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Welcome from the Conference Chair
Welcome to this special edition of the OSGeo Journal, featuring selected papers from the
academic track that were presented at the FOSS4G (Free and Open Source Software for
Geospatial) 2011 conference in Denver.1 The conference was the largest FOSS4G yet, with
914 attendees from 42 countries. Feedback from attendees was very positive, with the
post-conference survey giving it an overall rating of 4.32 out 5. The attendance reflects
the strong growth in interest in open source software that we are currently seeing in the
geospatial industry.

We made a conscious effort in 2011 to enhance the academic track at the conference
by providing improved publishing opportunities. We did this through publishing papers
both in “Transactions in GIS” and in this edition of the OSGeo Journal. I would like to
thank Rafael Moreno for leading this effort, as well as the rest of the organizers of the
academic track who Rafael recognizes below.

Peter Batty, Ubisense
FOSS4G 2011 Conference Chair

1FOSS4G: http://foss4g.org
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Functional Coverages
Gennadii Donchyts, Fedor Baart, H.R.A (Bert) Jagers, Arthur van
Dam

Abstract
A new Application Programming Interface (API) is presented
which simplifies working with geospatial coverages as well
as many other data structures of a multi-dimensional na-
ture. The main idea extends the Common Data Model (CDM)
developed at the University Corporation for Atmospheric
Research (UCAR). The proposed function object model uses
the mathematical definition of a vector-valued function. A
geospatial coverage will be expressed as a vector-valued func-
tion whose dependent variables (the vector components) are
fully defined by its independent variables (the coordinates).

Our goal is to provide an API using a terminology and an
object model that is both appealing to computer scientists and
numerical modelers and is flexible enough to enable defining
data structures for a wide range of applications. Examples
of such data structures can be: wind velocity as a continuous
variable defined along the channels in a river network. Pre-
cipitation data defined as a time-dependent variable on a set
of sub-catchments of a drainage basin, preserving association
with sub-catchment features.

The new object model provides a basis for both contin-
uous and discrete coverages including non-geospatial data
structures such as time series. Different storage models for
variables are implemented, based on the Network Common
Data Format (NetCDF), the Geospatial Data Abstraction Li-
brary (GDAL) and memory.

The API is available as set of open source libraries devel-
oped in C# consisting of a multi-dimensional arrays library; a
scientific data structures library defining variables, functions,
units of measure; a geospatial extensions library built on top
of GeoAPI.NET and NetTopologySuite, defining specialized
coverages: network coverage, feature coverage, regular grid
coverage, and unstructured grid coverage.

1 Introduction
Geospatial coverage is the concept describing geographic phe-
nomena upon which a range of data values can be present.
The concept dates back to early ArcInfo35 versions, but has
been applied and rethought numerous times in data stan-
dards and Application Programming Interface (API)s ever
since. The assumptions that were made in these do not alway
make them easily applicable in new fields, where both the
data and the spatial domains may be more complicated. One
special example is the role of the time dimension, which
was absent in early coverage definitions. Over the past
decades, many initiatives were taken to incorporate time into
geospatial applications ((Peuquet, 1999), (Wachowicz, 1999),
(Goodall et al., 2004)) resulting in a sometimes overly special
role of the time dimension.

The goal of the present work is to define a high-level
API that will allow presenting most of the existing geospatial

and temporal coverage data types in terms of vector-valued
functions of one or more independent variable(s), inspired by
basic vector calculus. The main reason for doing this is a unifi-
cation of the storage of spatiotemporal domains and coverage
values on top of these domains. In addition this will simplify
development of generic data transformation algorithms such
as aggregations, filtering, interpolation, and extrapolation. It
will be much easier to re-use them, which will simplify devel-
opment of applications, as was already shown for example
for the Open Modeling Interface (OpenMI) 2.0 by Donchyts
et al. (2010). We will show that this higher-level API can not
only define scalar data on spatial networks or grids, but can
also be used to define more general data structures, such as
time-series or vector fields. Evidently, these can be used in
geospatial applications, but are also applicable in a wider
scope.

Related work
The definition and use of a geospatial coverage can be ap-
proached from several angles; two existing standards are the
ISO 19123 standard (schema for coverage geometry and func-
tions) and the Common Data Model (CDM), designed by the
University Corporation for Atmospheric Research (UCAR).

The ISO 19123 standard defines a coverage as a "coverage
is a feature that associates positions within a bounded space
(its domain) to feature attribute values (its range)". ISO 19123
as well as the Open Geospatial Consortium (OGC) Abstract
Specifications (2007) define an abstract concept of the cover-
age object model and how it supports mapping from a spatial,
temporal or spatio-temporal domain to feature attribute val-
ues. These standards are mainly used to form the basis of an
geospatial API’s such as GeoAPI.36

Alternatively, the CDM API mainly focuses on the multi-
dimensional aspects of coverages. An overview of the UCAR
CDM and its mapping into the corresponding elements of
the international standard coverage data model of ISO 19123
is presented by Nativi et al. (2008). More information about
CDM and the Network Common Data Format (NetCDF) can
be found in Rew and Davis (1990).

As a result of these two different angles, the coverage
API is very well suited in geospatial applications, whereas
the CDM API has proven itself in numerical applications and
for large datasets, see, e.g., Rutledge et al. (2006) and Signell
et al. (2008), respectively. For applications where data struc-
tures are less organized (ecological models) or require more
complex relations (river models), both data models are less
applicable. This paper deals with datasets where information
is dependent on time and covers a network- or grid-based
area (the spatial domain). Examples are: ocean dynamics
(water levels and velocities in 3D grid layers) and river flows
(water levels, velocities and transport across network connec-
tions), see, e.g., Kernkamp et al. (2011). The new API should
facilitate this.

An example of an often-used API for time-dependent data
sets defined on complex geometries can be found in the open
source Visualization Toolkit (VTK) (Schroeder et al., 2000).

35http://www.esri.com/software/arcgis/arcinfo
36http://www.geoapi.org/
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Each object in VTK maintains an internal time stamp that is
automatically updated when the object state changes (usually
as a result of setting an instance variable value). An alterna-
tive approach to dealing with the time dependent grid based
data is presented by Howe and Maier (2005). They use a
relational database based approach using an algebra notation
to manipulate both regular and irregular gridded datasets.
When comparing these API’s and data models we can see
that they differ in scope, detail and field. When approached
from the visualization field as was done in VTK, the time
dependency and geographic aspects were added later (see
for example vtkGeoGlobeSource, vtkTemporalDataSet). Be-
cause the API is focused on visualizations we can see that all
geometry objects are well defined and easy to comprehend.

When approached from the Geographic Information Sys-
tem (GIS) field we can see that the Feature is the base of all
relevant objects, however it is still ongoing discussion about
what it is and how it should be implemented and used in
applications. OGC Coverage Primer (Nordgren, 2006) reflects
this in the following way: The question "What is a feature?"
leads directly to a philosophical rabbit hole which deposits the un-
wary questioner in a wonderland from which it is difficult to return.
Also, time aspects are still being introduced in the OGC stan-
dards and as a result most widely used geospatial API’s that
build upon these OGC Standards still lack support for time
dependency.

It is important to note that computer scientists will of-
ten define their own API and naming conventions that are
(partly) based on the problem domain in which they happen
to be working at the time rather than using the terminology of
the generic underlying concepts. This complicates the reuse
by people in other domains. The idea to use multi-valued
functions to represent data structures in a more generic way
has been formulated by Treinish (1999) as: "Any data set may
be considered as a single or multi-valued function of one or
more independent variable(s)". In the present work we try to
generalize and expand this idea to be applicable to geospatial
coverages, resulting in both a conceptual description and an
implementation in the form of a class library which can be
easily re-used in geospatial applications.

Outline
Section 2 motivates the approach we took in defining our
API and summarized the underlying ideas. Sections 3 and
4 then respectively describe the generic vector-Function API
and the geospatial API on top of it. Section 5 describes how
the functions and their values can be stored in memory and
in files. Section 6 considers our resulting API and provides
some additional motivation. Section 7 summarizes the pa-
per in several conclusions. The appendices summarize the
terminology and acronyms used throughout the paper.

2 Method
The most important question is how to define an API that
offers data types and functionality for generic mathematical
concepts such as variables, and at the same time be specifi-
cally suitable as well for both geospatial and non-geospatial
applications? Can we introduce time-dependency in a non-
intrusive way? The idea is to define a common API which will
describe all generic mathematical data structures required to

manage variable values and and then base a geospatial cov-
erage API on top of that to provide a better separation of
concepts and better code re-use.

The spatial domains also pose challenges: what to do
when the topology is complicated, for example a river net-
work? The channels in this network form a set of intercon-
nected features, each of which is a polyline or polygon geom-
etry as shown in Figure 1. Can we still use the same classes
to model this situation in a similar way as we would do it for
a simple time series at a single point station?

Next comes the data defined on the domains. In our river
example, consider a time-dependent wind velocity field de-
fined as a continuous vector variable ~V = (vx, vy) (discrete
values with interpolation) along the channels in the river
network. Inter- and extrapolation on such complicated ge-
ometries is also nontrivial. Do we need to deal with spatial
variables differently than with time variables?

Even if it would be clear what should be done in this
example, it is still not a trivial task to define using an object-
oriented language. Both the OGC Coverage model and CDM
fail to define it completely. The OGC Coverage model is not
flexible enough in the sense that it introduces many classes
but there is no conceptual basis where every type of Coverage
would fit. In terms of the CDM, it should be trivial to define
values of all variables used here (river coordinates and wind)
using multi-dimensional arrays. However, there is no room
for the rest of the meta-information (the river topology and
offsets of network locations). The use of basic CDM attributes
is insufficient here.

We will show that using the new approach proposed in
this paper all coverage types can be defined in terms of vector-
valued functions.

Design steps
Before introducing an API for multi-dimensional data struc-
tures, we will first try to identify and analyze the actual prob-
lem domains related to the practical applications that involve
coverages or multi-dimensional data structures (Figure 2).
Then we will try to identify the functionality required by the
developers when developing applications related to these
domains.

For the design of the API we used the following steps:
identification of entities / classes, construction of a reference
implementation of the classes to match the different fields
(geospatial, environmental), separation of core logic of the
classes from persistency so that multiple storage choices can
be used, identification of interfaces / classes which should
belong to the API.

The term Coverage is used in the geospatial domain (by
the OGC) to describe discrete or continuous characteristics
of the real world features. We will try to match our API as
much as possible (on a conceptual level) to the requirements
listed in the OGC standards.

Before moving to the geospatial domain we will first try
to analyze in details how vector-valued function can be de-
fined in terms of the software component since we plan to
use it as a basis of our API. After that we will show that the
new API is very well suitable to describe any coverage used
in the geospatial domain.

When developing an API for multi-dimensional structure
an important aspect is persistency. In section 5 Persistence
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How to define an API so that it will allow most closely to 
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Figure 1: Problems appearing while modeling variables defined on the network

Geospatial

OGC, feature, coverage, 

geometry, coordinate

Mathematics / Physics

function, variable, vector,  

unit of measurement
Environmental Modeling

wind velocity field, 

concentration of 

pollutant, river networks

Figure 2: Problem domains involved

several storage options will be discussed allowing reuse of ex-
isting data access libraries or file formats to persist structure
and values of the vector-valued functions.

We will use motivating example problems appearing in
the environmental modeling field, see sections 3.2 and 4.

3 Vector-valued Function

3.1 Mathematical Definition
The main idea of the new data structure is based on the fol-
lowing statement:

Any data structure of a multi-dimensional nature can be
presented as a single or multiple number of a vector-valued
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functions.
In vector calculus a vector-valued function is defined in

general form as Equation 1

F = (f1, f2, · · · , fn)(x1, x2, · · · , xm) (1)

where x1, x2, · · · , xm are independent variables and
f1, f2, · · · , fn are dependent variables.

Typical examples of independent variables are time, spa-
tial coordinates, categories, etc. Dependent variables usually
represent actual quantities. In scientific applications these
variables are very frequently sampled or discretized and thus
their values are defined in a form of arrays together with
information about how to interpolate values of dependent
variables where no exact values of the independent variables
are available. For arguments (independent variables) these
arrays are in most cases one-dimensional (R1) while for com-
ponents (dependent variables) dimensionality of arrays is
defined by a number of arguments used (Rm). In many cases
value type used by the variable is a real number (R) however
in general it can be any type available in programming lan-
guage, for example: string, class, feature, etc. In some cases
the rank of the independent variable space may be different
from the rank of the sampled independent variable space: dis-
crete coordinate arrays may be rank 1 (regular grid), or rank 2
(curvilinear/irregular grid), or even rank 3 (time dependent
moving grid).

Let us analyze vector-valued function in more details:
consider that we want to define a time-dependent velocity
field (e.g. 3 moments in time), defined on a discrete, regular
grid (see Figure 3). In order to store values of this function
we will have first to decompose it into independent (x, y
and t) and dependent (vx and vy) variables. We can see that
independent variables have to be defined as a set of values
(ordered set if we want to interpolate values of the dependent
variables along the argument). On the other hand dependent
variables require 3-dimensional arrays to store their values
(number of independent variables used in function).

It is simple to show that every variable can be also con-
sidered as a function, as result we can list all objects required
to store the above example, as can be seen in Table 1.

In the table Arguments denote independent variables and
components - dependent variables.

In general any variable used in a function (independent
or dependent variable) can be described by a set of properties:
value type, units of measure, typical minimum and maximum
values.

Additionally, for every independent variable we need to
define interpolation and extrapolation method since its values
are defined only at discrete locations. This will allow com-
puting values of dependent variables outside of independent
variable values space.

From the table we can see that in order to completely
define all objects used in this example we will have to define
all functions listed in the table, together with their properties
as well as relations between them such as that some of them
are used as independent variables and other as dependent
variables. In case if we have a function that uses more than
one component (V ) - the only thing to be stored is its relation
to child component variables since its values are completely
defined by the values of its components (vx, vy)

3.2 API
Based on the points discussed in the previous section we be-
lieve that the class diagram presented in Figure 4 most closely
describes all objects required to introduce a vector-valued
function.

As can be seen from Equation 1, component variables can
be actually seen as vector-valued functions by themselves.

The code listing in Figure 5 shows how the API can be
used. This is a simple example that shows how we can define
a variable, its properties and an array of values.

Since a Variable in our API is automatically considered
to be a Function - we can also start combining variables as
shown in Figure 6.

This type of function is one of the most frequently used.
A simple example from hydrodynamic modeling can be a
water level defined as a function of time, e.g. measured at
some location: y=y(t). In this case value type of the argument
variable will be DateTime (C#) instead of double. In this case
a water level is dependent variable and time is independent
variable.

If we make it a bit more complex we can measure water
level on a moving boat. In this case a water level variable
is measured as a function of time, but so is location. So we
have location as an object and a water level as a scalar value
defined as a function of time: F=(location, depth)(t).

Suppose we measure wind direction at a meteorological
station, then we have two parameters for direction and speed
or in Cartesian space a u and v part of the vector. Both again
are defined as functions of time.

The source code required to work with a vector-function
that uses more than one independent variable (components)
does not look much different, see Figure 7.

Note that API provides different ways to access or assign
values of the variables. Depending on performance require-
ments values of the variable can be set as an array at once or
one by one using simple and intuitive syntax.

4 Adding geospatial aspects to Func-
tion
Even though the above API is powerful enough to describe
a vector-valued function, in some cases we need to extend it
in order to apply it to other domains. We will try to define a
Coverage types on top of the Function API.

4.1 What is Coverage?
Definition of Coverage in many geospatial applications is also
confusing and is given on a very conceptual level. We will
introduce term Coverage as a bridge between two worlds:
Geospatial and Mathematical. The UML class diagram is
shown in Figure 8. The nice thing is that if Coverage can
be defined as a function - then its values can be accessed in
the same way as in examples of the previous section. On the
other side Coverage is a geospatial object, which means it
has to extend functional part with geometries. For example
Geometry property of the coverage can be either a geometry
that defines bounds of the coverage, or a complex geometry
representing every location where values of the coverage are
defined (GeometryCollection).
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Figure 3: Analysis of the data structures required to store discrete vector-valued function

Table 1: List of functions and their properties used in example

In the OGC standards there is a clear distinction made
between continuous and discrete coverages. We do not see
the need to separate them. Really, the difference between if
coverage is discrete or continuous is just an interpolation type
used for its arguments. In fact we can define a Coverage that
is discrete along one argument and continuous (interpolated)
along the other one.

All other coverage types can be very simply defined as
an extension of the ICoverage interface. For the sake of space
we will not list all UML diagrams here.

4.2 Regular Grid Coverage
In many applications, including numerical modeling, data
of the models are often defined on a discrete grid. Suppose
we compute water level which can change in time and is
defined on a rectangular regular grid, then it can be defined
as a function of x, y coordinates and time t. In these case x
and y identify location and used as independent variables as
showin in Figure 9. Actually this is also true for rectilinear
grid, where values of x and/or y are not equidistant, see (Bal-
aji and Liang, 2006). In case of regular grid the values of x
and y variables (arguments) are equidistant and as a result
their storage can be simplified.

Depending on a type of grid we can also use cells of the
grid (objects) as an independent variable values instead of
scalar x and y variables to identify location on a grid. See 4.5
section for an example.

The biggest advantage of using the same base API to
work with Coverages is that the functionality of Coverage
can be very easily extended. For example in order to make
regular grid coverage time dependent we only need to add an
additional argument (independent variable) of a time value
type, see Figure 10. The rest remains the same.

Of course in case if we have other functionality (for ex-
ample rendering) based on a specific Coverage type - we will
need to extend it a little to make sure that we accessing only
with a values corresponding to a single time value.

4.3 Feature Coverage

We will call FeatureCoverage a function where one of argu-
ments uses a Feature as a value type.

Consider the following class as an example: a City, which
has some default properties such as Name and Population
(these properties are also available as feature attributes and
accessible via Attributes dictionary).

Now imagine that we want to compute a total precipita-
tion over city for a given period of time without modifying
existing City features. It can’t be simply added as an attribute
(a property) since it doesn’t seem to be a default characteristic
of the City. In this case FeatureCoverage type can be used
to define a coverage function that uses cities as values of an
independent variable as show in Figure 11 and Figure 12.
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A vector-valued function associates 

independent variables (arguments) with its 

dependent variables (components):

components    arguments

Every variable is a function of 0 or more 

arguments and 1 component:

Variable values are defined as an array, for 

independent variable rank of an array is 1 

and for dependent variable it 

is equal to number of its arguments m

Any variable representing a 

physical quantity may have a 

unit of measure defined:

[m/s]

Dimension of a unit is: L/T

Figure 4: Vector-value function class diagram

4.4 Network Coverage

In some cases variable values are defined on a set of curves
(see OGC CurveCoverage). In more specific cases these
curves are connected into a network or graph, for example:
river networks, roads and pipelines. It is frequently necessary
to define a Coverage that can be seen as a continuous function
defined along the branches (the polylines) of such a network
(see Figure 13).

This example is a bit more complicated compared to the
ones discussed in the previous sections. The main problem
is that we do not have an explicit independent variable to
depend on in our function. Still we can introduce a variable
which is defined as a combination of a curve and offset along
that curve. In this case it will uniquely define location on a
network.

The only remaining problem is that if we would like to
evaluate values of the dependent variables in other but ex-
isting locations on a network - we will need some custom
interpolation algorithm at the sections where branches con-
nect with each other. Once it is implemented - the rest of the
functionality works as in any other function type.

Additionally to the network location independent vari-
able we can also add time or any other variable.

We’ve defined NetworkCoverage as a separate coverage
type as shown in Figure 14. However it will be more cor-
rect to introduce a CurveCoverage type first, and then define
NetworkCoverage as an extension to it, in case if we need to
use some network-specific interpolations e.g. at the nodes
connecting different branches of the network. In this case it
will be more consistent with the ideas introduced in the OGC
Coverage standards.

4.5 Unstructured Grid Coverage
We did not fully implement support for unstructured grid
coverages yet using new API, but it should not be any more
complicated than previously shown examples. In fact Un-
structuredGridCoverage can be implemented in a way similar
to FeatureCoverage, which depends on grid cells or interfaces
between cells, depending on where values are defined (see
Figure 15). Additionally, custom interpolation methods have
to be implemented for e.g. IDW, Krigging or any other inter-
polation methods required to evaluate values outside of the
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Figure 5: Create and set values of a simple scalar variable (C#)

Figure 6: Create a 1d function y=y(x), use linear interpolation for x (C#)

argument values domain.

5 Persistence
In order to store values of the functions an interface IFunc-
tionStore was introduced as a part of API, see Figure 16. An
implementation of the IFunction / IVariable uses IFunction-
Store to access all functions available in the store as well as to

access their values.

Currently the following implementations are supported:
MemoryFunctionStore, NetCDFFunctionStore and GdalFunc-
tionStore. The first implementation is a default one and sim-
ply keeps a set of multi-dimensional arrays as well as a set of
function objects in memory. The second is used to store func-
tions in the NetCDF files, wrapping UCAR Java implementa-
tion converted to .NET on a byte-code level using IKVM.NET.
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Figure 7: Define 2d velocity field function (C#)

Figure 8: Coverage Class Diagram

The third implementation is used to access raster data stored
in GDAL file formats.

5.1 Store Functions in NetCDF
Because the Common Data Model is a concept behind the
NetCDF file format, the file format is almost a perfect match
for as a storage for Function classes. Still the following infor-
mation needs to be defined implicitly using attributes:

Relations between container vector-valued function and
its component variables.

Relations between components and arguments. Even it
can be reconstructed using NetCDF dimensions; it is still
error prone and not very intuitive.

Custom type mappings, in case if we want store entities
(objects) in the NetCDF variables.

In the last case NetCDF attributes can be used using some
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Figure 9: RegularGridCoverage defined as 2D function (Python)

Figure 10: Define and query value of a time-dependent RegularGridCoverage (Python)

convention in order to define where properties need to be
stored and to which type they belong to.

6 Discussion
The need to this API was mainly dictated by the reality that
there was no API library available written in C# which is com-
parable to NetCDF. Instead of reinventing the wheel we tried
to extend concepts used in the CDM. On the other hand we
did not port (or wrap) existing NetCDF API in C# but tried
to make it more intuitive by reviewing the concepts behind
it. The NetCDF library is a very powerful one but we believe
that the API introduced here better represents the reality (or
mathematical abstractions used to describe the reality within
computerized applications). The major difference between
CDM and the present API, except of course the language and
syntax, is that CDM uses Dimensions as a separate entity
next to Variable. For the API we present the Dimension is not
required as a separate entitity. The dimensions can be derived
from the vector-valued functions.

Some variables need to be defined not as a set of values
but e.g. as an equidistant series with start, stop and step. In
this case only several properties need to be stored instead
of array. The implementation can still generate all possible
values on-the-fly in order to use this specific variable type in

the same way as other variables.
In some cases a single vector-valued function is not suffi-

cient to define all data structures. For example for curvilinear
grid we want to preserve the information that the grid cells
are defined as a 2D matrix. In this case it will be necessary
to combine different vector-valued functions in order to fully
define the data structure.

When comparing the proposed API to the OGC/ISO Cov-
erage specifications it is important to note that the latter spec-
ifications are quite complex compared to the API presented
here. Another point that is missing in OGC Coverages API is
that it does not provide a unified way to access all Coverage
values in the same way for all Coverage types. We hope that
this work will influence the existing OGC Coverage API in a
way that it will become simpler to use.

An important aspect that was not discussed in the present
paper is related to the definitions of functions which represent
filtered version of existing ones. This is a very useful func-
tionality, especially if existing functions need to be queried
and e.g. visualized as a function with a smaller number of
arguments (time series representing values of a single cell of a
time-dependent regular grid). In many cases this filtered func-
tions need to be stored somewhere next to the real functions.
Another example is when variable represents an aggregated
version of another variable. It becomes a very tricky task
when we add a user requirement that the connection between

Page 40 of 60



OSGeo Journal Volume 10 Functional Coverages

Figure 11: FeatureCoverage, function where one of the arguments uses features as values

Figure 12: Creation and use of FeatureCoverage using existing features (C#)

original and filtered variables must be live, meaning that
when values in the original variable change - values in the
filtered variable will be recalculated automatically.

7 Conclusion
We have presented an API that provides users the possibility
to work with geospatial and non-geospatial types of multidi-
mensional data in a convenient way. By providing a direct
connection to the NetCDF data format we hope that our API
will become especially popular for working with results from
numerical models. The library implementation also fills in
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Figure 13: Network coverage, values defined along the network branches.

Figure 14: Create network and network coverage (Python)

the gap of a .NET based NetCDF API that makes use of the
features of the .NET platform.

The design of an API often feels a bit like tightrope walk-
ing. There need to be a balance between high level of usability
and performance on one side, as well as a balance between
completeness versus simplicity.

By following the general guidelines of a domain driven
design the API does adhere to good practices. Whether it
is actually a usable one depends on the experience of users.
Therefore we invite readers to try out the API and provide us
with feedback and critical comments.

The API as well as its implementation will be released as
an open-source project. Currently a draft version is already
available as a branch of a SharpMap project.37
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Appendix: Acronyms
OGC Open Geospatial Consortium

NetCDF Network Common Data Format

UCAR University Corporation for Atmospheric Research

API Application Programming Interface

GDAL Geospatial Data Abstraction Library

CDM Common Data Model

OpenMI Open Modeling Interface

VTK Visualization Toolkit

GIS Geographic Information System Geographic
information – Schema for coverage geometry and
functions

Appendix: Definition of Terms
Feature Geospatial Feature as defined by OGC. We will call

Feature any type that implements at least the Geometry
property and has a set of other attributes.

Geometry Feature Geometry as defined by OGC. An at-
tribute of the Feature.

Coverage Specific type of Feature that can generate a value
for any point within its domain. Examples include raster
images, a polygon overlay or a digital elevation matrix. In
other words, it is a geospatial feature and a function at the
same time.

Function A vector(-valued) function. A function of one or
more variables whose range is n-dimensional. It associates
dependent variable (component) values with independent
variable (argument) values. As an example, a scalar func-
tion has n = 1 (a one-dimensional range-space), but it may
still ’live’ on a multi-dimensional domain-space.

Variable Defines a value that may change within the scope of
a given problem. The mathematical definition is used, not
to be confused with a computer science variable. Variables
can be independent or dependent on other variables.

Unit Defines unit of measure for variable values. For exam-
ple [m], [m/s], etc.

Page 43 of 60



OSGeo Journal Volume 10 FOSS4G 2011 Conference Proceedings

Array In general a multi-dimensional array of some value
type.
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and ready for the future. TRLIB was only recently released
under an open source license (and made available through
https://bitbucket.org/KMS/trlib), but in the near future
we hope to implement means for better interoperability with
the more well established libraries in the open source geomat-
ics field.

Acknowledgements: We thank Willy Lehmann Weng and
Knud Poder for commenting on the draft of this paper.
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