
USING THE R— GRASS INTERFACE

Using the R— GRASS interface
Current status

by Roger Bivand

Introduction
Interfaces between GRASS and R, the open source
data analysis and statistical programming environ-
ment, have existed for some time. Details of the in-
terface between GRASS 6 and R were described two
years ago in Bivand (2005), but since then things have
got a lot simpler.

Intermediate temporary files are the chosen so-
lution for the GRASS 6 interface: spgrass6, using
shapefiles for vector data and BIL binaries for raster
data. R is started from within a GRASS session from
the command line, and the spgrass6 loaded with its
dependencies, with the R interface being used to ac-
cess and update GRASS data.

Installing the interface package
The GRASS 6 interface is available from CRAN, the
Comprehensive R Archive Network. It depends on
three packages, andm if not already available, these
(sp, maptools and rgdal) should be installed within
R using the dependencies= argument:
> install.packages("spgrass6", dependencies = TRUE)

To install on a server not running a graphical in-
terface, set the CRAN mirror first with:
> chooseCRANmirror(graphics = FALSE)

The only potential difficulties for installation of
these packages from source on Linux, Unix, or Ma-
cOS X are with rgdal, because of its external de-
pendencies on GDAL and PROJ.4 libraries. On
Unix/Linux, note that development files for GDAL
are required, not just GDAL itself, if your GDAL
was installed binary rather than from source. All the
other packages are available as binaries for MacOS
X users, but rgdal is not. Notes for MacOS X users
about installing rgdal are to be found on the Rgeo
website — see under rgdal. Windows binaries are
available for all the packages, and work with GRASS
6 under Cygwin.

Using the package
> library(spgrass6)

> gmeta6()

The examples used here are taken from the
“Spearfish” sample data location (South Dakota,

USA, 103.86W, 44.49N), perhaps the most typical for
GRASS demonstrations. The gmeta6 function is sim-
ply a way of summarising the current settings of
the GRASS location and region within which we are
working. At the present stage of the interface, raster
data transfer is done layer by layer, and uses tem-
porary binary files. The readRAST6 command here
reads elevation values into a SpatialGridDataFrame

object, treating the values returned as floating point,
and the geology categorical layer into a factor:

> spear <- readRAST6(c("elevation.dem",

+ "geology"), cat = c(FALSE, TRUE))

> summary(spear)

Object of class SpatialGridDataFrame

Coordinates:

min max

coords.x1 589980 609000

coords.x2 4913700 4928010

Is projected: TRUE

proj4string :

[+proj=utm +zone=13 +a=6378206.4

+rf=294.9786982 +no_defs

+nadgrids=/home/rsb/topics/grass63/grass-6.3.cvs/etc/nad/conus

+to_meter=1.0]

Number of points: 2

Grid attributes:

cellcentre.offset cellsize cells.dim

1 589995 30 634

2 4913715 30 477

Data attributes:

elevation.dem geology

Min. : 1066 sandstone:74959

1st Qu.: 1200 limestone:61355

Median : 1316 shale :46423

Mean : 1354 sand :36561

3rd Qu.: 1488 igneous :36534

Max. : 1840 (Other) :37636

NA
�

s :10101 NA
�

s : 8950

1000 1200 1400 1600 1800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
n(

x)

Figure 1: Empirical cumulative distribution function
of elevation for the Spearfish location.

1

http://www.sal.uiuc.edu/tools/tools-sum/rgeo/rgeo-detail/map-packages-on-cran

USING THE PACKAGE USING THE R— GRASS INTERFACE

metamorphic

transition

igneous

sandstone

limestone

shale

sandy shale

claysand

sand

1200 1400 1600 1800

Figure 2: Boxplots of elevation by geology category,
Spearfish location.

When the cat= argument is set to TRUE, the
GRASS category labels are imported and used as fac-
tor levels; checking back, we can see that they agree:
> table(spear$geology)

metamorphic transition igneous

11693 142 36534

sandstone limestone shale

74959 61355 46423

sandy shale claysand sand

11266 14535 36561

> system("r.stats --q -cl geology",

+ intern = TRUE)

[1] "1 metamorphic 11693"

[2] "2 transition 142"

[3] "3 igneous 36534"

[4] "4 sandstone 74959"

[5] "5 limestone 61355"

[6] "6 shale 46423"

[7] "7 sandy shale 11266"

[8] "8 claysand 14535"

[9] "9 sand 36561"

[10] "* no data 8950"

Figure 1 shows an empirical cumulative distribu-
tion plot of the elevation values, giving readings of
the proportion of the study area under chosen ele-
vations. In turn Figure 2 shows a simple boxplot
of elevation by geology category, with widths pro-
portional to the share of the geology category in the
total area. We have used the readRAST6 function
to read from GRASS rasters into R; the writeRAST6

function allows a single named column of a Spatial-
GridDataFrame object to be exported to GRASS.

The spgrass6 package also provides functions to
move vector features and associated attribute data to
R and back again. The readVECT6 function is used
for importing vector data into R, and writeVECT6 for
exporting to GRASS:
> bugsDF <- readVECT6("bugsites")

> vInfo("streams")

points lines boundaries centroids

0 104 12 4

areas islands faces kernels

4 4 0 0

> streams <- readVECT6("streams", type = "line,boundary",

+ remove.duplicates = FALSE)

The remove.duplicates= argument is set to
TRUE when there are only for example lines or ar-
eas, and the number present is greater than the data
count (the number of rows in the attribute data ta-
ble). The type= argument is used to override type
detection when multiple types are non-zero, as here,
where we choose lines and boundaries, but the func-
tion guesses areas, returning just filled water bodies.

Because the mechanism used for passing infor-
mation concerning the GRASS location coordinate
reference system differs slightly between raster and
vector, the PROJ.4 strings often differ slightly, even
though the actual CRS is the same. We can see that
the representation for the point locations of beetle
sites does differ here; the vector representation is
more in accord with standard PROJ.4 notation than
that for the raster layers, even though they are the
same. In the summary of the spear object above, the
ellipsoid was represented by +a= and +rf= tags in-
stead of the +ellps= tag using the clrk66 value:
> summary(bugsDF)

Object of class SpatialPointsDataFrame

Coordinates:

min max

coords.x1 590232 608471

coords.x2 4914096 4920512

Is projected: TRUE

proj4string :

[+proj=utm +zone=13 +ellps=clrk66

+datum=NAD27 +units=m +no_defs

+nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat]

Number of points: 90

Data attributes:

cat str1

Min. : 1.00 Beetle site:90

1st Qu.:23.25

Median :45.50

Mean :45.50

3rd Qu.:67.75

Max. :90.00

This necessitates manual assignment from one
representation to the other on occasion, and is due
to GRASS using non-standard but equivalent exten-
sions to PROJ.4.

There are number of helper functions in the sp-
grass6 package, one gmeta2grd to generate a Grid-
Topology object from the current GRASS region set-
tings. This is typically used for interpolation from
point data to a raster grid, and may be masked by
coercion from a SpatialGrid to a SpatialPixels object
having set cells outside the study area to NA. A sec-
ond utility function for vector data uses the fact that
GRASS 6 uses a topological vector data model. The
vect2neigh function returns a data frame with the
left and right neighbours of arcs on polygon bound-
aries, together with the length of the arcs. This can

2

BIBLIOGRAPHY BIBLIOGRAPHY

be used to modify the weighting of polygon con-
tiguities based on the length of shared boundaries.
Like GRASS, GDAL/OGR, PROJ.4, and other OSGeo
projects, the functions offered by spgrass6 are chang-
ing, and current help pages should be consulted to
check correct usage.

Bibliography
Bivand, R. S., (2005) Interfacing GRASS 6 and R. GRASS Newslet-

ter, 3, 11–16.

Roger Bivand
Economic Geography Section, Department of Economics,
Norwegian School of Economics and Business Adminis-
tration, Bergen, Norway
http://www.r-project.org/Rgeo

Roger.Bivand@nhh.no

3

http://www.r-project.org/Rgeo
mailto:Roger.Bivand@nhh.no

	Using the R--- GRASS interface
	Introduction
	Installing the interface package
	Using the package

