
OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal53

The SurveyOS
KML Toolkit:
Starting With
Simple
Placemarks
By Landon Blake

Introduction
This is the first installment of a new
column in the OSGeo Journal. This
column will follow the development of a
brand new open source geospatial
software project: The SurveyOS KML
Toolkit. The software project will
develop a library and front-end GUI
application to create and manage KML
entities.

This column has 3 goals:

1) Teach the basic concepts of Ruby
object-oriented programming.

2) Teach the concepts of KML.

3) Develop an open source KML toolkit
suitable for a candidate as an OSGeo
Labs Project.

I’ve been writing open source software
in Java for several years, but I’m new to
Ruby programming. I’m also not an
expert at Google’s KML. In this column I
will be learning along with my readers,
and I look forward to getting
constructive feedback from readers
with experience in these two (2) areas
of technology.

The first componentof the library will bea Ruby programminglibrary. The secondcomponent will be afront-end GUIprogram.
Before we discuss the basic concepts
and goals behind the SurveyOS KML
Toolkit, I thought it would be helpful to
talk a little bit about Ruby, KML, and the
SurveyOS Project. This discussion will
provide some helpful background for
the rest of the article.

https://developers.google.com/kml/documentation/
http://www.codeproject.com/Articles/22769/Introduction-to-Object-Oriented-Programming-Concep
http://www.ruby-lang.org/en/

OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal54

You should be familiar with object-
oriented programming basics to benefit
from this article. A bit of knowledge
about Ruby programming is also
helpful, but isn’t critical if you’ve
programmed in other object-oriented
programming languages before.

A Little Bit About theRuby ProgrammingLanguage
Ruby was developed in the mid-1990s
by Yukihiro "Matz" Matsumoto in Japan.
It is a dynamic, reflective, and
interpreted language. It supports
different programming styles, such as
object-oriented programming and
functional programming.

There are a number of interpreters that
can execute Ruby code, but YARV is

bundled in the standard 1.9 distribution
of Ruby.

Ruby is used as a scripting language in
one of my favorite proprietary
programs, SketchUp.

A Little Bit About KML
KML (Keyhole Markup Language) is an
XML language that can be used to
represent and visualize geospatial
information. It was initially developed
for use in the Keyhole Earth Viewer, but
has been adopted by the OGC as a
standard.

A Little Bit About the SurveyOS Project

The SurveyOS Project is focused on the
creation and management of open
source software to increase the ability
of land surveyors to create and work
with GIS data. The SurveyOS Project
includes a number of sub-projects. The
sub-projects include software libraries
and applications written in Java, Python,
Visual Basic .Net, and AutoLISP.

The Basic Concepts andGoals of the KMLToolkit
Before we begin to dissect the first bit
of source code for the KML Toolkit, we’ll

OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal55

discuss briefly the basic concepts
behind the toolkit. We’ll also talk about
some of the design goals for the toolkit.

The toolkit will be divided into two (2)
main components. The first component
will be a Ruby programming library that
can be easily integrated into other Ruby
applications. The second component
will be a front-end GUI program that
exposes the functionality of the library.

The typical work-flow of a user or client
application with the KML Toolkit will
involve these three (3) steps:

1) Build a collection of KML entities.

KML entities will be added to the
collection using one (1) of two (2)
methods.

In the first method the user will use the
toolkit to import existing spatial data
which will be converted to KML entities.
(For example: Import of an existing ESRI
shapefile or text delimited file that
stores data about point features that
are then converted to KML placemark
entities.)

In the second method KML entities will
be automatically created based on a set
of input criteria. (For example: Creating
KML placemark entities on a regular

grid, at every intersection of linear
features, or at regular intervals along a
linear feature.)

2) Organize and manage the collection
of KML entities.

Once KML entities have been added to
a collection, they can be organized. Two
(2) primary ways to organize the data
will be available. One way will be with
layers. A layer holds KML entities of the
same type and with the same
attributes. (For example: One layer
might hold placemarks for industrial
buildings, while another holds
placemarks for commercial buildings.)

A second way the collection of KML
entities can be organized is with
groups. A group can be made up of KML
entities of different types that share
some high level relationship. (For
example: You might group paths and
placemarks representing a railroad
network.)

The user will also be able to query and
manage selections of KML entities
based on their identity, properties, and
descriptions. (For example: Select all of
the paths of type “highway” that are
over 10 miles in length.)

3) Export KML documents.

OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal56

After a collection of KML entities is
complete, the user (or client
application) can export actual KML
documents based on the collection of
KML entities. (For example: This would
allow the user to export KML documents
for different audiences based on the
same collection of KML entities.) The
user will be able to style entities in the
exported KML document using style
templates. Style templates can be
applied to KML layers or groups.

Design Goals
The SurveyOS KML Toolkit has the
following high-level design goals:

1) Support of a plug-in framework for
easy extension by third party
programmers.

2) Support for an undo/redo framework.

3) Support for clean separation
between GUI and core program code.

Getting Started with the
SimplePlacemark Class

In my object-oriented programming
projects I find it helpful to start the
design of a library or program with the
simple core data objects. I find that

most of my software projects will only
have a handful of core data objects.
(Many of my projects have only a single
core data object.)

After the core data objects are
designed, I work on adding a “program”
structure to my software project. This
program structure usually hosts a
structure to contain instances of the
core data object and a framework for
tools that can create, manipulate and
manage these core data objects.

It is helpfull to startthe design of alibrary or programwith the simple coredata objects.
I started the design of the SurveyOS
KML Toolkit with a Ruby class
representing a single core data object.
This class is used to represent the
simplest sort of placemark KML entity.
Before we look at the design of the
class itself, let’s take a look at how such
a placemark would actually look in a
KML document. You can see this in
Source Code Listing #1 shown at the
end of this article.

We can see that our class needs to
store a name, description, and
coordinate for the placemark. That’s

OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal57

exactly what we do in the
SimplePlacemark class.

Source Code Listing #2 contains the
source code for the current version of
the SimplePlacemark class. On the next
page is a graphical overview of the
SimplePlacemark class member
variables and methods.

All of the member variables, or data for
our SimplePlacemark class are simple
Ruby primitives, except for the
Coordinate class. The Coordinate class
data is defined entirely with Ruby data
primitives. I call this type of class a
terminal data class. (A terminal data
class doesn’t reference any external
class definitions, only data primitives.)
They are the simplest type of class. The
Coordinate class simply bundles up
three floating point number values that
represent a latitude, longitude and
elevation.

Whenever I have a set of simple data
values that will often be passed around
my class as a set, I consider making a
terminal data class to clarify my source
code. The Coordinate class is just this
type of class.

You can see the methods of our class
can also be organized into three (3)
groups:

1) Accessor methods that allow access
to the member variables.

2) Methods to compare the equality of
member data.

3) Common utility methods that should
be implemented on most core data
classes for a program, including a clone
method and a method to represent the
core data object as a string.

What’s Next
In the next article we will take a look at
the implementation for a couple of the
methods of the SimplePlacemarkClass.
We will also look at the unit test we
designed for the class. Then we can
start poking around the collection class
that will hold our SimplePlacemark
objects and that will form the core of
our Program class.

Conclusion
In this article we’ve accomplished the
following tasks:

1) We’ve looked at the concepts and
design goals for our toolkit.

2) We’ve examined the design of our
first core data object, which is defined

OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal58

OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal59

by the SimplePlacemark class.

There are other classes (including a unit
test for the SimplePlacemark class) in
the SurveyOS SVN repository folder for
this software project. If you are
interested in what you’ve read in this
article, you might look further at the
source code found there.

OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal60

Source Code Listing #1
<Placemark>

<name>Landon’s House</name>
<description>A placemark representing Landon’s house.</description>
<Point>

<coordinates>-121.10233356,37.9255487,0</coordinates>
</Point>

</Placemark>

Source Code Listing #2
Represents a KML placemark. This simple version of a placemark stores and allows
access to the placemark name, the latitude and longitude of the placemark, and
a simple placemark description with no embedded HTML. This class is immutable.
class SimplePlacemark

include KMLEntity

Creates a new placemark.
#
name = The name of the palcemark as a string.
latitude = The latitude of the placemark in decimal desgrees as a double.
longitude = The longitude of the placemark in decimal degrees as a double.
description = The description of the placemark as a string.
def initialize(name, coordinate, description)

@name = name
@coordinate = coordinate
@latitude = coordinate.get_latitude();
@longitude = coordinate.get_longitude();
@description = description

end # End constructor.

def get_name()
return @name

end # End method.

def get_description()
return @description

end # End method.

OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal61

def get_coordinate()
return @coordinate

end

def get_latitude()
return @latitude

end

def get_longitude()
return @longitude

end

def to_string()

Convert the latitude and longitude to stirngs.
latitudeAsString = @latitude.to_s
longitudeAsString = @longitude.to_s

placemarkAsString = "Placemark{Name: \"" + @name +"\", " + "Latitude: " +
latitudeAsString + ", " + "Longitude: " + longitudeAsString + ", " + "Description:
\"" + @description + "\"}"

return placemarkAsString

end # End method.

def has_same_name(placemark)
if

@name == placemark.get_name()
return true

else
return false

end # End if.
end # End method.

def has_same_description(placemark)
if

@description == placemark.get_description()
return true

else
return false

end # End if.
end # End method.

OSGeo Journal Volume 11 (2011 Annual Report) November 2012

http://www.osgeo.org/journal62

def has_same_location(placemark)
equality_counter = 0

if
@coordinate.get_latitude() == placemark.get_latitude()
equality_counter = 1

end # End if.

if
@coordinate.get_longitude() == placemark.get_longitude()
equality_counter = equality_counter + 1

end # End if.

if
equality_counter == 2
return true

else
return false

end #End if.

end # End method.

def clone()
clone = SimplePlacemark.new(@name, @coordinate, @description)
return clone

end # End method.

end # End class.

