
OSGeo Journal
The Journal of the Open Source Geospatial Foundation Volume 1 / May 2007

In This Volume

Real World Implementations of Open Source software

Introducing Mapbender, deegree, openModeller ...

Understanding Spatial Relationships

Examining the Web Processing Server (WPS) Specification

Package Interaction - GRASS-GMT, Tikiwiki, PyWPS, GRASS-R ...

Software Updates

News, and more...

OSGeo Journal Geospatial Processing via Internet on Remote Servers – PyWPS Vol. 1, May 2007

Integration Studies

Geospatial Processing via Internet on
Remote Servers – PyWPS
PyWPS and Embrio

Jáchym Čepický and Lorenzo Becchi

Document OGC 05-007r41 describes a process for offering
geospatial operations over networks using Web Services.
This paper introduces an example implementation – Py-
WPS. Even if the original target of PyWPS was to make
modules of GRASS GIS accessible from Internet applica-
tions, in general it is possible to use any command-line
oriented tool or any tool which has bindings to Python
Programming language. With the help of PyWPS we can
perform time consuming calculations on the server side, as
well as build your real WebGIS application, running in a
web browser. Let us describe how it works and if PyWPS
could fit your needs.

OGC Web Processing Service

Since the OGC Web Processing Service (WPS) stan-
dard is still relatively new and not as well known as,
for example, its cousin the Web Map Service (WMS),
we start by providing a brief overview of the stan-

dard here. The basic unit of the WPS is the process
– a geospatial operation, with inputs and outputs of
a defined type. The client communicated with the
server with the help of three types of requests. The
request can be sent to the server via HTTP GET with
parameters provided as Key-Value Pairs (KVP) or via
HTTP POST, with parameters supplied in a XML file.
There are three types of requests that can be sent to
the server:

GetCapabilities – Server responds with XML, de-
scribing server provider, fees, general descrip-
tion and giving a list of processes, prepared to
be performed.

DescribeProcess – Server responds with XML,
which describes concrete inputs and outputs
type, so the client is able to formulate the Ex-
ecute request.

Execute – Client requests the execution of a geospa-
tial operation, with all required input data – the
server process runs and informs the client (the
user) of its progress.

The following are some illustrative examples of
these requests. Let us assume we would like to per-

1OGC Web Processing Service (WPS): http://www.opengeospatial.org/standards/requests/28

ISSN 1994-1897 1

http://www.opengeospatial.org/standards/requests/28

OSGeo Journal Geospatial Processing via Internet on Remote Servers – PyWPS Vol. 1, May 2007

form line-of-sight calculation from defined x and y
coordinates on a raster file, which can be obtained
from a remote server. The process name will be visi-
bility.

Basic usage of OGC Web Process-
ing service

First we need to find out which calculations the
server offers (see this link 2) From the resulting XML
it is clear that the process visibility is available on the
server and the abstract tells us that it does what we
would like. In the second step we need to find out
what kinds of input and output the process requires
or will send back (see this link3)

• x of type LiteralValue
• y of type LiteralValue
• maxdist – maximum distance from the ob-

server. Type LiteralValue, minimal allowed
value is 0, maximal 5000 meters.

• observer – observer height. Type LiteralValue,
minimal allowed value is 0, maximal 50 meters.

• dem – type ComplexValue – raster map of digital
elevation model, on which the visibility should
be calculated.

Now we can formulate the input request, send
it to the server and look forward to the calculation
results4 The server will download the input digital
elevation model, perform the line-of-sight calcula-
tion and return the resulting raster image back to the
client.

Introduction to PyWPS

PyWPS is a relatively new project, started in April
2006. The original project goal was to make the con-
nection between UMN MapServer and GRASS GIS
as easily possible so that we could build a real We-
bGIS application able to perform, for example, in-
terpolation of raster data or various digital elevation
model analysis. Time has shown that even though
GRASS GIS is a powerful tool, it is not necessarily the
best or the only choice for all possible tasks. The de-
sign of PyWPS has changed so that it could be used

without GRASS GIS in the background, but with any
other tool or just with Python itself.

PyWPS is an implementation of OGS’s Web Pro-
cessing Service standard as defined in the document
OGC 05-007r4. Currently, the complete standard is
not yet supported, but around 95% of the standard is
implemented and usable.

The project is built on a simple CGI script hoping
to make the life of WebGIS coders as easy as possible.
It provides functions to:

• Parse all input and create all output
• Perform basic validation of the input, like in-

suring type of LiteralValue input or maximum
file size for the ComplexValue input, etc.

• Create and remove on-the-fly generated tem-
porary files and directories, like temporary
GRASS locations and mapsets and other files
created as part of the calculation.

• Run other useful operations

The coder has to do only one thing: define the
processes input and output, which is basically a
script in the Python programming language. The
process is one class Process, with one mandatory
method execute, in which the calculation is provided.
Input and output data are defined in a similar way,
in a complex dictionary structure5:

{

'Identifier':'maxdist',

'Title': 'Maximal distance',

'Abstract':'Maximal distance of visibility',

'LiteralData': {

'values':[[0.,5000]],

},

'dataType': type(0.0),

},

{

'Identifier': 'dem',

'Title': 'Digital elevation mode'

'Abstract': 'Raster map with elevation model',

'ComplexValueReference': {

'Formats':["image/tiff"],

}

},

The execute() method can then use e.g. GRASS
modules directly:

2http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&request=GetCapabilities
3http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&request=DescribeProcess&version=0.4.0&identifier=

visibility
4http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&version=0.4.0&request=Execute&identifier=

visibility&datainputs=x,602829.1875,y,4925326.875,maxdist=2000,observer=1.2,dem,http://somewhere/?some&service
5Note that this has been replaced by new methods Add*Input() in current svn version

ISSN 1994-1897 2

http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&request=GetCapabilities
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&request=DescribeProcess&version=0.4.0&identifier=visibility
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&request=DescribeProcess&version=0.4.0&identifier=visibility
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&version=0.4.0&request=Execute&identifier=visibility&datainputs=x,602829.1875,y,4925326.875,maxdist=2000,observer=1.2,dem,http://somewhere/?some&service
http://pywps.ominiverdi.org/cgi-bin/wps.py?service=WPS&version=0.4.0&request=Execute&identifier=visibility&datainputs=x,602829.1875,y,4925326.875,maxdist=2000,observer=1.2,dem,http://somewhere/?some&service

OSGeo Journal Geospatial Processing via Internet on Remote Servers – PyWPS Vol. 1, May 2007

def execute(self):

importing dem

os.system("r.in.gdal in=%s out=dem" %\

(self.datainputs['dem']))

setting region according to dem file

os.system("g.region rast=dem")

lines-of-sight module

os.system("r.los input=dem output=output \

coordinate=%s,%s max_dist=%f \

obs_elev=%d" % \

(self.datainputs['x'],

self.datainputs['y'],

self.datainputs['maxdist'],

self.datainputs['observer']))

exporting raster map

os.system("r.out.gdal in=output out=out.tif")

setting the output value

self.dataoutputs['output'] = "out.tif"

return

As the source code is the best documentation,
around ten example processes are distributed to-
gether with the PyWPS source, so the user can get a
general picture of the process definition. There is also
on-line and offline documentation available, which
tries to describe the installation process and setup of
your own processes.

Recently, a new class has been defined, which
provides easy definition of process inputs and out-
puts as well as better support for GRASS GIS mod-
ules. Any web interface will be able to track progress
of data imports derived directly from the r.in.gdal
module. This improvement will be available in the
next release of PyWPS.

Further development

The first “stable” version of PyWPS with the version
number 1.0.0 was released in November 2006. Cur-
rently, the PyWPS development team is planning to
release version 2.0.0 soon, with added functionality
and a few bug fixes. Common effort in the develop-
ment goes in three directions:

• Implementation of the complete OGC WPS
standard

• Making the application as secure as possible, to
avoid server compromise

• Making life of the process-coder as easy as pos-
sible

The PyWPS development team would also like to
start discussion in the geospatial communities about

defining process metadata. The OGC WPS standard
defines the input types from the process point of
view, however it does not say anything about in-
put (or output) type from the user (interface) point
of view. For example, coordinate x is of type Liter-
alValue but this does not describe x as a coordinate.
So it could be useful to setup this input value with a
mouse click in the map window rather then with the
keyboard in some input form field. If you want to
have a closer look at PyWPS, feel free to visit the Py-
WPS project page6 where the source code as well as
links to projects already using PyWPS are available.

Using ka-Map & PyWPS to create a
GRASS WEB GIS

Ominiverdi7 became involved with developing Py-
WPS after its initial release. Our first goal was to cre-
ate a FOSS Web Client to access GRASS functions.
PyWPS was not the first attempt to do a connection
between GRASS and the Web but none of the others
were based on open standards, making it impossible
to create a shared platform.From the beginning we
started planning two different projects: Embrio and
Wuiw.

Embrio

This is the first implementation we had in mind: use
of PyWPS to let UMN MapServer and its MapScript
API to interact with GRASS.

Another important goal was a Web rich client and
that’s why we decided to base our efforts on ka-
Map. Ka-Map uses MapScript to access the power-
ful set of features in UMN MapServer and offers a
Google Maps-like navigation experience. The out-
put of PyWPS, once the Process returns a map, can
be in GeoTiff, for raster output, and in GML for vec-
tor output. Both formats are natively accessible by
UMN MapServer and can easily be coupled with an
existing map environment. In this way a request for
the Visibility module can return a GeoTiff that is kept
by ka-Map and inserted in the actual map coordi-
nates system. Then a style, that can be an SLD, is
applied to raster values and a temporary cache is cre-
ated on the fly while tiles are sent back to the client.
The temporary cache is related to the sessionId.

This system allows different modules to run in
parallel and to compare their outputs using the ka-
Map interface. Layer opacity control and layer verti-

6PyWPS project page: http://pywps.wald.intevation.org
7Ominiverdi website: http://www.ominiverdi.org

ISSN 1994-1897 3

http://pywps.wald.intevation.org
http://www.ominiverdi.org

OSGeo Journal
Integration Studies

Vol. 1, May 2007

cal position can be useful to understand the resulting
output. Even the query function is synchronized if
the output is queryable. The Visibility module can
output the incident angle with the point of view, the
query function can return the value for each pixel
clicked.

Figure 1: Screenshot of the most recent Embrio inter-
face

Wuiw

Wuiw is still more of a concept than an application.
It’s intended to offer a Javascript API that connects
the WPS to data resource as OWS and render the out-
put independently from any mapserver application.

We are still evaluating current limits of the WPS
draft that are not yet relating the input definition
with a complex type definition. The first idea has
been to use Metadata information to create this kind
of interaction but there is the risk of developing a
parallel dialect that will loose the benefits of standard
interoperability.

We hope that the WPS path to version 1.0 will cre-
ate a comfortable solution to this limitation.

Further development

It is obvious that WPS, PyWPS, Embrio and Wuiw
all have short histories. Even if most things are still
to be done, the beginning is promising. Regarding
Embrio’s future, we plan to improve interaction with
the WPS script process feedback and show a pro-
cess progress bar. Many more GRASS modules can
be developed and we hope to receive help from the
GRASS community to achieve this.

Another important goal is to add more interac-
tion with CLI (command line interface) accessible ap-
plications, including R, GDAL/OGR, etc. for geo
statistics, format conversion and many, many other
functions.

We also hope to add an AJAX CLI to interact with
a protected system interacting through WPS.

Licenses

It important to note that this project uses many dif-
ferent software packages with at least two different
licenses.

• GNU/GPL: GRASS, PyWPS, R
• MIT/BSD: UMN MapServer, MapScript, ka-

Map, Embrio

Resources

• OGC Web Processing Service 8

• PyWPS home page: 9

• Last Embrio live example: 10

• Embrio home page 11

Jáchym Čepický
http: // les-ejk. cz

jachym AT les-ejk cz

Lorenzo Becchi
http: // ominiverdi. org

lorenzo AT ominiverdi com

8http://www.opengeospatial.org/standards/requests/28
9PyWPS Home page: http://pywps.wald.intevation.org

10 Live example:
http://pywps.ominiverdi.org/demo/embrio/ka-map/htdocs/index_wps_qgis.html

11http://pywps.ominiverdi.org/

ISSN 1994-1897 4

http://les-ejk.cz
mailto:jachym AT les-ejk cz
http://ominiverdi.org
mailto:lorenzo AT ominiverdi com
http://www.opengeospatial.org/standards/requests/28
http://pywps.wald.intevation.org
http://pywps.ominiverdi.org/demo/embrio/ka-map/htdocs/index_wps_qgis.html
http://pywps.ominiverdi.org/

OSGeo Journal
Integration Studies

Vol. 1, May 2007

Editor in Chief:
Tyler Mitchell - tmitchell AT osgeo.org

Editor, News:
Jason Fournier

Editor, Case Studies:
Micha Silver

Editor, Project Spotlights:
Martin Wegmann

Editor, Integration Studies:
Martin Wegmann

Editor, Programming Tutorials:
Landon Blake

Acknowledgements
Various reviewers & the GRASS News Project

The OSGeo Journal is a publication of the OSGeo Foundation. The
base of this newsletter, the LATEX 2" style source has been kindly
provided by the GRASS and R News editorial board. All articles
are copyrighted by the respective authors. Please use the OSGeo
Journal url for submitting articles, more details concerning sub-
mission instructions can be found on the OSGeo homepage.

Newsletter online: http://www.osgeo.org/journal

OSGeo Homepage: http://www.osgeo.org

Mail contact through OSGeo, PO Box 4844, Williams Lake,
British Columbia, Canada, V2G 2V8

ISSN 1994-1897

ISSN 1994-1897 5

mailto:tmitchell AT osgeo.org
http://www.osgeo.org/journal
http://www.osgeo.org

	Integration Studies
	Geospatial Processing via Internet on Remote Servers -- PyWPS
	OGC Web Processing Service
	Basic usage of OGC Web Processing service
	Introduction to PyWPS
	Further development

	Using ka-Map & PyWPS to create a GRASS WEB GIS
	Embrio
	Wuiw

	Further development
	Licenses
	Resources

