
OSGeo Journal
The Journal of the Open Source Geospatial Foundation Volume 1 / May 2007

In This Volume

Real World Implementations of Open Source software

Introducing Mapbender, deegree, openModeller ...

Understanding Spatial Relationships

Examining the Web Processing Server (WPS) Specification

Package Interaction - GRASS-GMT, Tikiwiki, PyWPS, GRASS-R ...

Software Updates

News, and more...

OSGeo Journal Producing Press-Ready Maps with GRASS and GMT Vol. 1, May 2007

Integration Studies

Producing Press-Ready Maps with
GRASS and GMT
by Dylan Beaudette

Overview

The production of high quality, printable maps is
an important component of most geographic analy-
sis. While GRASS has not traditionally been suited
for the production of printed materials, commands
like ps.map and more recently a helpful wrapper
G-ps.map, make it possible to output high quality
Postscript maps. However, the rather limited syntax
and capabilities of the ps.map approach often result
in a map that must be finalized in a DTP (desktop
publishing) application such as Inkscape, Scribus, or
The Gimp. The map composer functionality found in
QGIS may be a good alternative for map production
in the near future, but the current version is lacking
in terms of flexibility, stability, and the ability to ex-
port data in formats such as EPS or PDF. With such
limited options for the production of high quality
printed materials when using an entirely open source
workflow, numerous people have cobbled together
the necessary glue required to interface GRASS to the
various programs included with the Generic Map-

ping Tools package. The GMT project is best de-
scribed by its authors as :

GMT is an open source collection
of 60 tools for manipulating geographic
and Cartesian data sets (including fil-
tering, trend fitting, gridding, project-
ing, etc.) and producing Encapsulated
PostScript File (EPS) illustrations rang-
ing from simple x-y plots via contour
maps to artificially illuminated surfaces
and 3-D perspective views. GMT sup-
ports 30 map projections and transforma-
tions and comes with support data such
as coastlines, rivers, and political bound-
aries. GMT is developed and maintained
by Paul Wessel and Walter H. F. Smith
with help from a global set of volunteers,
and is supported by the National Science
Foundation. It is released under the GNU
General Public License.

This article describes the combined efforts of several
people (David Finlayson, Hamish Bowman, Brent
Wood, myself, and others) to create a better means
of interfacing GRASS to GMT. Several permutations

ISSN 1994-1897 1

OSGeo Journal Producing Press-Ready Maps with GRASS and GMT Vol. 1, May 2007

of a *.out.gmt style command have been created,
using both Python and Bash scripting, to perform
the required export, configuration, and execution
of GMT commands. After reading this article you
should have a general idea of how to compose simple
maps in GMT, along with some template scripts for
using data exported from GRASS. A follow-up arti-
cle will present Spearfish-specific (the standard sam-
ple GRASS dataset) examples of map creation with
GMT.

GMT

The Generic Mapping Tools applications can be in-
stalled on just about any platform using either pre-
packaged binaries or by compiling from source code.
The GMT tools can also be installed from your fa-
vorite distribution’s package management system
(e.g. aptitude), however this method is not recom-
mended as the package is not likely to be current.
If you are on a UNIX-like operating system compil-
ing from source is a relatively simple process, and
ensures that you have a current release. Assuming
that you have a working development toolkit (gcc,
make, etc.) navigate to the ‘Download’ page 1, and
follow the directions. GMT is distributed with a
comprehensive manual, map-making tutorials, and
basemap data at several scales. Once you have a
functional copy of GMT installed on your machine,
and have downloaded the example data 2 you can
follow along with the examples contained in this arti-
cle. This archive also contains a couple scripts which
elaborate on several of the examples included within
this article. The script template.sh can be used as
a starting point for an automated approach to ex-
portng and plotting GRASS raster and vector data
with GMT tools. Note that this script is a starting
point and far from complete.

GMT commands are run from the shell (with an
intricate set of flags, switches, and other arguments)
and send the resulting Postscript fragments to stan-
dard output. The default behavior of all GMT appli-
cations can be adjusted with the gmtset command.
This command is usually used prior to any com-
mands which produce output, so that key elements
such as paper size, font spacing, etc. are established.
The first plotting command run (usually psbasemap)
creates the initial output file with the standard “>”
operator , while each subsequent call adds to this file
with the double-“>” append operator. The -K flag

is used with all GMT commands prior to the last
command, so that Postscript output file is not pre-
maturely finalized. We will use some sample data
collected from a Mapserver application to illustrate
various aspects of GMT use, along with some ideas
on how to couple GRASS and GMT.

Sample Application
define some global settings:

gmtset ANNOT_FONT_PRIMARY Times-Roman \

HEADER_FONT_SIZE 16 \

ANNOT_FONT_SIZE_PRIMARY 12 \

LABEL_FONT_SIZE 14 \

BASEMAP_TYPE plain \

PLOT_DEGREE_FORMAT DF \

PAPER_MEDIA letter+

sample map centered on the western USA

pscoast -JB-116/36/30/42/7i \

-R-125/-108/31/44 -B5 \

-Gwhite -W0.5p \

-A250 -Dh -Na -Xc -Yc -P -K > query_centers.eps

plot mapxy points:

psxy sample_data/mapxy_locations.latlong -J -R \

-Sc0.075c -W1/1/200/1 -G1/200/1 -O -K >> query_centers.eps

plot ka-map points

psxy sample_data/ka-map_locations.latlong -J -R \

-Sc0.075c -W1/255/1/1 -G255/1/1 -O >> query_centers.eps

The example above creates a plot of the western
USA, with red and green dots symbolizing location-
specific activity on a website. The map frame is cre-
ated with the psbasemap command, coastline and
political boundaries are created with pscoast, and
points are created with the psxy command. Point lo-
cations are stored as simple, longitude-latitude pairs
in text format, while the coastline is drawn from the
GMT built-in data set. The output can be seen in Fig-
ure 1.
Full explanations of the various command line op-
tions can be found on the manual page of each com-
mand. In addition, a more complete example GMT
session performed outside of GRASS can be found
on the author’s website 3. In the above example,
the projection and region parameters were manu-
ally defined by the user. Additional formatting ele-
ments (such as the -P flag for portrait layout) must be
manually planned and defined on the command line.
Thus the automatic generation of an output map de-
pends, in part, on a dynamic approach to defining
the options passed to GMT commands. A scripting
language, capable of extracting GRASS region infor-

1http://gmt.soest.hawaii.edu/gmt/gmt_download.html
2http://169.237.35.250/~dylan/GRASS/newsletter/sample_data.tar.gz
3http://casoilresource.lawr.ucdavis.edu/drupal/node/102

ISSN 1994-1897 2

http://gmt.soest.hawaii.edu/gmt/gmt_download.html
http://169.237.35.250/~dylan/GRASS/newsletter/sample_data.tar.gz
 http://casoilresource.lawr.ucdavis.edu/drupal/node/102

OSGeo Journal Producing Press-Ready Maps with GRASS and GMT Vol. 1, May 2007

mation from a running GRASS session, is an ideal
approach to automating this task.

125˚W

125˚W

120˚W

120˚W

115˚W

115˚W

110˚W

110˚W

35˚N 35˚N

40˚N 40˚N

Figure 1: Query locations, symbolized by ac-
tive mapping application. Green dots represent
Landview-based Mapserver application, red dots
represent Ka-map-based Mapserver application.

Coupling GRASS and GMT

The general approach to interfacing GRASS and
GMT can be summarized as follows:

• collect information from the user on:

– input data
– formatting options
– output options

• collect geographic parameters from the current
GRASS region

• calculate key layout parameters

– projection information
– scale restrictions
– tick intervals

• export GRASS raster data to GMT .grd format

• export GRASS vector data to GMT ASCII format
• run GMT commands with above settings

Collecting Information from the User

The GRASS script parser provides a convenient ap-
proach to the creation of customized GRASS com-
mands, without the need to understand C program-
ming. A carefully crafted script can be used to pass
details about a GRASS dataset along with informa-
tion on the current region settings to GMT com-
mands, using the familiar syntax and GUI structure
of a GRASS module. With these options saved to
local variables it is possible to alter default settings
such as paper size, font size, and text orientation by
running the gmtset program with our local variables
substituted by the script interpreter 4.

Collecting Geographic Information

Extracting key information from the current region
settings (for later use in constructing parameters for
GMT) can be accomplished in a number of ways.
One such example involves g.region and unix text
processing tools, thanks to Bruce Raup for the ele-
gant eval suggestion. Note that all of the follow-
ing code snippets require that you are in an active
GRASS session.

need to be in an active GRASS session for this to work.

#

region extents: used with -R flag

resolution: used with the -I flag

#

elegant approach to extracting extent and

region resolution as suggested by

Bruce Raup - National Snow and Ice Data Center

#

region_assignments=`g.region -g`

eval $region_assignments

setup flags for GMT commands

region="-R$w/$e/$s/$n"

inc="-I$ewres/$nsres"

extract extent values for calculating map aspect ratio

extent_assignments=`g.region -ge`

eval $extent_assignments

preserve aspect ratio from UTM E,N coordinates:

aspect_ratio=`echo $ns_extent $ew_extent

| awk '{printf("%f", $1 / $2)}'`

calculate the map length based on the

original aspect ratio

map_length=`echo $map_width $aspect_ratio

| awk '{printf("%f", $1 * $2)}'`

4More information on the GRASS script parser can be found at http://grass.itc.it/gdp/html_grass63/g.parser.html

ISSN 1994-1897 3

http://grass.itc.it/gdp/html_grass63/g.parser.html

OSGeo Journal Producing Press-Ready Maps with GRASS and GMT Vol. 1, May 2007

calculate the y location (in paper units)

for the field sheet title

field_sheet_title_y=`echo $map_length

| awk '{printf("%f", $1 + 0.33)}'`

#compile the projection string, with

width/length variables

#linear projection, width inches / length inches

projection_string="X${map_width}i/${map_length}i"

A more robust approach would involve the GRASS-
Python bindings to directly extract region parame-
ters. Once the region data has been extracted and
saved to local variables, we can perform calcula-
tions required to derive other parameters such as
map scale, map aspect ratio, map size on paper, etc.
The region settings are used to create the plotting re-
gion flag (-R$w/$e/$s/$n), often used only in the first
plotting function. All subsequent plotting functions
can inherit these values by specifying blank -J and
-R flags along with the -O (overlay) flag.

Map Projections in GMT

The traditional approach to using the GMT tools in-
volves plotting data, encoded in longitude-latitude
pairs, in a projection specified with the -J flag. Co-
ordinates are transformed as the output Postscript
is being generated. As noted in the first code snip-
pet above, an Albers Equal Area projection centered
at (116◦W, 36◦N), having standard parallels at 30◦N
and 42◦N, and which is 7 inches wide is encoded as -
JB-116/36/30/42/7i. See the GMT manual for a full
listing supported projections and their parameters.

When working within GRASS, data is usually
(but not always) in some cartesian projection and
thus the special linear projection mode in GMT
should be used. Once a suitable map width and
length (in this case using inches) have been estab-
lished the linear projection parameters are encoded
as -JX${map_width}i/${map_length}i. Note that
imperial or metric units can be used within GMT and
switching between them only invloves adding a ’c’
for centimenters or ’i’ for inches after the actual num-
ber.

Exporting and Plotting GRASS Raster
Data

Exporting GRASS raster data to a GMT-compatible
format can be accomplished with a combination of

r.out.bin and xyz2grd (included in the GMT distri-
bution). Proper use of xyz2grd requires knowledge
about input raster data: i.e. floating-point or integer,
etc. For a CELL raster exported with r.out.bin, the
flag -ZTLh would be used to instruct xyz2grd that
the input data stream is scanline oriented short in-
teger data. For FCELL or DCELL maps the corre-
sponding flags would be -ZTLf or -ZTLd respectively.
The -F flag instructs xyz2grd to use pixel-registration
of grid cells, the same registration used for GRASS
rasters. A simple case statement can be used within
our example script to automatically create the call to
xyz2grd. An optional flag in our example script can
be used to toggle this step to facilitate tweaking other
parameters without the time consuming process of
exporting raster data. The author has found that set-
ting the region to an integer resolution results in the
most reliable operationof xyz2grd.

get the map type of a given raster

MAP_TYPE=`r.info -t "$output_raster" | cut -f2 -d'='`

export the raster based on its type,

region settings from above example

and resolution settings above example

case "$MAP_TYPE" in

CELL)

r.out.bin input=$output_raster output=- null=-9999 \

| xyz2grd -G$output_raster.grd \

$region $inc -ZTLh -F -N-9999 ;;

FCELL)

r.out.bin input=$output_raster output=- null=-9999 \

| xyz2grd -G$output_raster.grd \

$region $inc -ZTLf -F -N-9999 ;;

DCELL)

r.out.bin input=$output_raster output=- null=-9999 \

| xyz2grd -G$output_raster.grd \

$region $inc -ZTLd -F -N-9999 ;;

esac

Once raster data has been exported to .grd format it is
nearly ready for use with GMT image plotting com-
mands such as psimage. This command can either
use a single grid file, along with a color palette (.cpt)
file, or color-separate red, green, and blue channels 5.

Exporting GRASS Color Table Data

Currently there are no simple methods available for
converting GRASS color table information into a
suitable color palette file for GMT. The existing im-
plementations are able to closely approximate the
.cpt format, however the author has not been able to
successfully use these automatically generated files.
A working conversion script (preferable written in a

5The specifications for GMT color palette files can be found at http://www.soest.hawaii.edu/GMT/gmt/doc/html/GMT_Docs/

node57.html
6Further testing and adaption of David Finlayson’s r.out.gmt.py script may be the quickest approach.

ISSN 1994-1897 4

http://www.soest.hawaii.edu/GMT/gmt/doc/html/GMT_Docs/node57.html
http://www.soest.hawaii.edu/GMT/gmt/doc/html/GMT_Docs/node57.html

OSGeo Journal Producing Press-Ready Maps with GRASS and GMT Vol. 1, May 2007

high level scripting language such as Python) will be
posted to the GRASS wiki as soon as it is completed
6.

GMT provides several tools for manually creat-
ing a color palette file based on a user-supplied data
range, or the data range as read from a GMT grid file.
While this is not an ideal approach, it can be useful
when one of the standard GMT color palettes is ap-
propriate. In the special case where the exported im-
age is grayscale, the standard “gray.cpt” color palette
can be used to create a new cpt file with the makecpt
program.

make a suitable color palette for a grayscale

CELL raster, the grid values are integers

ranging from 0-255

makecpt -Cgray -T0/255/1 -V > doqq.cpt

When working with color channels that have already
been separated (e.g. landsat or other multispectral
imagery) it is possible to use psimage without a color
palette file, instead specifying red, green, and blue
input grid files. This approach is most convenient
when working with data that has been collected in
separate bands. For single band data, color separates
can be created with r.mapcalc.

get color-seperates ready for GMT

r.mapcalc "some_raster.red = r#some_raster"

r.mapcalc "some_raster.blue = b#some_raster"

r.mapcalc "some_raster.green = g#some_raster"

Exporting and Plotting GRASS Vector
Data

The GMT vector format is based on a very simple,
vertex-based ASCII format, designed primarily to
store geometry data. However, with some scripting
it is possible to encode simple attribute data within
this format for the production of thematic maps. An
alternative approach involves exporting vector data
that has been pre-filtered with a GRASS tool such as
v.extract, into several files where each represents a
specific class. Using the first approach (encoding at-
tributes within the GMT vector file) the symbology
for each point, line, or polygon is encoded within the
file, whereas the symbology is set with flags on the
command line for the second approach.

Point Data

Exporting point data is the simplest GRASS→ GMT
vector conversion. In most cases, where a set of
points is to be plotted in GMT using a fixed symbol-
ogy, the output of v.out.ascii or v.out.ascii.db
can be directly plotted with the GMT command
psxy. Note that filtering the output from either com-
mand with UNIX text processing tools is a conve-
nient method for converting attributes into symbol-
ogy or adjusting labelling.

export from GRASS to ASCII format

v.out.ascii in=points fs=" " > points.xy

plot points with a white outline and blue fill,

using a circular symbol 0.125 inches in diameter

appending the resulting Postscript to 'outfile.eps'

psxy points.xy -R -J -M -Sc0.125 -G255/1/1 \

-W1/255/255/255 -O -K >> output.eps

Labeling point data can be accomplished by first fil-
tering the output from v.out.ascii with a simple
awk script, then using the output with the pstext
command. The labeling format used by GMT is doc-
umented on the pstext manual page, however a
simple explanation is given within the sample code
below.

export from GRASS to ASCII format with selected

attributes ('ID' column)

filter output with awk, re-ordering columns,

and inserting label properties into the form:

x_coord, y_coord, font_size, rotation_angle,

font_number, label_offset, label_text

v.out.ascii.db in=points columns=ID | awk -F"|"

'{print $2, $3, 10, 0, 4, "BL", $4}' \

> points_with_labels.xy

plot label text from geometry and label

properties stored in 'points_with_labels.xy'

label text will be blue and offset by 0.1 cm

in the horizontal and vertical direction

specified in column 5 of the input file

pstext points_with_labels.xy -R -J -Dj0.1c/0.1c

-G0/0/255 -K -O >> outfile.eps

Line and Polygon Data

There is currently no direct method for converting
GRASS line and polygon data into a GMT compat-
ible format. However, through the use of an exter-
nal application called shp2gmt 7, it is possible to cre-
ate GMT compatible vector files by first exporting
GRASS data to shapefile and then converting with
shp2gmt. The text output from shp2gmt contains all
of the attribute data stored in the input shapefile

7This small utility program originally written by (Frank Warmerdam), was modified by (Mark Fenbers) to include attribute informa-
tion from the shapefile as well. The code for the modified shp2gmt can be found at http://www.arcknowledge.com/gmane.comp.gis.
gmt.user/2004-01/msg00121.html

ISSN 1994-1897 5

http://www.arcknowledge.com/gmane.comp.gis.gmt.user/2004-01/msg00121.html
http://www.arcknowledge.com/gmane.comp.gis.gmt.user/2004-01/msg00121.html

OSGeo Journal Producing Press-Ready Maps with GRASS and GMT Vol. 1, May 2007

along with vertex coordinates, and can be easily fil-
tered with awk to include symbology parameters. An
example GRASS session illustrating this type of op-
eration is listed below.

export from GRASS to shapefile format

v.out.ogr -e in=lines dsn=. olayer=lines

v.out.ogr -e in=polys dsn=. olayer=polys

convert from shapefile format to GMT format

shp2gmt lines.shp > lines.xy

shp2gmt polys.shp > polys.xy

optionally filter GMT vector file to include symbology

awk '

{

all multi-record line segments with the

attribute 'some_value'

will be plotted with a red pen

if ($0 ~ /some_value/) printf "> -Wred\n"

... add more lookups for the other classes

for lines that do not match, just print them

verbatim (i.e. the vertex data)

else print

}

' lines.xy > lines-thematic.xy

plot lines, with symbology set within the GMT vector file

psxy lines-thematic.xy -R -J -O -K >> outfile.eps

Labeling line or polygon features follows the same
general approach as labelling point features, through
the use of pstext. For simple maps, an almost au-
tomatic approach to labelling polygon data involves
exporting polygon centroids with v.out.ascii.db,
as listed above. Labelling line data requires more
user interaction, as each label needs a coordinate and
angle associated with it. With a little work it is pos-
sible to use the file created by v.label to produce a
GMT-compatible set of label placement instructions.
An example awk script, used within a GRASS session,
is presented below.

create the GRASS label file:

rotating the labels to match the line segments

v.label -a map=trails column=trail_name labels=trails.lab

convert the GRASS labels format to GMT format

awk '

BEGIN{FS="\n" ; RS="\n\n"}

{

split($1, e, ": ")

split($2, n, ": ")

split($15, r, ": ")

split($16, l, ": ")

if there is no rotation, we need to add a 0-rotation

if(NF == 16) {rotation = r[2] ; label = l[2]}

else {rotation = 0 ; label = r[2]}

create the GMT labeling instructions

print e[2], n[2], 10, rotation, 4, label

}

' DATABASE/LOCATION/MAPSET/paint/labels/trails.lab

> labels.xy

plot with pstext

pstext labels.xy -R -J -Dj0.1c/0.1c -G0/0/255 -K -O

>> outfile.eps

While the above approach may work for simple
maps, user intervention is usually required for more
complex maps. A more robust approach for labeling
point, line, and polygon features with advanced ca-
pabilities such as label collision detection is needed
for a fully automated approach.

Miscellaneous Map Elements

Additional elements such as a context map
(psbasemap with psxy), scalebar (psbasemap), or leg-
end (pslegend) can be added after primary map
components have been added to the output file. It
is always a good idea to check that the last GMT
command run does not use the -K flag, to insure that
the output file is finalized. Through careful use of
the -O, -X, and -Y flags it is possible to re-define the
plotting region for each call to a GMT program. This
approach works well for creating a mini-sized con-
text map, within another finished map. Extending
the first example, below is a more complete script
illustrating the use of psbasemap to produce map el-
ements such as a scale bar and north arrow, along
with the creation of a mini-context map within a
map.

define some global settings:

gmtset ANNOT_FONT_PRIMARY Times-Roman \

HEADER_FONT_SIZE 16 \

ANNOT_FONT_SIZE_PRIMARY 12 \

LABEL_FONT_SIZE 14 \

BASEMAP_TYPE plain \

PLOT_DEGREE_FORMAT DF \

PAPER_MEDIA letter+

sample map centered on the western USA

pscoast -JB-116/36/30/42/7i \

-R-125/-108/31/44 -B5 \

-Gwhite -W0.5p \

-A250 -Dh -Na -Xc -Yc -P -K

> query_centers_2.eps

plot mapxy points:

psxy sample_data/mapxy_locations.latlong -J -R \

-Sc0.075c -W1/1/200/1 -G1/200/1 -O -K

>> query_centers_2.eps

plot ka-map points

psxy sample_data/ka-map_locations.latlong -J -R \

-Sc0.075c -W1/255/1/1 -G255/1/1 -O -K

>> query_centers_2.eps

add scalebar

psbasemap -J -R -Lf-119/32.5/32/150k:"Kilometers": \

ISSN 1994-1897 6

OSGeo Journal
Integration Studies

Vol. 1, May 2007

-O -K -P -V >> query_centers_2.eps

#make a context map

pscoast -JB-116/36/30/42/7i \

-R-130/-100/25/50 \

-X0.25i -Y1.75i \

-Gwhite -W0.5p \

-A250 -Di -Na -P -K >> query_centers_2.eps

add the region box

psxy context_box.xy -M -JB -R -W3/1/1/0 -P -O

>> query_centers_2.eps

Figure 2: Addition of a context map and scalebar.

Current Limitations

The current unix shell approach to interfacing
GRASS and GMT has several serious disadvantages:
lack of portability to non-unix systems, lack of so-
phisticated mathematical operators, and a depen-
dancy on several helper tools such as awk, sed, grep,
etc. These disadvantages are particularly annoy-
ing when trying to automatically construct map el-
ements such as tick intervals or scale-based deco-
rations. The examples in this article use manually-
defined tick intervals, however when creating maps
from GRASS data (which is usually in a projected
coordinate system) it is time consuming to manu-
ally set the annotated and non-annotated tick inter-
vals for each map. See the template.sh script in-
cluded in the sample data archive for ideas. Again,
tighter integration with GRASS via the Python bind-
ings would solve many of the above problems. Until
a fully-Python implementation is complete, estima-

tion of automatic tic intervals can be simplified with
the following perl script.

#!/usr/bin/perl -w

the first argument is the maximum extent in map units

divide by a resonable number of annotations per edge

$x = $ARGV[0] / 10;

print round_up($x) , "\n";

round to a resonable scale

found at:

http://www.perlmonks.org/?node_id=599865

sub round_up {

my $n = shift;

my $scale = 10**int(log($n)/log(10));

$n = 9 if $scale == 1; #magic for single digits

if ($n > $scale) {

$n = int($n/$scale+1)*$scale;

}

$n;

}

Conclusions

This article summarizes the current condition of con-
verting GRASS data into GMT format for the pro-
duction of high quality, Postscript maps. Although
several templates and examples exist to automate
this process, for complex map production consider-
able modifications by the user are required. Given
sufficient progress on projects like the GRASS GUI
and Python bindings, it may be possible to cre-
ate a more complete system for streamlining the
GRASS→ GMT workflow. There is currently an ef-
fort lead by Brent Wood to overhaul the GMT vec-
tor format which would simplify the process of the-
matic mapping with GMT. In addition Brent is work-
ing on including write-support for the GMT vec-
tor format into OGR (GDAL). Once completed, vec-
tor export from GRASS to GMT could be as simple
as v.out.ogr format=GMT. Proposed work by Wolf
Bergenheim, on a general label collision detection
and correction algorithm for v.label, would be an
excellent solution to complex labeling tasks in both
GRASS and GMT. Tune in next time for an in-depth
example of creating a complex map using GRASS
data from the Spearfish sample data.

Dylan Beaudette
University of California at Davis
http: // casoilresource. lawr. ucdavis. edu

debeaudette AT ucdavis.edu

ISSN 1994-1897 7

http://casoilresource.lawr.ucdavis.edu
mailto:debeaudette AT ucdavis.edu

OSGeo Journal
Integration Studies

Vol. 1, May 2007

Editor in Chief:
Tyler Mitchell - tmitchell AT osgeo.org

Editor, News:
Jason Fournier

Editor, Case Studies:
Micha Silver

Editor, Project Spotlights:
Martin Wegmann

Editor, Integration Studies:
Martin Wegmann

Editor, Programming Tutorials:
Landon Blake

Acknowledgements
Various reviewers & the GRASS News Project

The OSGeo Journal is a publication of the OSGeo Foundation. The
base of this newsletter, the LATEX 2" style source has been kindly
provided by the GRASS and R News editorial board. All articles
are copyrighted by the respective authors. Please use the OSGeo
Journal url for submitting articles, more details concerning sub-
mission instructions can be found on the OSGeo homepage.

Newsletter online: http://www.osgeo.org/journal

OSGeo Homepage: http://www.osgeo.org

Mail contact through OSGeo, PO Box 4844, Williams Lake,
British Columbia, Canada, V2G 2V8

ISSN 1994-1897

ISSN 1994-1897 8

mailto:tmitchell AT osgeo.org
http://www.osgeo.org/journal
http://www.osgeo.org

	Integration Studies
	Producing Press-Ready Maps with GRASS and GMT
	Overview
	GMT
	Sample Application

	Coupling GRASS and GMT
	Collecting Information from the User
	Collecting Geographic Information
	Exporting and Plotting GRASS Raster Data
	Exporting and Plotting GRASS Vector Data
	Miscellaneous Map Elements

	Conclusions

