A vector-valued function associates independent variables (arguments) with its dependent variables (components):

$$
\vec{F}=\frac{\left[f_{1}, f_{2}, \ldots, f_{n}\right]}{\uparrow} \frac{\left(x_{1}, x_{2}, \ldots, x_{m}\right)}{\uparrow}
$$

Any variable representing a physical quantity may have a unit of measure defined:

$$
[v]=[\mathrm{m} / \mathrm{s}]
$$

Dimension of a unit is: L / T

Every variable is a function of 0 or more arguments and 1 component:
$v=(v)$ - independent variable
$v=(v)\left(x_{1}, x_{2}, \ldots, x_{m}\right)-$ dependent variable

