
OSGeo Journal
The Journal of the Open Source Geospatial Foundation Volume 1 / May 2007

In This Volume

Real World Implementations of Open Source software

Introducing Mapbender, deegree, openModeller ...

Understanding Spatial Relationships

Examining the Web Processing Server (WPS) Specification

Package Interaction - GRASS-GMT, Tikiwiki, PyWPS, GRASS-R ...

Software Updates

News, and more...

OSGeo Journal Evaluation of the OGC Web Processing Service for Use in a Client-Side GIS Vol. 1, May 2007

Topical Studies

Evaluation of the OGC Web Processing
Service for Use in a Client-Side GIS
by Christopher Michael and Daniel P. Ames

Abstract

The Open Geospatial Consortium Web Processing
Service proposed specification is intended as a solu-
tion for developing web-based geoprocessing plug-
ins, and for easily sharing algorithms and geopro-
cessing functionality. This paper seeks to evaluate
the WPS proposal with respect to feasibility and po-
tential utility, and to identify areas for improvement.
Challenges with the WPS proposal are discussed to-
gether with potential solutions. Several potential
enhancements to the WPS proposal are introduced
and considered, including a mechanism to guide
client applications in prompting for correct data and
a means to list the data available on a server.

Introduction

The Open Geospatial Consortium (OGC, or
OpenGIS) is a consensus standards organization
concerned primarily with the release of open (i.e.,
non-proprietary) specifications to unite geographic

information software, bringing the multitude of dis-
joint formats and communications mechanisms to-
gether to allow interoperability (Open Geospatial
Consortium, 2006). Rather than avoiding this stan-
dardization and remaining fully proprietary, many
GIS system developers “have shown extraordinary
cooperation in teaming to submit OpenGIS Specifi-
cations” (Information Today, 1997) and have actively
embraced the standards, some even participating
in their development. As the OGC is composed of
many professionals in multiple fields, rather than
a single committee in a single corporate environ-
ment, the standards are typically of consistently high
quality and are suitable for any number of differing
scientific tasks.

On November 17, 2005, the OGC released the
fourth revision of a proposal for a specification called
the Web Processing Service (WPS) (Open Geospatial
Consortium, 2005). This proposed specification de-
scribes a mechanism by which geoprocessing may be
performed on remote servers, using principally ex-
tensible markup language (XML) for communication
through the Internet. The specification is authored in
such a way that it should be fully language and plat-
form independent. The OGC requested public com-

ISSN 1994-1897 1

OSGeo Journal Evaluation of the OGC Web Processing Service for Use in a Client-Side GIS Vol. 1, May 2007

ments for a time, with a cutoff date of February 4,
2006. Although the forum for public comments has
already closed, there have been, to date, few if any
real-world studies on the feasibility and utility of the
proposal from the client-side GIS point of view.

Prior to WPS, web-based geoprocessing systems
and approaches similar to WPS have been imple-
mented by various entities. Most notably, the En-
vironmental Systems Research Institute (ESRI) prod-
uct ArcInfo 8.3 (ESRI, 2003) contains a feature called
the Geoprocessing Server, which ran on large-scale
UNIX servers to perform geoprocessing on behalf of
ESRI client software which submitted jobs for pro-
cessing. The ESRI Geoprocessing Server protocol
is proprietary and closed such that only ESRI soft-
ware is able to make use of the remote processing
capabilities. Interestingly, this feature was removed
from the following version (ArcGIS 9.0). A similar
but subtly different feature was introduced in Ar-
cGIS Server 9.2, where a “Model Builder” tool con-
structed from simpler ESRI geoprocessing compo-
nents may be served to ArcGIS Desktop and ArcEx-
plorer clients (Environmental Systems Research In-
stitute, 2006). Unlike WPS, the ESRI implementa-
tion is not compatible with non-ESRI products and
a closed, proprietary communications protocol pre-
venting it from being adopted at large or studied in
a non-ESRI environment.

What is the Web Processing Service
(WPS)?

The Web Processing Service defines a mechanism by
which a client may submit a processing task to a
server to be completed. The service defines a “server
instance”, or server, as an entity which may provide
one or more processes, or individual processing tasks
(e.g., adding two raster datasets together could be
one process). In this manner, any given server may
be able to perform multiple different, and not neces-
sarily related, processes.

The specification indicates that extensible
markup language (XML) should be used for all
communication. Extensible markup language doc-
uments are made up of individual elements, which
are logical containers for related data. An element
may contain other elements, and any given element
may contain attributes which describe that element.
A simple example of an XML document might be:

{\textless}landscape name={\textquotedblright}

Smithsonian Park{\textquotedblright}{\textgreater}}

{\textless}tree type={\textquotedblright}

Elm{\textquotedblright}

height={\textquotedblright}8{\textquotedblright}

/{\textgreater}}{\textless}/landscape{\textgreater}}

This XML document describes a landscape,
which is indicated by the element entitled “land-
scape”. An attribute entitled “name” indicates that
this is the Smithsonian Park. A sub-element entitled
“Tree” implies that the landscape contains or owns
this tree, and the tree has a further two attributes
which describe the type of tree and its height. The
element is closed, or ended, by repeating the name
of the element with a leading slash.

XML is designed to be “straightforwardly usable
over the Internet”, “human-legible and reasonably
clear”, “formal and concise”, and “easy to create”
(W3C, 2000). Using XML is beneficial mainly due to
being human-readable, which assists greatly in de-
signing and debugging applications using it. XML
documents may be validated to ensure that they con-
tain all needed elements and attributes. Validation
takes place against an XML schema, which is a spe-
cialized form of XML document which describes the
structure that an XML document must follow.

The main goal of the Web Processing Service is to
define how to communicate to perform remote pro-
cessing. To this end, there are three key requests
which may be made of a WPS server: GetCapabili-
ties, DescribeProcess, and Execute. The first of the re-
quests asks the server to list the individual processes
which are available on that server, along with a short
abstract and keywords. The request does not require
any parameters. Once a process has been identified
from the response, a “DescribeProcess” request may
be sent, providing the process in question as a pa-
rameter. The response to this request includes the
same information as the GetCapabilities response,
plus more detailed information about any needed in-
put parameters for the process and whether the in-
put is simple (e.g., a simple number like 23) or com-
plex (e.g., a data file). Complex outputs are typi-
cally encoded as XML, for instance using GML (Ge-
ographic Markup Language, a relative of XML) for
vector data.

If the DescribeProcess response indicated that
this is the process the user or client wishes to execute,
the third request (Execute) may be invoked. This re-
quests that the server actually performs the opera-
tion. Necessary parameters include the name of the
process as well as any applicable inputs for the par-
ticular process. The response to the Execute request
is an ExecuteResponse document, another XML doc-
ument which indicates a process status, indicates the
inputs that were used, and provides either simple lit-

ISSN 1994-1897 2

OSGeo Journal Evaluation of the OGC Web Processing Service for Use in a Client-Side GIS Vol. 1, May 2007

eral value outputs or links to complex outputs. The
process status may be “ProcessAccepted”, indicat-
ing that the process was received and is in queue
to be processed; “ProcessStarted”, indicating that the
process is underway; “ProcessSucceeded”, meaning
the process completed; or “ProcessFailed”, indicat-
ing that a problem occurred. If the status is Proces-
sAccepted or ProcessStarted, the status is accompa-
nied by an attribute which indicates where the next
ExecuteResponse document may be found. In this
way, the client may check on the status of the process
by requesting the next ExecuteResponse document.
In the case of ProcessStarted, a status message and
progress percentage may also be provided.

If the process status is ProcessFailed, the Exe-
cuteResponse document also contains an error code
embedded in an XML ExceptionReport element,
which may be one of five error codes (MissingPa-
rameterValue, InvalidParameterValue, NoApplica-
bleCode, ServerBusy or FileSizeExceeded). If the
process succeeded, the response document will also
include either the outputs (in the case of simple lit-
eral values) or URL links to complex outputs (such
as a file with raster data). If a single complex output
is produced, that output may be returned directly
in lieu of an ExecuteResponse document. Together,
these three operation requests and their responses
constitute the majority of the Web Processing Service
proposal.

Why and when should a Web Pro-
cessing Service be used?

Because the geoprocessing functionality proposed is
unlimited in scope or nature (Open Geospatial Con-
sortium, 2005), the proposal holds great promise
for utilizing computational tools without traditional
concerns such as distributing bug fixes or checking
for the most up-to-date version. Although the scope
of what may be accomplished is unlimited, many op-
erations can be completed more quickly locally (i.e.,
on a user’s desktop PC) than remotely (i.e., on a cen-
tral server), especially after factoring in time to up-
load input data and subsequently download result-
ing outputs. When determining whether to use local
or remote data processing, a number of factors must
be considered beyond the raw size of the datasets
involved. Computational complexity plays a large
part. If the process takes several hours to complete
even on a small dataset, it can be better to process
the data remotely. If the task is not complex and
the bulk of the work lies in pressing through large

volumes of locally stored data, it can be more effi-
cient to perform the processing locally. Hence, be-
fore one chooses to use only remote data process-
ing, an intelligent choice ought to be made whether
to proceed with processing locally or remotely. As
illustrated in the simple graph in Figure 1, remote
processing has a useful place in modern computing.
Higher processing power in server farms can eas-
ily reduce the cost of time-demanding and highly
complex tasks, especially when combined with high-
throughput networks such as fiber channel or gigabit
ethernet. Therefore, data should be sent to servers
typically having higher processing power, instead of
using the slower local computer, when the time to
process the data locally would be greater than the
combined time to transmit the data, process it re-
motely, and download it again.

Remote processing is also an ideal choice if the al-
gorithm is relatively new, and is under active devel-
opment. In this scenario, new version releases do not
require software upgrades by end users. Rather, only
the server requires an update to reflect the new code
or algorithm. Subsequently all users automatically
gain access to the most current and most accurate
version of the process simply by using the server-
based processing service. This single point of control
over the process also creates the possibility of charg-
ing for the use of the process, if desired.

The traditional view of remote processing man-
dates that input data is uploaded, as in Remote Pro-
cedure Calls (RPC) where input data and parameters
are sent together with a function call (Bloomer, 1992).
Input data could be stored on the server as well, re-
quiring the client only to specify the particular input
which is desired. This creates the opportunity for
a processing server to also provide data: raw data
wouldn’t necessarily be provided, but processed re-
sult data could be returned without needing to up-
load input data. This makes a great deal of sense par-
ticularly for processes requiring real-time data such
as weather station observations, live traffic observa-
tions, etc. These processes could be provided by the
same agency that collects the data, allowing the pro-
cesses to have access to the latest available data at all
times. The motivations for using a remote processing
server are many, but ultimately the decision must lie
with the user whether remote processing is appropri-
ate for the task.

ISSN 1994-1897 3

OSGeo Journal Evaluation of the OGC Web Processing Service for Use in a Client-Side GIS Vol. 1, May 2007

Figure 1: Local processing and remote processing
each have their appropriate time.

WPS Implementation Considera-
tions

The WPS proposal describes a mechanism by which
a client computer may submit a job to be processed
on a server computer. This is classic client/server
architecture, meaning that both a client component
and a server component are needed. For imple-
mentation and testing purposes it is useful to build
the client-side component on top of an existing geo-
graphic information system to take advantage of ex-
isting visualization features for the geospatial data
to be processed and returned, however, this is not
always required and initial testing may easily be
performed with command-line or spatially unaware
testing tools. This client-side component is the por-
tion which handles XML communication through
the internet with the server, ideally without the user
needing to directly see or work with the XML at all
in order to discover available processes or to make
their request and retrieve results. It is desirable to
build this client-side component in such a way that
it is not tied to any specific software package, propri-
etary or otherwise.

The server-side component which provides the
client implementation (and other client implementa-
tions) with actual services should similarly be stan-
dalone (i.e., not tied to any particular geoprocessing
algorithm or process that is to be provided). One
approach to this problem is to place an interface

layer around existing or new geoprocessing routines
written as command-line Linux-based utilities, Win-
dows services, or Windows applications. As long as
the application or algorithm implementation in ques-
tion may be executed without user interaction (e.g.,
through command-line arguments, TCP/IP commu-
nication, or through OLE data transfer), this thin
communications layer is a good option. It may be
placed around existing geoprocessing functionality
and existing tools (or newly developed tools) to en-
able them to be served using WPS, by providing
XML that meets the interface requirements of the
WPS communication schema. Rather than requir-
ing a full rewrite of existing software, the existing
software will likely only need minor modification
to make it able to run in an unattended mode, ide-
ally via command-line arguments and generated log
files. GRASS utilities (Neteler, 2006) are an excellent
example of existing command-line tools which may
be wrapped using an approach such as this.

This wrapper may then initiate the tool as
needed, and monitor a log file or a return a sta-
tus message to indicate whether the process suc-
ceeded, is still running, failed or is in queue. Sta-
tus percentages and relevant error messages may
also be retrieved from log files, to be returned to
the end user through appropriate communications
in an automated fashion, with this wrapping tech-
nique. Placing this thin wrapper around standalone
tools enables them to be used in multiple places and
for multiple purposes with a minimum of effort. In
essence, this wrapper becomes the “WPS Server”, be-
cause it handles all communications needed by WPS.
This wrapper, constituting the WPS server, could be
implemented as a PHP web page, as an ASP.NET
web page, as a standalone application or using any
other server technology.

Many of the operations needed by a WPS server
are simply metadata operations: providing informa-
tion about individual processes (i.e., required inputs)
and listing processes available on a server. The WPS
server will ideally load information on available pro-
cesses from a configuration file (perhaps one per pro-
cess) or from a database, thus making the code writ-
ten for the WPS server reusable simply by adding
additional processes to configuration files or to the
database. These configuration files or this database
may also indicate to the WPS server how to launch
the process and how to parse its output files.

An overview of the suggested communications
flow between a client application and a server appli-
cation is shown in Figure 2. Initially, the client ap-
plication will query the server, providing a GetCapa-

ISSN 1994-1897 4

OSGeo Journal Evaluation of the OGC Web Processing Service for Use in a Client-Side GIS Vol. 1, May 2007

bilities request. The WPS server then returns an XML
document matching the WPS schema (arrow 1 in Fig.
2). The client then presents the user with a list of the
processes available on the server (arrow 2 in Fig. 2).
The user then selects one of these processes, causing
the client to request additional information on that
process (arrow 3) by sending the DescribeProcess re-
quest. The client application helps the user to collect
and enter any needed input parameters for the pro-
cess to be executed; it then initiates the process on
the server (arrow 3) by sending the Execute request.
The server in turn will trigger a specialized process
launcher utility (arrow 4).

Note that the WPS server should not execute the
requested process directly, because this would imply
a delay: the server would need to complete the pro-
cess before a reply to the client could be sent. Instead,
it is desirable to have the WPS server initiate process-
ing in a different thread, or in a different process, so
that an initial ExecuteResponse may be immediately
returned to the client. In this manner, geoprocessing
operations which are expected to take a good deal of
time will still allow the end user to use their com-
puter. For cleanliness and safety, it is best to start a
completely new process, so that if a process termi-
nates abnormally it won’t stop the entire WPS server
as well: hence, a specialized process launcher utility
is a good solution.

Figure 2: Suggested communications flow between
the client and the server.

As explained in section 2, this initial ExecuteRe-
sponse document informs the client application of
where future status updates (i.e., the next Exe-
cuteResponse) on the requested operation may be
found, as well as notifying of success, failure, ac-
cepted or rejected jobs, and providing status updates.

The client application should request this next Exe-
cuteResponse document as often as the user wishes
(arrow 6 in Fig. 2). Ideally the WPS server should be
designed such that an ExecuteResponse document
may be found in a consistent location, perhaps al-
ways using the same URL for the most recent re-
sponse. A good approach to addressing generation
of response documents would be the creation of a
specialized web page or server component which
simply parses a log file being written by an execut-
ing process to determine current status or errors.

Having the ability to provide status updates re-
quires that the server component is able to get such
updates from the process which is executing. As
implied, a log file is an excellent solution to this:
the process should be able to write a log file or to
redirect its standard output to a text file. In this
manner, the file may be automatically parsed by the
WPS server, providing good connectivity between
the components of the system.

Once the ExecuteResponse document indicates
that the process has completed, the server must re-
turn any applicable error message or return infor-
mation on where the generated data may be down-
loaded or obtained. The client software should then
allow the user to save or view the data, thus complet-
ing the role of WPS.

Suggested Enhancements, Prob-
lems and Potential Solutions

While the WPS proposal is able to accomplish its
stated goals in its current form, the proposal could be
enhanced by six key changes. These changes include
two additional elements in the DescribeProcess re-
sponse provided by a server, which describes a given
process’s inputs and outputs, as well as a mechanism
by which a client may cancel a request which is pend-
ing or processing. Potential changes also include cor-
recting some inconsistencies in behavior, providing
additional exception types for error handling, and
having only a single entry point for each process and
perhaps a single entry point for each server.

The first suggested change is to add an element
to the Extensible Markup Language (XML) docu-
ment which is returned by a DescribeProcess re-
quest. Currently, the needed inputs are listed by
this document, but no clear description of how the
client should prompt the user for this input is pro-
vided. The needed data may come in the form of
selecting a shape on a map, providing a literal value
such as “23”, browsing for a file of a given type, or

ISSN 1994-1897 5

OSGeo Journal Evaluation of the OGC Web Processing Service for Use in a Client-Side GIS Vol. 1, May 2007

dozens of other methods for collecting data. In our
test implementation, we introduce a new XML ele-
ment called “PromptMethod” to address this prob-
lem. The element may contain the values “browse-
forvector”, “browseforraster”, “getboundingbox”, or
“getmatchingregex”. These will cause the client ap-
plication to prompt for a vector file, prompt for a
raster file, retrieve a bounding box (e.g., by asking
the user to draw it) or collect a piece of information
matching a particular pattern, respectively. The first
three require no explanation; the last, getmatchin-
gregex, will accept only a user-entered value which
matches the provided regular expression.

A regular expression is a rule defined by special
characters, such as “ˆ[a-zA-Z][a-zA-Z]$”. This regu-
lar expression would look for the beginning of the in-
put (symbolized by ˆ), followed by two letters, from
A to Z, independent of case, followed by the end of
the input (symbolized by a dollar sign). This pro-
vides a flexible and quickly configurable input filter
to ensure that a user enters only input that is suitable.
Some variations for syntax in regular expressions ex-
ist due to differing regular expression processing en-
gines (Goyvaerts, 2006), meaning that care should be
taken to ensure expressions are designed in such a
way that they may be interpreted in the same way
on both clients and the server. An example of the
suggested addition to WPS may be seen in Figure 3,
where the regular expression is defined as “ˆ\d{8}$”.
This expression indicates that the start of the string
(ˆ) should be followed by eight digits (d{8}) and the
end of the string ($). This expression assumes that
Microsoft’s regular expression processor will be uti-
lized.

The second suggested change is another addition
to the DescribeProcess response. Currently there is
no mechanism by which a server may list the data
that is available on the server for use by a given pro-
cess. An excellent example of where this may be
useful is in the processes of watershed delineation -
defining stream networks and watersheds based on
raster elevation datasets (Savant et al., 2002). Eleva-
tion raster datasets can typically be very large, so it
is undesirable and often impossible to upload the en-
tire input file to the server. Datasets such as eleva-
tion data typically do not change often, and may be
stored on the server to save time. In our test implan-
tation, we address this by introducing an XML ele-
ment entitled “AvailableData”, with a child element
for each data item containing a name and a brief de-
scription as shown in Figure 4. Not only does this
speed up processing by removing the need to upload
the input data, but it also creates a means by which

a WPS server may act as a data repository as well as
processing it and returning that processed data.

Figure 3: Suggested PromptMethod element in De-
scribeProcess response.

Figure 4: Suggested AvailableData element in De-
scribeProcess response.

In the current WPS proposal there is an inconsis-
tency after submitting a job to a server with regards
to what should occur next.. If the process will re-
sult in a single return value and the Execute request
was made with the “store” parameter set to false,
WPS will allow the process to immediately return the
output, rather than an XML ExecuteResponse docu-
ment. If there is more than one output, or if the pro-
cess has been asked to store the results, then an Exe-
cuteResponse document is generated. This behavior
is inconsistent, since any given process might return
either multiple outputs or a single output, depend-
ing on the parameters provided to the process. In-
stead, it is simpler and more straightforward to al-
ways return an ExecuteResponse document, storing
any complex output data (e.g., vector or raster files)
on the server until downloaded by the client. Sim-
ple value outputs (e.g., a single number) may be re-
turned directly embedded in the ExecuteResponse
document, with links pointing to complex outputs.
Our third suggested change is to require always re-
turning an ExecuteResponse document to provide
greater consistency and simplify client implementa-
tion far easier.

After submitting a job to a WPS server, it may

ISSN 1994-1897 6

OSGeo Journal Bibliography Vol. 1, May 2007

be desirable to cancel the requested operation; this
eventuality is not planned for with the current WPS
proposal. In our test implementation (and as our
fourth suggested change) we introduce the use of a
“cancel request URL” in the ExecuteResponse docu-
ment, along with the existing URL indicating where
the next ExecuteResponse document may be found.
In this manner a client wishing to cancel a process
needs only to access the URL to trigger a cancellation
of the requested process, preventing wasted server
processing time on undesired processing.

Our fifth suggested change to the WPS proposal
is to have a single entry point for each possible
request (GetCapabilities, DescribeProcess, and Exe-
cute) on a given process. Ideally, a single entry point
(e.g., a single PHP web page) could be used not only
for every request on a process, but also for every pro-
cess available on that server. Presently, each of the re-
quests that a process supports may have a different
URL to perform that request, as illustrated in Figure
5. In the figure, the GetCapabilities URL is circled in
blue, the DescribeProcess URL in green, and the Exe-
cute URL in red. Here each URL is the same, making
maintenance and implementation easier, although it
is acceptable to have a different access URL for each
operation. Confusion or errors can easily arise with
differing URLs for these operations. This can be ad-
dressed easily by making it required to use only one
URL for all three of the requests that a process must
support.

Lastly, our sixth suggested change is to imple-
ment a more highly structured exception system.
Presently there are only a few exception types (Miss-
ingParameterValue, InvalidParameterValue, NoAp-
plicableCode, ServerBusy and FileSizeExceeded),
which are limiting - particularly when attempting
to parse the error automatically. With a small num-
ber of exception types (exception codes), there is no
generic way in which to handle errors on behalf of
the user; the only thing that can be done presently
is to display the error to the user. A more com-
plex and structured exception hierarchy would allow
client applications to understand the nature of the
error that occurred, perhaps recovering or retrying
automatically as needed. The ability to insulate the
end user from errors and recover gracefully is an im-
portant part of any standard design, and this ability
would be made possible with a more detailed excep-
tion hierarchy.

Figure 5: Ability to have a differing URL for each re-
quest on the same process can cause confusion and
unnecessary complexity.

Conclusions

Overall, the WPS proposal was found to be an ef-
fective way of standardizing on a communications
mechanism for client/server geoprocessing. The
proposal works as currently designed, and is in-
deed suitable for many GIS tasks. Implementation of
the client component and the server-based WPS pro-
cesses showed that the WPS proposal is sound and
effective. Nonetheless, there are several opportuni-
ties for enhancement to the WPS proposal including
the six specific recommendations provided here. It
is hoped that these observations will benefit others
working to implement the WPS proposed specifica-
tion on various GIS platforms.

Any conceivable geoprocessing activity may be
presented in a WPS format. This allows the devel-
opers of the algorithm to continuously improve the
algorithm while still allowing users at any location
to use the code, without needing to update to a latest
version. This also ensures that code and algorithms
being used are of high quality; if a bug is detected in a
released version of an algorithm which is distributed
on CD, no easy way exists to ensure that all users
successfully upgrade to the corrected version. With
a web-based processing architecture, this problem is
alleviated by simply publishing the new algorithm to
the processing server. Processor intensive and time
consuming geoprocessing may be performed on re-
mote servers, freeing the user’s desktop to work on
other tasks. Large datasets may even be stored on the
server and processed according to the user’s particu-
lar parameters, combining data repository and data
processing aspects into one system.

The WPS proposal introduces a standard which
will allow diverse developers at different locations to
produce geoprocessing offerings and provide them

ISSN 1994-1897 7

OSGeo Journal
Topical Studies

Vol. 1, May 2007

easily to differing client platforms. In these tests,
the WPS proposal has been shown to be practical
and usable in its current design. The additional
enhancements proposed can improve WPS signifi-
cantly, making it better suited still to the task for
which it was designed.

Bibliography

Bloomer, John. 1992. Power Programming with RPC. Cambridge,
MA: O’Reilly Media.

Environmental Systems Research Institute (ESRI). 2003. ArcGIS
Desktop Products Data Sheet. WWW document, http://www.
esrichina-bj.cn/produce/esri/arcgisdesktopsheet.pdf

Environmental Systems Research Institute (ESRI). (2006). ArcGIS
9.2 Webinar – ArcGIS Server: Publishing a Geoprocessing
Model. WWW document, http://events.esri.com/info/

index.cfm?fuseaction=seminarRegForm\&shownumber=9919

GIS Competitors Cooperate on OpenGIS Specs. 1997. Informa-
tion Today, 14(2), 15-15.

Goyvaerts, Jan. 2006. Regular Expression Tutorial. WWW doc-
ument, http://www.regular-expressions.info/tutorial.

html

Open Geospatial Consortium, Inc. 2006. Vision and Mission.
WWW document, http://www.opengeospatial.org/about/
?page=vision

Open Geospatial Consortium, Inc. 2005. OpenGIS® Web Pro-
cessing Service (WPS) Discussion Paper. WWW document,
http://www.opengeospatial.org/

Christopher Michael
Research Assistant
Idaho State University Geospatial Software Lab

Daniel P. Ames, PhD
Assistant Professor
Department of Geosciences, Idaho State University

ISSN 1994-1897 8

http://www.esrichina-bj.cn/produce/esri/arcgisdesktopsheet.pdf
http://www.esrichina-bj.cn/produce/esri/arcgisdesktopsheet.pdf
http://events.esri.com/info/index.cfm?fuseaction=seminarRegForm\&shownumber=9919
http://events.esri.com/info/index.cfm?fuseaction=seminarRegForm\&shownumber=9919
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.opengeospatial.org/about/?page=vision
http://www.opengeospatial.org/about/?page=vision
http://www.opengeospatial.org/

OSGeo Journal
Topical Studies

Vol. 1, May 2007

Editor in Chief:
Tyler Mitchell - tmitchell AT osgeo.org

Editor, News:
Jason Fournier

Editor, Case Studies:
Micha Silver

Editor, Project Spotlights:
Martin Wegmann

Editor, Integration Studies:
Martin Wegmann

Editor, Programming Tutorials:
Landon Blake

Acknowledgements
Various reviewers & the GRASS News Project

The OSGeo Journal is a publication of the OSGeo Foundation. The
base of this newsletter, the LATEX 2" style source has been kindly
provided by the GRASS and R News editorial board. All articles
are copyrighted by the respective authors. Please use the OSGeo
Journal url for submitting articles, more details concerning sub-
mission instructions can be found on the OSGeo homepage.

Newsletter online: http://www.osgeo.org/journal

OSGeo Homepage: http://www.osgeo.org

Mail contact through OSGeo, PO Box 4844, Williams Lake,
British Columbia, Canada, V2G 2V8

ISSN 1994-1897

ISSN 1994-1897 9

mailto:tmitchell AT osgeo.org
http://www.osgeo.org/journal
http://www.osgeo.org

	Topical Studies
	Spatial Relationships In GIS - An Introduction
	Introduction
	What are spatial relationships?
	Article Scope
	Definition of Spatial Relationship
	What Are Vector Geometries?
	How can we identify and describe spatial relationships?
	Three Ways To Identify Spatial Relationships Between Vector Geometries

	An Example
	Why are spatial relationships important in a GIS?
	Conclusion

