Exercise 10: Analyzing Attribute Data in PGAdmin and QGIS Part 1

Table of Contents

1. Intro-fossgis-umass	1
1.1. Author Attribution	1
1.2. Module Licensing Information	1
1.3. Reviewed by	1
2. Analyzing attribute data in PGAdmin and QGIS (Part I: SELECT statements)	2
2.1. Prerequisites	2
2.2. Introduction	2
2.3. SQL	2
SQL: Connecting to the database	3
SQL: Staring the Query Tool	5
Select Statement	6
Conclusion	
Additional materials	

1. Intro-fossgis-umass

1.1. Author Attribution

Major contributors to this curriculum include (alphabetical):

Maria Fernandez

Michael Hamel

Quentin Lewis

James Peters

Charlie Schweik

Alexander Stepanov

1.2. Module Licensing Information

Version 1.0.

STATERISIATING CONTREPORT

This tutorial is licensed under a Creative Commons Attribution-No Derivative Works 3.0 License (http://creativecommons.org/licenses/by-nd/3.0/). This means that users are free to copy and share this material with others. Requests for creating new derivatives should be sent to the primary author.

1.3. Reviewed by

Michael Hamel

2. Analyzing attribute data in PGAdmin and QGIS (Part I: SELECT statements)

2.1. Prerequisites

This module implies that you:

- 1. Have an Internet connection and
- 2. Have a client program pgAdmin3 [http://pgadmin3.org/] installed or you have PostGIS running on your local machine/network

if not please refer to the module(s) Installing_client_software_to_work_with_SDE [http://linuxlab.sbs.umass.edu/intro-fossgis-umass/index.php?title=Installing_client_software_to_work_with_SDE]

Note for the instructors: text file with SQL statements/demo can be found here

2.2. Introduction

As you remember, GIS data consists of two major (almost non-separatable) components describing objects in space: spatial and attriute component. General datasets, available to you (your organization), can be massive. For purpose of analysis you will need a subset of data to work with, to run your analytical tools over, etc. In this section, we will give you an overview of the tools and methods used for selecting and summarizing such manageble subsets of "general data". You can do analysis of gis data in two major ways:

1. working with spatial elements (polygons, lines, points, regions, etc) or

2. working with the attribute data.

For example, doing some planning analysis, you can try to find all houses located closer than 1 mile to a railroad (spatial query) or to find all houses which were built in a specific year (attribute data query). So we will review the query components used to look at attribute data. To perform this task, we will work with attribute data using SQL language.

2.3. SQL

SQL, which stands for Structured Query Language, was developed in 1970s by IBM and was recognized as a standard language to work with relational databases. There are two standards of the SQL language: SQL92 and SQL99. One of main ideas in relational database theory, is to store information about objects in relations (tables), which comprise of columns (attributes) and rows (records). In addition, the database structure should be designed in such way that tables don't keep repetitive/excessive information and so that information from several tables can be merged. For example, one table can consist of landuse codes and assessor codes for a parcel map. Another table can consist of landuse codes and their descriptions. Such separation avoids keeping landuse code descriptions in the first

table. (We will illustrate this example during this lab session). We can define two subsets of the SQL language; they are Data Definition Language (DDL) and Data Manipulation Language (DML). The first allows you to create tables, set user permissions, etc. The DML is to query data. The most common DML SQL statements are **SELECT**, **INSERT**, **UPDATE** and **DELETE**. We will review these statement in detail.

SQL: Connecting to the database

As you remember from the previous modules, we set a spatial database "TestGIS" on the FossGIS server. This spatial database, which runs with PostgreSQL and PostGIS, consists of several spatial layers: landuse layers for the Towns of Amherst and Hadley and the political boundary layer for Massachusetts. You can connect with QGIS to the PostGIS server to look at the layers. Current abilities of QGIS to work with attribute data are limited, so we will work directly with the PostGIS database using a client application/front-end pgAdminIII. Please start pgAdmin with set connection (if you didn't configure pgAdmin to connect to the FossGIS server please refer to module).

From a list of servers on the left side of the pgAdmin, select lambda.sbs.umass.edu server. Then click on the "TestGIS" database and expand the list of database objects. Click on **Tables** (you will need to expland the objects tree from TestGIS -> Schemas -> Public), to see a list of tables. You can click on a table to see the list of columns (attributes). The following tables:

- ma_lu_amherst
- ma_lu_hadley
- matowns

are the attribute tables of the spatial layers we used: landuse layers for the Towns of Amherst and Hadley, and a layer representing town boundaries for the State of Massachusetts. Other tables containing attribute data are **ma_lu_codes** and **ma_attr_censusblocks**. The table **ma_lu_codes** consists of fields for landuse codes and their description. The second table consists of Census 2000 data. We will start with simple SQL queries to pull/a?alyze some data from these tables.

SQL: Staring the Query Tool

pgAdmin has a special tool for performing SQL queries, called "the Query Tool". To start the tool, select "Tools > **Query Tool**" from the menu or click the sql query tool button on the tool panel (Figure 2).

Figure 2

The new window of the Query Tool will appear (Figure 3). The tool has two major working areas: query input area and sql query output area.

The query input area is an area where you type your SQL queries. Then the query should be run or executed. To run the query, click on the "Execute Query" button, or select "Query > Execute" from the menu bar (a strike of F5 on your keyboard will do the same - execute the query). The results of the SQL statement will be shown in the output area. Let's start with the **SELECT** SQL query.

Select Statement

Perhaps, the SELECT [http://www.w3schools.com/sql/sql_select.asp] statement is the most used among all SQL commands. The purpose of the statement is to generate/retrieve a subset of data. For example, you can select subset of one table, choosing columns/fields and records by specific conditions. Also, you can create a subset of data from several tables, merging them on specific criteria/attributes.

The SQL commands have well defined structure. The syntax for SQL command is presented below:

```
SELECT (ALL/DISTINCT) <column(s) /*>
```

```
FROM table(s)
WHERE <search-condition>
GROUP BY <group-column(s)>
HAVING <search-condition>
ORDER BY <sort-column(s)>
```

The basic SELECT SQL command starts with "SELECT ... FROM" and then you can elaborate the query adding logical conditions with the WHERE clause, as well as group or sort data with "GROUP BY" and "ORDER BY" clauses. We will start with the simplest form of SELECT statement and then will move gradually to more sophisticated statements.

Example 1

To illustrate the basic SQL statement, let's retrieve **all** data from the table **ma_lu_codes**. We will retrieve all columns/attributes and all records from the table. To perform this operation please type the following command in the input area of the query tool:

```
SELECT *
FROM ma_lu_codes;
```

The asterisk (*) in the statement means "all columns". So this statement **selects** "all columns" (and all records) **from** the table **ma_lu_codes**. After entering the command into the input area of the query tool, execute the query (Figure 4).

1								
File Edi	it View Qu	ery Favourites 🗈 ବ 🥏	Help	💡 🕴 testgis on lambda.sbs.umass.ed. 💌				
SELE	CT * ma_lu_coo	^{les;} . Enter SQ	query here	Scratch pad ×				
			2					
Output p	ane itout custais	()		X				
	code abbrev		2. To run the query - press the "execute query" button					
1	1	AC	or	And the Carl Brook Carl Brook Street Street				
2	2	AP	- select "Query	> Execute query" menu				
3	3	F	or	 Definition of the standard state of the stat				
4	4	FW	- press "F5" ke	ev 🕴				
5	5	м	p	.,				
6	6	0						
7	7	RP	Participation Recrea	tion Golf; tennis; Playgrounds; skiing				
8	8	RS	Spectator Recreatio	n Stadiums; racetracks; Fairgrounds; dr				
9	9	RW	Water Based Recrea	atior Beaches; marinas; Swimming pools				
10	10	RO	Residential	Multi-family				
11	11	R1	Resid 3 Pee	sults of query				
12	12	R2	Resid J. Nes	auto or query				
13	13	R3	Resident are sr	iown nere				
14	14	SW	Salt 🍋 🔤					
15	15	UC	Commercial	General urban; shopping center				

Figure 4

Let's analyze the output of this operation. The results of the SQL operation are presented in the "Output Pane". The output pane contains four tabs: "Date Output", "Explain", "Messages" and "History". The "Date Output" tab shows the results of the query. You may have noted that, in general, results of the SQL query is a relation/table: where a set of columns and records satisfies conditions of the SQL query (Figure 5). Take a moment and check how many columns and records were returned with the query.

Output p Data Ou	utput Explain	Messages History			×
	code integer	abbrev character varying(15)	category character varying(2	definition character varying(255)	^
1	1	AC	Cropland	Intensive agriculture	
2	2	AP	Pasture	Extensive agriculture	

Figure 5

The tab "History" keeps record of all your queries, which were performed during the "Query Tool" session. It shows, for example, the query, time of execution and the the number of records returned (or satisfying selection criteria). In our case, the statement/command returned *37* records. In other words, the table "ma_lu_codes" consists 37 different code definitions (Figure 6).

Output pane	×
Data Output Explain Message History	
Executing query: SELECT * FROM ma_lu_codes; Total query runtime: 140 ms. 37 rows retrieved.	<u>~</u>
Figure 6	

Example 2

In the previous example, we retrieve the whole dataset: all columns and all records. Let's limit our selection to two columns from the table "ma_lu_table". Such selection can be generated with the following SQL query:

SELECT code, category
FROM ma_lu_codes

We use a comma-separated list of columns after the "SELECT" keyword to specify what columns/fields should be retrieved from the whole dataset. Compare this statement with the statement from the previous example. Enter the statement into the input area of the Query tool and run it.

1				
File Ed	lit View Que	ery Favourites Help		
፡ 🗅 🍺	3 🖪 🐰	n n 🖉 🖉 🔊 n	🔎 🕨 🏣 📳 💡 🗄 testgis on lambda.sbs.umass.ed. 🗸	
SELE	ebeo TT	etegory.	Scratch pad	×
FROM	f ma lu cod	les: 🥣		
	70 8 70 8			12
		1	SELECT code, category	<u>×</u>
<	110		FROM maily codes:	2
Output p	bane			×
Data Oi	utput Explain	Messages History		
	code integer	category character var		^
1	1			
2	2	Pasture		
3	3	Forest		
4	4	Wetland		
5	5	Mining		
6	6	Open Land		-
7	7	Participation Rev		
8	8	Spectator Recre	THE QUERT RESULTS:	
9	9	Water Based Re	two columns	
10	10	Residential	37 records	
11	11	Residential		
12	12	Residential		and a second
13	13	Residential		
14	14	Salt Wetland		
15	15	Commercial		
16	16	Industrial		
17	17	Urban Open		
18	18	Transportation	1	
19	19	Waste Disposal		
20	20	Water		
21	21	Woody Perennia	1	
22	22	No Change	1	
23	23	Cranberry bog (L	
24	24	Powerlines (part		
25	25	Salwater sandy		~
ок.			Ln 1 Col 22 Ch 22 (37 rows.)170 r	ms

Figure 7

Results of this query are presented in Figure 7. As you can see the SQL statement returned 2 columns out of 4 and the same number of records: 37.

Example 3: Specifying logical conditions with the WHERE clause

The previous statements returned **all** records from the dataset/table(s). In real application, it means that information on **all** parcels from the landuse layer were retrieved or on **all** books from the library catalog, etc. How could we get only specific records which have particular interest for our research/task? Selection based on logical conditions can be performed with the **WHERE** clause. You just add WHERE keyword to a SQL statement specifying logical conditions based on one or several attributes.

SELECT * | (list of comma-separated columns)

FROM table(s)
WHERE column operator value (AND, OR additional logical conditions)

For example, let's retrieve information on **residential parcels only** for the Town of Amherst. This data are stored in the table **ma_lu_amherst**. In particular field 'lu21_1999' consists of land use codes (assessors codes) for parcels based on 1999 inventory. Residential parcel codes are 10, 11, 12 and 13. How do we know that? It is simple, check the results of SQL queries in the first two examples. Now let's complete our query as follows and run it:

```
SELECT *
FROM ma_lu_amherst
WHERE LU21_1999 >= 10 AND LU21_1999 <=13;</pre>
```

The part SELECT * FROM ... should look familiar for you by now. We add the WHERE clause with the logical condition that selected records values in field **lu21_1999** should be larger or equal to 10 and smaller or equal to 13. This logical condition assures that land use codes are 10,11,12 or 13. Try to run this query and analyze the output. How many fields and records are in the resulting dataset? Try to specify different logical conditions using information from different fields and different logical operators (AND, OR, <. =. etc [http://www.w3schools.com/sql/sql_where.asp]). Don't be afraid to experiment with SQL SELECT statement, you cannot brake anything as you read (not write or change) data.

Another approach to specify such query is to use "IN" keyword within "WHERE" clause. "IN" specifies that the value of a specific attribute is IN INCLUSIVE RANGE. Please see an example below:

SELECT *
FROM ma_lu_amherst
WHERE lu21_1999 in (10,11,12,13);

1											
File Ec	dit View Que	ry Favourites He	elp				94				
: D 🖻	3 🖪 🐰 🛛	à 🔒 🥔 🔊	n 🔎	N Na 🗽 🔳	💡 i testgis	on lambda.sbs.u	mass.edi 🔽				
SELE	ECT *								Scratch	i pad	
FROM	¶ ma_lu_amh	erst									
WHEF	RE 1u21_199	9 in (10,11,12	2,13);								
1			1						NIC		
											_
Output p	bane	· · · · · · · · · · · · · · · · · · ·	_								
Data O	utput Explain	Messages Histor	У					\frown	`		
	gid integer	tile_name character var	lu_id bigint	objectid bigint	lu21_1971 integer	lu21_1985 integer	lu37_1985 integer	lu21_1999 integer	lu37_1999 integer	relateid character va	ar ar do
1	1	8	22	599717	13	13	13	13	13	800022	20
2	2	8	25	599720	13	1.0	10	13	13	000	
											53
-	73	8			6	6	6	13	10	800700	5.9
25	75	8	914	600509	1	13	13	12	13	800814	1.0
5					1.100					6	>
ΟК.									Ln 2 Col 19 Ch 3	30 🔇 410 n	ows,

Please try to execute this SQL statement and check results (Figure 8)

Figure 8

In particular, please note the set of values for field "lu21_1999" in the resulting field and the number of resulting records in the recordset.

The WHERE cl?use is a very powerful tool, which allows one to put a filter on retrieving data. Later, in the next few modules, we will use the WHERE clause to merge data from several tables into one dataset.

Example 5: Aggregate functions

For now, before reviewing GROUP BY and SORT BY statements, we would like introduce (very briefly) aggregate functions. Aggregate functions perform calculations on column(s) and over values of all records. For example the function SUM(column) will find the sum of all values stored in column for a specific dataset. The general format is:

```
SELECT FUNC(column)
FROM table(s)
[WHERE ...]
```

This function is useful to get the cumulative/descriptive statistics on a dataset or specific attribute. Common aggregate functions are SUM(), MIN(), MAX(), COUNT() and COUNT(*). The list of functions and examples of their usage can be found here [http://www.w3schools.com/sql/sql_functions.asp]. For example, the function COUNT(*) returns the number of records in the dataset set. Combined with the WHERE clause aggregate function it is powerful! The following example allows one to find out the number of parcels zoned for residential development in the Town of Amherst.

```
SELECT COUNT(*)
FROM ma_lu_amherst
WHERE lu21_1999 IN (10,11,12,13);
```

Note that the WHERE clause specifies that only residential parcels are selected, the COUNT(*) function computes the number of records. Type in this statement and run it within the Query Builder (Figure 9).

9

1						Figı
File Ed	it Vie	ew Quer	ry Favouri	tes Help		
: 🗅 🖻	58	8	è 🔒 🥔	50		•
SELE FROM WHER	CT C ma_ E lu	:0UNT(*) 1u_amh(121_1999) erst 9 IN (10,	.11,12,1	3);	
Output p	ane		s			
Data Ou	Itput	Explain	Messages	History		
	cou big	unt jint				

As a result of this query we find that: **410** parcels (polygons) of the Amherst landuse layer are zoned for residential development.

Example 6: Selecting unique/distinct records

In many cases, it's necessary to retrieve only unique records without any duplicates. For example, some towns in the spatial layer **ma_towns** (which represents political boundaries of towns) can be 'coded'/presented as several polygons.

Figure 10. The Western Massachusetts: town boundaries

It can happen if a town is divided by a river, or has an island part, etc. How could we retrieve data on polygons/spatial features without duplication? At first let's get all attribute da?a from the spatial layer "ma_towns". Please run the following SQL query in the Query Tool:

SELECT *
FROM matowns;

The resulting recordset consists of **631** records, although only **351** towns comprise The Commonwealth of Massachusetts. (some towns are presented with several polygons). Take a moment to study columns/attributes and check the metadata for this layer [http://www.mass.gov/mgis/towns.htm]. To get better understanding of the issue, lets select town id (column town_id), town name (town), data on population (pop2000), code of the county (fips_count) and area in sq. meters (shape_area). Please run the following query:

SELECT town_id, town, pop2000, island, fips_count, shape_area
FROM matowns;

The results of the query are shown in Figure 10. You can see that, for example, there are two records for the town on Newburyport (town_id = 206). The total population of the town is 17,189 persons (each record stores this info = duplication), though area for each polygon representing Newburyport is unique.

📝 F	🛿 pgAdmin III Query - testgis on lambda.sbs.umass.edu:5432 *									
File	File Edit View Query Favourites Help									
: [🗄 🗅 📂 🔚 🐰 🛍 🛱 🥢 🔿 🐢 🔎 🕨 🏣 🏪 🤗 🗄 testgis on lambda.sbs.umass.edt 💌									
SELECT town_id, town, pop2000, island, fips_count, sh FROM matowns;										
Outp	Output pane ×									
Dat	a Outj	put Explain	Messages Histor	y						
		town_id integer	town character varyin	pop2000 integer	island integer	fips_count integer	shape_area numeric	-		
	1	259	SALISBURY	7827	0	9	41372793.7600			
	2	7	AMESBURY	16450	0	9	35563042.6078			
	3	180	MERRIMAC	6138	0	9	23010189.9612			
	4	206	NEWBURYPORT	17189	0	9	22022402.5546			
	5	128	HAVERHILL	58969	0	9	92315569.1315			
	6	324	WEST NEWBURY	4149	0	9	38230373.0557			
	7	206	NEWBURYPORT	17189	1	9	529628.673200			
	8	206	NEWBURYPORT	17189	1	9	216076.707000			
	9	205	NEWBURY	6717	0	9	62937996.0689			

Figure 11

To select unique records, we use the special keyword **DISTINCT**. An SQL query with the DISTINCT keyword will return *only* unique records. A record is considered unique if one or more fields/attributes differ from other records. Please try to run the following query and analyze the results (Figure 12).

SELECT DISTINCT town_id, town, pop2000
FROM matowns;

As you can see the total number of towns is **351**. What will happen if you add 'shape_area' field into this query? Could you explain the difference?

📝 pgAd	min III Query ·	- testgis on lan	nbda.sbs.umas	s.edu:5432 *				
File Edi	t View Query	Favourites He	elp					
: 🗅 🖻	; 🗄 🌡 🖻	🔒 🖉 🔊	🏘 🔑 🕨	🍋 🍓 🔳 💡 🗄 testgis on lambda.sbs.umass.ed. 🔽				
SELECT DISTINCT town_id, town, pop2000 FROM matowns;								
Output pa	ane				×			
Data Ou	tput Explain M	Aessages Histor	y]					
	town_id integer	town character var	pop2000 integer		-			
1	0		0					
2	1	ABINGTON	14605					
3	2	ACTON	20331					
4	3	ACUSHNET	10161					
5	4	ADAMS	8809					
6	5	AGAWAM	28144					
7	6	ALFORD	399					
8	7	AMESBURY	16450					

```
Figure 12
```

Example 7: Sorting data

To sort data, there is an **ORDER BY** clause. The usage of this clause is clear from the following two examples. Please execute the statement below and compare with Figure 12.

```
SELECT DISTINCT town_id, town, pop2000
FROM matowns
ORDER BY pop2000 ;
```

Now add the DESC keyword to sort in reverse order. Please run the query and compare it with the results of the previous query and the query in Figure 12.

```
SELECT DISTINCT town_id, town, pop2000
FROM matowns
ORDER BY pop2000 DESC;
```

Now we will review usage of the GROUP BY and ORDER BY clauses.

Example 8: Sorting selected data by several attributes

Usually the results of the SQL query can be sorted, so (in general) the ORDER BY clause can be used in conjunction with other keywords, e.g. WHERE clause. Let's try to run the following query. We try to get information (data on town id, town name, population, county and area) for towns in the Western Massachusetts.

Towns in Western Massachusetts have FIPS county codes of 3,11,13 or 15 (Figure 10)

SELECT town_id, town, pop2000, island, fips_count, shape_area
FROM matowns
WHERE fips_count IN (3,11,13,15);

The query returns 101 records. Lets modify our query to sort results by town name in ascending order:

SELECT town_id, town, pop2000, island, fips_count, shape_area
FROM matowns
WHERE fips_count IN (3,11,13,15)
ORDER BY town;

Bingo! Records are sorted now (Figure 13).

🕎 pgAq	陀 pgAdmin III Query - testgis on lambda.sbs.umass.edu:5432 *								
File Edit View Query Favourites Help									
🕴 🗋 📂 🔚 🐰 🗎 🛱 🥔 🧑 🐢 🔎 🕨 🏣 🏪 🤗 🗄 testgis on lambda.sbs.umass.edu 🔽									
SELECT town_id, town, pop2000, island, fips_count, shape_area FROM matowns WHERE fips_count IN (3,11,13,15) ORDER BY town; DATA ARE SORTED									
Data Ou	itout Evola	in [Messages] Histo	rv l		Y TOV	VN			
	town_id	town character varyir	pop2000 intege	island integer	fips_count integer	shape_area numeric	-		
1	4	ADAMS	880	0	3	59341968.1855			
2	5	AGAWAM	2.5144	0	13	63199388.6394	1		
3	6	ALFORD	399	0	3	29856651.5372			
4	8	AMHERST	34874	0	15	71892200.9870			
5	13	ASHFIELD	1800	0	11	104419112.287			
6	22	BECKET	1755	0	3	123809393.793			
7	24	BELCHERTOWN	12968	0	15	143267493.586			
8	29	BERNARDSTON	2155	0	11	60594695.0262			
9	33	BLANDFORD	1214	0	13	138515168.661			
10	43	BRIMFIELD	3339	0	13	91388237.4208			
11	47	BUCKLAND	1991	0	11	51308874.0712			
12	53	CHARLEMONT	1358	0	11	68228286.3590			
13	58	CHESHIRE	3401	0	3	71249224.7318			
14	59	CHESTER	1308	0	13	96188083.5663			
15	60	CHESTERFIELD	1201	0	15	80953677.8190			
16	61	CHICOPEE	54653	0	13	61861633.1084			
17	63	CLARKSBURG	1686	0	3	33162814.5015			
18	66	COLRAIN	1813	0	11	112751672.381			
19	68	CONWAY	1809	0	11	97978939.7864			
20	69	CUMMINGTON	978	0	15	59747979.8331			
21	70	DALTON	6892	0	3	56692408.4515			
22	74	DEERFIELD	4750	0	11	86552859.6042			

Figure 13.

The results of the query can be sorted by the *several* attributes. Please run the following query to sort data by fips county code FIRST, and THEN by population.

```
SELECT town_id, town, pop2000, island, fips_count, shape_area
FROM matowns
WHERE fips_count IN (3,11,13,15)
ORDER BY fips_count, pop2000;
```

Results of the query are presented in Figure 13. Please note that both fips county code and population size are sorted in the same order.

2	pgAdr	nin III Query	- testgis on lambda.st	s.umass.edu	:5432 *			- O ×			
Fil	e Edit	View Quer	y Favourites Help								
	🗄 🗅 📂 🔚 🐰 🗈 🕋 🗇 📣 🖪 🖉 👂 🖡 🌬 🛯 🎖 🎚 testgis on lambda.sbs.umass.ed. 💌										
SELECT town_id, town, pop2000, island, fips_count, shape_area Scratch pad X											
	FROM matowns										
	ORDER BY fins count, non2000:										
┛											
Οu	Output pane X										
D	ata Out	put Explain	Messages History			\frown					
		town_id	town	pop2000	island	fips_count	shape area				
		integer	character varying	integer	integer	integer	numeric				
	1	195	MOUNT WASHINGTON	130	0	3	57971958.1502				
	2	200	NEW ASHFORD	247	0	3	34885294.7503				
╟	3	302	TYRINGHAM	350	0	3	48837387.2325				
╟	4	5		399	0	3	29856651.5372				
⊩	5 6	313		676	0	3	42602277 5405				
╟╴	7	263	SAVOV	705	0	3	93362967 5513				
	8	121	HANCOCK	703	0	3	92575549.9625				
	9	233	PERU	821	0	3	67392853.2192				
	10	260	SANDISFIELD	824	0	3	137206227.284				
	11	345	WINDSOR	875	0	3	91094844.1283				
	12	193	MONTEREY	934	0	3	70898394.5290				
	13	90	EGREMONT	1345	0	3	48896214.1560				
	14	225	OTIS	1365	0	3	98613510.7654				
	15	326	WEST STOCKBRIDGE	1416	0	3	48311531.4703				
╟	16	203	NEW MARLBOROUGH	1494	0	3	124057617.007				
╟	17	249		1604	0	3	49289641.3362				
╟	10	22	BECKET	1000	0	3	123800303 703				
	20	132	HINSDALE	1872	0	3	56160371.5363				
	21	283	STOCKBRIDGE	2276	0	3	61331561.6790				
	22	148	LANESBOROUGH	2990	0	3	76585642.1555				
	23	267	SHEFFIELD	3335	0	3	125852976.045				
	24	58	CHESHIRE	3401	0	3	71249224.7318				
	25	152	LENOX	5077	0	3	56159737.7709				
	26	150	LEE	5985	0	3	69966481.5601				
	27	70	DALTON	6892	0	3	56692408.4515				
	28	241		7527	0	3	11861/792.921				
	30	4		8809	0	3	121420000.208 59341069 1955				
	31	209	NORTH ADAMS	14681	0	3	53462688.0379				
	32	236	PITTSFIELD	45793	0	3	109984220.573				
	33	190	MONROE	93	0	11	27974366.7417				
								T			

Figure 14.

What do you think would be result of the following query:

SELECT town_id, town, pop2000, island, fips_count, shape_area
FROM matowns
WHERE fips_count IN (3,11,13,15)
ORDER BY fips_count DESC, pop2000 ASC;

Check your quess by executing the query with Query Tools. The goal here it to have you experiment!

Example 9. Grouping data and computing subtotals

As you could see in the part "SQL Aggregative functions", functions like SUM(), AVG(), COUNT() perform operation on **all** records at once. But how could be perform such operations on a part/group of the data? For example, we need to compute total population and total area for the counties located in the Western Massachusetts. To perform such analysis, we need to introduce and use the **GROUP BY** clause. Please type and run the following query:

```
SELECT fips_count, SUM(pop2000) AS POPTOTAL, SUM(shape_area) AS AREATOTAL
FROM matowns
WHERE fips_count IN (3,11,13,15)
GROUP BY fips_count
ORDER BY fips_count;
```

What happens here is that **GROUP BY** groups/combines records with the same **fips_count** codes and then the SU?()function is applied to that group. In other words, we computed 'Subtotals' for each county in the Western MA. Please check and analyze the results of the query below (Figure 14):

🌌 pgAdmin III Query - testgis on lambda.sbs.umass.edu:5432 *										
File Edit View Query Favourites Help										
🗄 🗅 📂 😓 🐰 🗈 🖷 🧼 🗢 🐢 🔎 🕨 🍖 🔳 🎖 🍹 testgis on lambda.sbs.umass.ed. 💌										
SELEC FROM WHERE GROUP ORDER	SELECT fips_count, SUM(pop2000) AS POPTOTAL, SUM(shape_area) AS AREATOTAL FROM matowns WHERE fips_count IN (3,11,13,15) GROUP BY fips_count ORDER BY fips_count;									
Output pa	ne					×				
Data Out	put Explain M	lessages 🛛 Hist	ory							
	fips_count integer	poptotal bigint	areatotal numeric							
1	3	134953	2451160485.39							
2	11	71535	1876673788.92							
3	13	456228	1642202546.08							
4	15	152251	1412240809.90							

Figure 15.

Another new part in this statement is "AS POPTOTAL". With the AS keyword after the column name, we can specify an alias for the resulting column (please see Figure 14, where sum of population is stored in column with

alias 'POPTOTAL').

You can argue that there is something strange about the way we calculated the total population. We showed before that each record for the specific town consists of the same population but different area. So usage of SUM(population) would not be correct. The correct way to go about this would be to use the AVG() function which computes average value of the dataset. You can easily see that such a query will return the correct answer. Please try to run the following query:

```
SELECT town, AVG(pop2000), fips_count, SUM(shape_area)
FROM matowns
GROUP BY town, fips_count
ORDER BY town;
```

Results are available in Figure 16.

🍞 pgAdmin III Query - testgis on lambda.sbs.umass.edu:5432 *						
File Edit View Query Favourites Help						
E 🗅 😤 🗐 🐰 🖻 🛱 🖉 🧑 😰 🔊 🐌 🖿 🎭 🖿 🤗 Eltestris on lambda, shs. umass. ed 💌						
SELECT town, Avg(pop2000), rips_count, Sum(snape_area)						
GROUP BY town, fips count						
ORDER BY town;						
Output pane X						
Data Output Explain Messages History						
	town	avg	fips_count	sum		
	character va	r numeric	integer	numeric		
	1 ABINGTON	14605.0000000	23	26340139.1044		
	2 ACTON	20331.0000000	17	52471938.1264		
	3 ACUSHNET	10161.0000000	5	48820318.0502		
	4 ADAMS	8809.00000000	3	59341968.1855		
	5 AGAWAM	28144.0000000	13	63199388.6394		
	6 ALFORD	399.000000000	3	29856651.5372		
-	7 AMESBURY	16450.0000000	9	35563042.6078		
	B AMHERST	34874.0000000	15	71892200.9870		
	9 ANDOVER	31247.0000000	9	83298267.1220		
1	0 AQUINNAH	344.000000000	7	14916262.5902		
1	1 ARLINGTON	42389.0000000	17	14082823.0396		
1	2 ASHBURNHAM	5546.00000000	27	106187219.143		
1	.3 ASHBY	2845.00000000	17	62340140.9955		
1	4 ASHFIELD	1800.00000000	11	104419112.287		
1	.5 ASHLAND	14674.0000000	17	33342187.6988		
1	.6 ATHOL	11299.0000000	27	86419548.1676		
1	7 ATTLEBORO	42068.0000000	5	72096511.3764		
1	8 AUBURN	15901.0000000	27	42605645.2403		
1	.9 AVON	4443.00000000	21	11748038.1104		
2	O AYER	7287.0000000	17	24611460.6338		
2	BARNSTABLE	47821.0000000	1	162446167.140		
2	2 BARRE	5113.0000000	27	115559131.891		
	DE CLET	LANSE SEARCHERS	1			

Figure 16.

Conclusion

In this module we introduced SELECT SQL statements. This is the fundamental statement, and is very powerful. In the next sectors we will use this statement for:

- merging data from several tables
- joining spatial and attribute data together.

Other important SQL statements are INSERT, UPDATE and DELETE. We will use the INSERT statement when we join spatial and non-spatial data.

Additional materials

- 1. An article on SQL on Wikipedia http://en.wikipedia.org/wiki/Sql
- $2.\ http://www.w3schools.com/sql/default.asp$
- 3. SQL Tutorial at http://www.sql-tutorial.com/