Exercise 20: Site Selection 2 - Vector Analysis

Table of Contents

1. Intro-fossgis-umass	1
1.1. Author Attribution	
1.2. Module Licensing Information	
1.3. Reviewed by	
2. Site selection 2: Vector Analysis	
2.1. Introduction	
2.2. Set up	
2.3. Process	2
Add a grass vector layer	2
Convert shapefiles to GRASS vector layers	
Displaying the zoning layer by an attribute	
Extracting the comercial polygons	

1. Intro-fossgis-umass

1.1. Author Attribution

Major contributors to this curriculum include (alphabetical):

Maria Fernandez

Michael Hamel

Quentin Lewis

James Peters

Charlie Schweik

Alexander Stepanov

1.2. Module Licensing Information

Version 1.0.

This tutorial is licensed under a Creative Commons Attribution-No Derivative Works 3.0 License (http://creativecommons.org/licenses/by-nd/3.0/). This means that users are free to copy and share this material with others. Requests for creating new derivatives should be sent to the primary author.

1.3. Reviewed by

Quentin Lewis 04/09/07

2. Site selection 2: Vector Analysis

2.1. Introduction

Note: this module is a continuation of "Site Selection 1: Raster analysis"

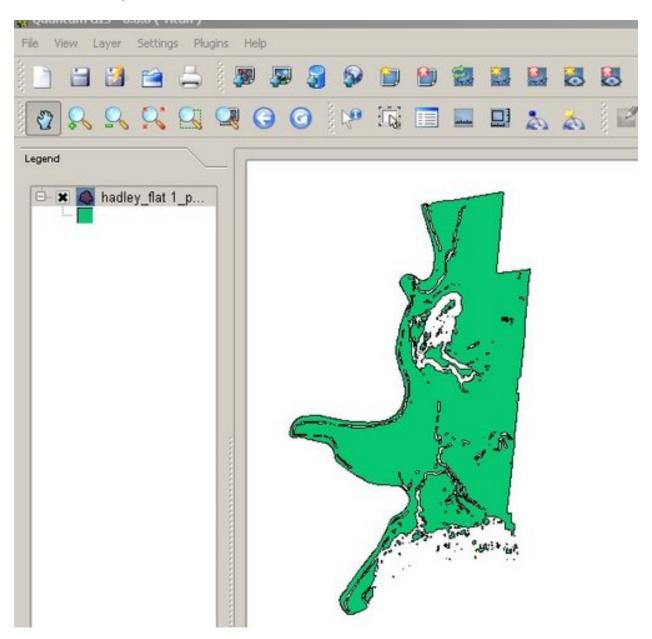
This module is the second part of the "site selection" problem that we already presented in the previous module: Imagine that you work for a company that is considering setting up a retail store in the area of Hadley, Massachusetts (US). They have asked you to produce a map with potential areas for their consideration. The areas of interest should be flat (less than 3 degrees slope), close to roads for ease of access (less?than 150 m from roads) and should fall in the zones allocated by the government to business/industrial areas in the town of Hadley.

We will extract the comercial areas from a zoning dataset, we will create a 150 m road buffer and find the intersection of these two layers with with the flat areas layer (< 3 degrees slope) that we created in the raster analysis module [http://linuxlab.sbs.umass.edu/introFossgisUmass/index.php?title=Site_selection_1:_Raster_Analysis].

2.2. Set up


The data was already described in the raster module [http://linuxlab.sbs.umass.edu/beginning-fossgis-umass/index.php?title=Site_selection_1:_Raster_Analysis#Set_up]. Click here [http://linuxlab.sbs.umass.edu/beginning-fossgis-umass/datasets/lab_siteselection/siteselectiondata.zip] to download the dataset if you don't have it already. If you worked on the raster module, you should also have a "flat areas" GRASS vector (otherwise, download it from here -quentin, i will add it later). Make sure to extract them both.

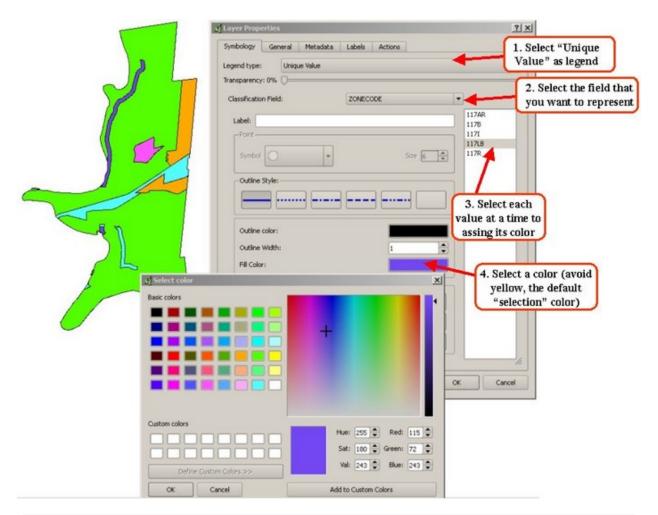
2.3. Process


Start QGIS and open the mapset where you had the flat areas GRASS vector layer: Go to Plugins>GRASS>Open mapset.

Add a grass vector layer

• Click on the button "add a GRASS vector layer" to open the "Hadley_flat" layer. This layer represents the areas under 3 degrees of slope (the GRASS vector is divided into two layers, a "0 polygon" and a "1 polygon". This last one we should use).

• This is how the layer looks:



Convert shapefiles to GRASS vector layers

Add the zoning (zn117p1.shp) and roads (EOTROADS_ARC_117.shp) SHAPEFILES. Convert them to GRASS vector layers and, in that process, name them "zoning" and "roads". (Go to this module [http://linuxlab.sbs.umass.edu/beginning-fossgis-umass/index.php?title=Analysis_using_the_QGIS_GRASS_plug-in._Plug-in_basic if you don't remember how to do this step). Also note that for displaying purposes, we will use the "hadley_perim" layer (that we also used in the raster module) that represents the perimeter of the town of Hadley.

Displaying the zoning layer by an attribute

- Right click the zoning layer to bring up the properties. See the image below to help you set up the symbology
 options.
- 1. Select "Unique Value" as legend type.
- 2. Select "ZONECODE" as the classification field (this field has the zoning codes, defining the zoning for each polygon: comercial, residential, industrial, etc. We know this after reading the metadata for the layer).
- 3. Select a value in the right colum (those are all the different zoning codes) at a time and
- 4. assign a different color to each zoning code.

Note: avoid the color yellow, as that is the default "selection" color in QGIS.

Extracting the comercial polygons

Since we want only areas that are zoned for commercial (i.e. retail) areas, we need to find a way to select only that zone from our five possibilities. This is done by making a query.