is

$$Lin_Scale_Factor = \frac{2^{N} - 1}{P_{pk}}$$

 P_{pk} is the peak power of the image block.

Log Magnitude (LOGM)

There are various methods to computing the log magnitude so that its output is in N-bit unsigned integer notation. In general, the log magnitude can be computed by

$$LOGM = INT \left[\frac{20 \log_{10} (LINM)}{DBperSTEP} \right]$$

limit: 0 = LOGM = 2^N-1

where

LINM is the linear magnitude, and DBperSTEP is the number of decibels per output step.

The ASARS-2 system uses the above form of the LOGM algorithm to remap LINM 32768 levels into 240 gray levels. Gray level "bins" are determined as follows:

dB/bin = DBperSTEP = 20*log10(32768)/240 = 0.376288 (or approximately 3/8 dB per step).

Log Power (LOGP)

Similar to LOGM, if power is available, the log power in N-bit unsigned integer notation can be computed by

$$LOGP = INT \left[\frac{10 \log_{10} (LINP)}{DBperSTEP} \right]$$

limit: $0 \le \text{LOGP} \le 2^{N}-1$

where

LINP is the linear power, and DBperSTEP is the number of decibels per output step.

Lin-Log Magnitude (LLM)

There are various algorithms to calculate lin-log magnitude. The form of the lin-log magnitude equation in general use is:

For pixel value < Transition Point,

Lin-Log Magnitude =
$$LINM = INT (Lin _Scale _Factor \sqrt{I^2 + Q^2})$$

For pixel value \geq Transition Point,

Lin-Log Magnitude =
$$LOGM = INT \left[\frac{20 \log_{10}(LINM)}{DBperSTEP} \right]$$

Where the Transition Point is 117.

STDI-0002, VERSION 2.1, 16 November 2000

COMPLEX SAR DATA FORMAT INITIATIVE (CDFI), VERSION 1.31C, 1 SEPTEMBER 2000

Another form of the lin-log magnitude equation is

Lin-Log Magnitude = $17 \log_2 (\text{LINM}) = 56.4728 \log_{10} (\text{LINM})$.

For this form, the Lin_Scale_Factor used to calculate LINM is picked to drive the average image power to the range $300 < Avg_Power < 4000$, where 2000 is currently specified for lin-log magnitude imagery.

Phase

is the four quadrant $\arctan(Q/I)$ over the range of 0 to 2π radians. Phase may be represented by a real (32bit floating-point) value type, or by an n-bit unsigned integer. If the data type is integer we restrict phase to unsigned because there is only one pixel value type (PVTYPE) field in the NITF image subheader. Hence, in the magnitude/phase mode, the PVTYPE must be set to 'INT' versus 'SI' since magnitude is always unsigned. For floating point ('R'), phase can be signed. Note that when the 'C' mode is specified, the complex data type is I, Q interleaved with a 32-bit floating point value per component. Otherwise, PVTYPE will be set to 'INT' or 'R', and the complex format is specified by CMETAA fields. Note that CMETAA overrides the size of the 'INT' field from a fixed 16 bits. In the integer mode, one way phase may be scaled is by using an n-bit uniform scalar quantizer which divides the 2π radians of phase into 2^{n} quanta, each $\frac{2 \mathbf{p}}{2^{\pi}}$ radians. This quantizer is denoted 'UQ1' in the CMPLX_PHASE_QUANT_FLAG in CMETAA. For example, an 8-bit USQ represents phase by 256 quanta, each $\frac{\mathbf{p}}{128}$ radians. Another way (UQ2) phase may be scaled is centering the steps $\frac{2 \mathbf{p}}{2^{\pi}}$ over the 2^{n} quanta. Thus, for the 8-bit example, in UQ1, a step value of 0 corresponds to phase in the range from 0 to $\frac{\mathbf{p}}{128}$ radians, while in UQ2, a step value of 0 corresponds to phase in the range from $-0.5* \frac{\mathbf{p}}{128}$ radians to $0.5* \frac{\mathbf{p}}{128}$ radians.

dB: The decibel relationship between amplitude and intensity is:

 $20 \log_{10} (\text{Amplitude}) = 10 \log_{10} (\text{Intensity}).$

Definitions for Complex Imagery Weighting

Spatially Variant Apodization (SVA)

SVA is a sidelobe reduction technique that applies a windowed (e.g., 3×3 or 5×5) convolution test to the complex image. Sidelobe reduction techniques based on the convolution test results are applied to each region tested and vary spatially.

Taylor Weights

Applied to I, Q data. Data is later converted to M, P in some systems.

The discrete Taylor window is specified by three parameters N, \overline{n} , and SLL where:

- N is the number of coefficients in the Taylor window;
- $\overline{\mathbf{n}}$ is the number of nearly constant-level sidelobes adjacent to the mainlobe;
- SLL is the peak sidelobe level (in dB) relative to the mainlobe peak.

Typical choices for values are SLL=-30 dB with \overline{n} =4 and SLL = -35 dB with \overline{n} =5, with N dictated by the number of range or azimuth signal history samples being processed. The weights are computed as follows:

W(n) = 1 + 2
$$\sum_{m=1}^{\overline{n}-1} F_m \cos\left[\frac{2\pi m(n-N/2+0.5)}{N}\right]$$
 for n = 0, 1, ..., N-1.

F_m are cosine weights determined by

$$F_{m} = \frac{(-1)^{(m+1)} \prod_{i=1}^{n-1} \left[1 - \frac{m^{2}/\sigma^{2}}{A^{2} + (i-0.5)^{2}} \right]}{2 \prod_{\substack{j=1\\ j \neq m}}^{n-1} \left(1 - \frac{m^{2}}{j^{2}} \right)}$$

where

A =
$$\frac{\ln \left(B + \sqrt{(B^2 - 1)}\right)}{\pi}$$
, B = $10^{\frac{SLL}{20}}$, and $\sigma^2 = \frac{\overline{n}^2}{A^2 + (\overline{n} - 0.5)^2}$

The computational procedure requires $\overline{n} \ge 2 A^2 + 0.5$

Hanning, Hamming, Unweighted Weights

W(n) = 1 - 2w cos
$$\left(\frac{2\pi n}{N}\right)$$
 for n = 0, 1, ..., N-1

Where Unweighted:
$$w = 0$$

Hanning: w = 0.5

Hamming: w = 0.42

Note: The terms "Range and Azimuth" refer to the two dimensions of the image or image block and may be interchanged with "Range and Doppler", "Range and Cross-Range", "Track and Cross-Track" and "Scan and Cross-Scan" as appropriate.

STDI-0002, VERSION 2.1, 16 November 2000

COMPLEX SAR DATA FORMAT INITIATIVE (CDFI), VERSION 1.31C, 1 SEPTEMBER 2000

17.9 ANNEX B: DOCUMENTS REFERENCED BY THIS SPECIFICATION

MIL-STD-2500B, National Imagery Transmission Format Version 2.1

International Standard ISO/IEC 12087-5, Basic Image Interchange Format (BIIF)

Glossary of the Mapping Sciences

Prepared and published by a Joint Committee of the American Society of Civil Engineers, American Congress on Surveying and Mapping and the American Society for Photogrammetry and Remote Sensing.

ISBN 1-57083-011-8 ISBN 0-7844-0050-4 TA505.G57 1994 94-30078 525'.03---dc20 CIP

Note: The following geometry coordinate systems are located under different names:

XYZSC look under Coordinate System, Rectangular

ECEF look under Coordinate System, Earth Fixed

Index Number	Field Name	Field Description
8100	AF_TYPE1	First Autofocus Iteration
8200	AF TYPE2	Second Autofocus Iteration
8300	AF TYPE3	Third Autofocus Iteration
18300	CA CALPA	Radiometeric Calibration Parameter
12800	CG AMPT X	Aimpoint of Antenna, x (Illum, Ref Pt.)
12900	CG AMPT Y	Aimpoint of Antenna, v (Illum, Ref Pt.)
13000	CG_AMPT_Z	Aimpoint of Antenna, z (Illum. Ref Pt.)
13100	CG AP CONF XY	Aimpoint 95% Confidence
13200	CG_AP_CONF_Z	Aimpoint 95% Confidence
13300	CG_APCEN_X	Sensor Reference Point (x)
13400	CG_APCEN_Y	Sensor Reference Point (y)
13500	CG_APCEN_Z	Sensor Reference Point (z)
13600	CG_APER_CONF_XY	Sensor Reference Point 95% Confidence
13700	CG_APER_CONF_Z	Sensor Reference Point Center 95% Confidence
10800	CG_CAAC	Cone Angle at Sensor Reference Point (e.g. apertureR
		Reference point)
10900	CG_CONE_CONFIDENCE	Cone Angle 95% Confidence
10600	CG_CROSS	Cross Track Range at Sensor Reference Center (e.g.
		ApertureCenter)
10700	CG_CROSS_CONFIDENCE	Cross Track Range at Sensor Reference Center 95%
		Confidence Interval (e.g. Aperture Reference Point)
12100	CG_EAST	East Relative to the Top Image Edge
13800	CG_FPNUV_X	Focus Plane Normal Unit Vector, x
13900	CG_FPNUV_Y	Focus Plane Normal Unit Vector, y
14000	CG_FPNUV_Z	Focus Plane Normal Unit Vector, z
11300	CG_GAAC	Grazing Angle at Sensor Reference Point Center (e.g.
		apertureCenter)
11400	CG_GAAC_CONFIDENCE	Grazing Angle at Sensor Reference Point Center 95%
		Confidence
11000	CG_GPSAC	Ground Plane Squint Angle
11100	CG_GPSAC	Squint Angle 95% Confidence
15900	CG_GTP_X	Geoid Tangent Plane Normal, x
16000	CG_GTP_Y	Geoid Tangent Plane Normal, y
16100	CG_GTP_Z	Geoid Tangent Plane Normal, z
14100	CG_IDPNUVX	Image Display Plane Normal Unit Vector, x
14200	CG_IDPNUVY	Image Display Plane Normal Unit Vector, y
14300	CG_IDPNUVZ	Image Display Plane Normal Unit Vector, z
11500	CG_INCIDENT	Incidence angle
12400	CG_LAYOVER	Layover Angle
11800	CG_LD	Look Direction
12300	CG_LOS_CONFIDENCE	Range LOS 95% Confidence
16200	CG_MAP_TYPE	Mapping Coordinate
17900	CG_MGRCORLL	MGRS Image Lower Left Corner
17500	CG_MGRS_CENT	MGRS Image Center
18000	CG_M RS_CONFIDENCE	MGRS 95% Confidence
18100	CG_MGRS_PAD	MGRS Blank Padding
17600	CG_MGRSCORLR	MGRS Image Lower Right Corner
17000		MCDS Image Upper Left Corner
12700		Nominal Geometry Peference
12/00		North Deletive to the Ten Lange Edge
12000	CC_NORTH_CONFIDENCE	North Angle 05% Confidence
12000		Out of Plane Motion
12000	CC DATCH LAT CONFIDENCE	Latitude 05% Confidence
16300	CG PATCH LATCEN	Latitude of the Datch Center
17000	CG PATCH I GCORI P	Longitude of the Patch Corper Jower Right
16600	CG PATCH LGCORU	Longitude of the Patch Corner, upper left
10000	CO_INICH_LOCOROL	Estimate of the futer corner, upper fert

17.10 ANNEX C: CMETAA FIELDS NAMES PRESENTED ALPHABETICALLY

16800	CG_PATCH_LGCORUR	Longitude of the Patch Corner, upper Right
16400	CG_PATCH_LNGCEN	Longitude of the Patch Center
17200	CG_PATCH_LNGCOLL	Longitude of the Patch Corner, lower left
17400	CG_PATCH_LONG_CONFIDENCE	Longitude 95% Confidence
17100	CG_PATCH_LTCORLL	Latitude of the Patch Corner, lower left
16900	CG_PATCH_LTCORLR	Latitude of the Patch Corner, lower Right
16500	CG PATCH LTCORUL	Latitude of the Patch Corner, upper left
16700	CG PATCH LTCORUR	Latitude of the Patch Corner, upper Right
12200	CG RLOS	Range LOS Rel the Top Image Edge
14700	CG SC CONF XY	Scene Center 95% Confidence
14800	CG SC CONF Z	Scene Center 95% Confidence
14400	CG SCECN X	Scene Center (Image Output Reference Point) x in ground
14400	co_belen_x	nlane
14500	CG SCECN V	Scane Center (Image Output Deference Doint) win ground
14500	CO_SCHON_1	plana
14600	CC SCECN 7	Plane
14600	CG_SULADOW	Scene Center (Image Output Reference Point), 2
12500	CG_SHADOW	Shadow Angle
10500	CG_SLANT_CONFIDENCE	Slant Range 95% Confidence Interval
11600	CG_SLOPE	Slope angle
15300	CG_SNACC_X	Sensor Nominal Acceleration x"
15400	CG_SNACC_Y	Sensor Nominal Acceleration y"
15500	CG_SNACC_Z	Sensor Nominal Acceleration z"
15700	CG_SNATT_PITCH	Sensor Nominal Attitude Pitch
15600	CG_SNATT_ROLL	Sensor Nominal Attitude Roll
15800	CG_SNATT_YAW	Sensor Nominal Attitude Yaw
15000	CG SNVEL X	Sensor Nominal Velocity, x
15100	CG SNVEL Y	Sensor Nominal Velocity, y'
15200	CG SNVFL Z	Sensor Nominal Velocity, 7'
18200	CG SPARE A	Spare alpha field Blank fill
11200	CG SOUNT	Slant Plane Squint Angle
10400		Slant Plance at Sensor Deference Center
14000	CC_SWWD	Sugth Width
14900		Tilt on als
11/00		
1100	CMPLA_AVG_POWER	Average Power
2100	CMPLX_AZ_SLL	Azimuth (AZ) Sidelobe Level
2300	CMPLX_AZ_TAY_NBAR	Azimuth Taylor nbar
800	CMPLX_DOMAIN	Complex Domain
1600	CMPLX_IC_1	Data Compression of First Pixel Component
1800	CMPLX_IC_2	Data Compression, second pixel Component
1900	CMPLX_IC_BPP	Complex Imagery Compressed Bits per Pixel
1000	CMPLX_LIN_SCALE	Complex Linear Scale Factor
1200	CMPLX_LINLOG_TP	Complex LinLog Transition Point
900	CMPLX_MAG_REMAP_TYPE	Type of Magnitude Mapping applied to M pixel Component
		values
1400	CMPLX PHASE QUANT BIT DEPTH	Phase Quantization Bit Depth
1300	CMPLX PHASE QUANT FLAG	Phase Quantization Flag
2200	CMPLX RNG SLL	Range (RNG) Sidelobe Level
2400	CMPLX RNG TAY NBAR	Range Taylor nbar
2600	CMPLX SIGNAL PLANE	Plane of the Complex image
1500	CMPLX_SIZE_1	Size of First Pixel Component in Bits
1700	CMPLX SIZE 2	Size of Second Pixel Component in Bits
2000	CMPLX_WEIGHT	Type of Weighting applied to data
2500	CMDLY WEIGHT NODM	Complex Weight Normalization function for Taular
2500	CMPLA_WEIGH1_NORM	weighting
7200	IF_AFFTS	FFT Sign Convention in Azimuth (e.g. along track)
6400	IF_AZFFT_SAMP	Original Azimuth (e.g. along track) FFT Non-zero Input
6600	IE AZEET TOT	Total Azimuth (e.g. along track) FFT Longth
5800		Agimuth Desolution (e.g. along track) FF1 Length
3800	IF_AZKES	Azimuth Kesolution (e.g. along track)
0200		AZIIIIIIIII Sample Kate (samples/Commanded IPR)
(000		
6000	IF_AZSS	Azimuth Sample Spacing, (e.g. along track)

3800	IF_DC_IS_COL	Sample Location of DC
3700	IF_DC_IS_ROW	Sample Location of DC
2800	IF_DC_SF_COL	Sample Location of DC
2700	IF_DC_SF_ROW	Sample Location of DC
5400	IF_GEODIST	Other Deterministic Geometric Distortion Corrections
4000	IF_IMG_COL_DC	Column Location of Patch (IM)
3900	IF_IMG_ROW_DC	Row Location of Patch (IM)
7400	IF INCPH	Increasing phase
5100	IF KEYSTN	Range Curvature and Keystone Distortion Correction
5200	IF LINSET	Residual Linear Shift Correction
3000	IF PATCH 1 COL	Sample Location of the signal Corner in the Column
5000	II _I // I CII_I_COL	dimension upper left
2000	IF DATCH 1 DOW	Sample Location of the signal Corner in the Pow dimension
2700	II_IATCII_I_KOW	sample Elocation of the signal Corner in the Row dimension,
2200	IE DATCH 2 COL	Somple Leastion of the signal Comparin the Column
5200	IF_PATCH_2_COL	Sample Location of the signal Corner in the Column
2100		dimension, upperk Right
3100	IF_PAICH_2_ROW	Sample Location of the signal Corner in the Row dimension,
		upperR Right
3400	IF_PATCH_3_COL	Sample Location of the signal Corner in the Column
		dimension, bottomR Right
3300	IF_PATCH_3_ROW	Sample Location of the signal Corner in the Row dimension,
		bottomR Right
3600	IF_PATCH_4_COL	Sample Location of the signal Corner in the Column
		dimension, bottom left
3500	IF_PATCH_4_ROW	Sample Location of the signal Corner in the Row dimension,
		bottom left
400	IF_PROCESS	VPH Processing Method
7300	IF RANGE DATA	Range Data Range (e.g. Cross-scan, Cross-track)
4900	IF RD	Range Deskew
6300	IF REFT SAMP	Original Range (e.g. Cross scan, Cross-track)
6500	IF REFT TOT	Total Range (e.g. Cross scan, Cross-track)
7100	IF REFTS	FFT Sign Convention in Range (e.g. Cross scan, Cross-
/100	II _KI I IS	track)
5500	IE PGEO	Pange Fall off Correction (Sensitivity Time Control)
5700		Range Fail-off Conection (Sensitivity Time Control)
5700	IF_KUKES	Dange Wells Correction
5000		
6100	IF_KSR	Range Sample Rate (samples/Commanded IPR)
5900	IF_RSS	Range Sample Spacing (e.g. Cross track, Cross scan)
8000	IF_SR_AMOUNT1	Amount or Factor of Super Resolution Applied to the Image,
		1 st Iteration
7600	IF_SR_AMOUNT2	Amount or Factor of Super Resolution Applied to the Image,
		2 nd Iteration
7800	IF_SR_AMOUNT3	Amount or Factor of Super Resolution Applied to the Image,
		3 rd Iteration
7500	IF_SR_NAME1	Super Resolution Algorithm Name, First Iteration
7700	IF_SR_NAME2	Super Resolution Algorithm Name, Second Iteration
7900	IF SR NAME3	Super Resolution Algorithm Name. Third Iteration
7000	IF SUB AZ	Subpatch Counts, Azimuth, (e.g. along track)
6900	IF SUB RG	Subpatch Counts, Range, (e.g. Cross scan, Cross-track)
6800	IF SUBP COL	Sub-patch Size, Column (Azimuth Direction)
6700	IF SUBP ROW	Sub-patch Size, Row (Range Direction)
5300	IF SUBPATCH	Sub-natch Phase Correction
4200		Sample Legation of valid tile data in the Column direction
4200	IF_IILE_I_COL	Sample Location of valid the data in the Column direction,
4100		
4100	IF_TILE_1_ROW	Sample Location of valid tile data in the Row direction,
1400		upper leit.
4400	IF_TILE_2_COL	Sample Location of valid tile data in the Column direction,
1200		upperK Right.
4300	IF_TILE_2_ROW	Sample Location of valid tile data in the Row direction,
		upperR Right.
1/200		
4600	IF_TILE_3_COL	Sample Location of valid tile data in the Column direction,

4500	IF_TILE_3_ROW	Sample Location of valid tile data in the Row direction,
		lowerR Right.
4800	IF_TILE_4_COL	Sample Location of valid tile data in the Column direction,
		lower left
4700	IF_TILE_4_ROW	Sample Location of valid tile data in the Row direction,
		lower left.
100	NUMBER_TRES	Related TREs Subtag mechanism
8700	POL	Polarimetric Data Set
9800	POL_AFCOMP	Radar Autofocus Phase Balancing
9000	POL_BAL	RCS Gray Level Balancing
9100	POL_BAL_MAG	Pixel Amplitude Balance Coefficient
9200	POL_BAL_PHS	Pixel Phase Balance Coefficient
9300	POL_HCOMP	Radar Hardware Phase Balancing
9400	POL_HCOMP_BASIS	Basis Set
9500	POL_HCOMP_COEF_1	Radar Hardware Phase Balancing
9600	POL_HCOMP_COEF_2	Radar Hardware Phase Balancing
9700	POL_HCOMP_COEF_3	Radar Hardware Phase Balancing
8900	POL_ISO_1	Minimum Polarization Isolation between this image /
		signalChannel and the other Channels
8500	POL_RE	Receive Polarization
8600	POL_REFERENCE	Polarization Frame of Reference
8800	POL_REG	Pixel Registered
9900	POL_SPARE_A	Spare alpha field
10000	POL_SPARE_N	Spare numeric field
8400	POL_TR	Transmit Polarization
500	RD_CEN_FREQ	Nominal Center Frequency Band
600	RD_MODE	Collection Mode
700	RD_PATCH_NO	Data Patch Number Field
300	RD_PRC_NO	Processor Version Number
200	RELATED_TRES	Name of Additional TRE
10300	T_HHMMSSLOCAL	Civil Time of Collection
10200	T_HHMMSSUTC	UTCHHMMSS The UTC hours, minutes and seconds
10100	T_UTC_YYYYMMMDD	YYYYMMMDD The 4 digit year, letter
		month and Universal Time Coordinated
		(UTC) date
18900	WF BW	Chirp Bandwidth
19200	WF CDP	Coherent Data Period
18800	WF CENFRO	Center frequency
18600	WF CHRPRT	Chirp Rate
18500	WF_ENDFR	Chirp End Frequency
19300	WF NUMBER OF PULSES	Number of Pulses
19000	WF_PRF	Pulse Repetition Frequency (PRF)
19100	WF_PRI	Pulse Repetition Interval
18400	WF_SRTFR	Chirp Start Frequency
18700	WF_WIDTH	Pulsewidth Length