
Bytecode unification of geospatial computable models

Bytecode unification of geospatial
computable models
by Jan Kolář

Grifinor Project. jan.kolar@grifinor.net

Abstract

Geospatial modelling revolves around the structures
of data and the semantics of these structures. This
is enough in simple cases, but becomes insufficient
when the best structure and semantics is hard to find
or the solution is too heterogeneous to fix and reuse.
Field-based and objects-based geospatial models of-
ten share common GIS data structures interchange-
ably, but their all possible meanings are too many
to define in an immutable manner. Less studied
approach to geospatial modelling is using mutable
structural properties and their semantic interpreta-
tion. This work shows that the functional aspect of
geospatial models is just as important as the struc-
tural and semantic aspects. It also shows that se-
mantic and even structural properties may change
when functionality is integral part of the data model,
and not exclusively separated at software implemen-
tation level. The paper uses this modelling paradigm
to address the divide caused by field-based and
object-based data models, and other challenges re-
garding synergy of geospatial systems that need to
use both types of data models.

Keywords: field-based model, object-based
model, computability, managed objects, geographic
space, 3d, time, scale.

1 Introduction

The geospatial branch of information science (GISc)
has a dual approach to representing the real world.
Its duality is manifested by 1) discrete objects, which
are identifiable, countable entities existing in other-
wise empty geographic space, and by 2) continuous
fields, which for every location in a given domain
of geographic space have a value forming a field
of certain quantity. The twofold nature of the ob-
ject / field modelling is a concrete, classical problem
that has been eluding specialists in GISc since 1980
(Goodchild, 2012). This work studies the compara-
tive suitability of object-based and field-based rep-
resentations for computable geospatial models. The
goal is to provide a theoretical and engineering solu-

tion supporting both field- and object-based geospa-
tial models in a uniform way. This is the scope de-
picted in Figure 1. The problem in principle is that
the solution must provide a better modelling flexi-
bility without hindering simplicity and applicability
in practice. Due to these unmet requirements the so-
lution to duality of fields and objects might also ad-
dress number of other practical issues, such as deal-
ing with heterogeneity of models across many appli-
cation domains, design and management of complex
geospatial models, or difficulties with handling and
exchange of the models by various information sys-
tems.

Computability is essential for this work since
computable geospatial modelling is the main subject,
but it is also important in a much broader sense be-
cause computable models can do work that humans
would have to do otherwise. The rest of this section
provides a necessary introduction to the computabil-
ity theory. This gives a basis to Section 2 where the
method for geospatial modelling is formalized and
the engineering design presented. Section 3 reports
on implementation related topics and on the result-
ing technology.

Figure 1: Computable geospatial modelling in con-
text.

1.1 Computable models

This work deals with geospatial models that are com-
putable. Computable in the sense that humans could
also calculate the model manually. This means that
the set of instructions followed to carry out a compu-
tation must be finite, that the computation carried is
real - not imaginary (must be effective), and it must
be possible to show how exactly the computation is
performed (must be constructive). Exactly like in a
program or a recipe.

OSGEO Journal Volume 13 Page 103 of 114

mailto:jan.kolar@grifinor.net


Bytecode unification of geospatial computable models

The theory of computation is based on the con-
cept of Turing machine. It implies, for example, that
any finite set of Turing machines can be represented
by a single one. Turing machines define a unique and
natural class of "computable", which is fundamental
for this work, but also for all computer science and
mathematical logic.

Therefore, according to Sipser (1996) any com-
putable model M can be formalized as Turing ma-
chine by a six-tuple:

M(Q,Σ, δ, q0, qA, qR) (1)

where: Q is a finite set of all possible computa-
tional states of the model; Σ is the alphabet used to
describe any possible instance of the model; δ is the
transition function that tells how the model is evalu-
ated between two consecutive steps; q0 ∈ Q is the
start state; qA ∈ Q is the accept state; and qR ∈ Q is
the reject state.

The central element that makes the model "work"
is the computable function δ also called as algorithm.

δ : Q×Σ → Q×Σ× {L,R} (2)

Given a model instance I, which is an input string
over alphabet Σ, the computable function δ of M
works as follows: for every valid state q ∈ Q and
input character c ∈ Σ∧c ∈ I, the function returns the
next state, writes (outputs) a character, and moves
on reading the next character to the left L, or to the
right R, from the current position in the input string
I. This continues forever unless δ yields the accept
state qA, or the reject state qR.

Therefore the input is a model instance I, which
should not be confused with the model M itself. The
M refers to a more general solution of the modeled
phenomena. In contrast, the model instance I is a
rather concrete utterance for which M computes an
output.

For example, consider a model MA deciding a
"distance between two points on Cartesian plane".
The model instance (input) is a pair of Cartesian co-
ordinates, e.g. [0, 0] and [2, 0], and the decision (out-
put) for this instance is 2, which is the distance be-
tween the points. A different model MB would be
necessary for "rendering the line between two points
on a display". While the instances could be reused
from the previous example, the transition function δ
and output would be different in this case. Also, the
model MB may depend on yet another model, for
instance representing the display. Such model hier-
archy is common in practice and often gets complex.

The computable model can be understood as a
compact collection of the problem-solving model M

together with one or more distinct instances I solv-
able by M . Considering and treating computable
model this way as a single, compact unit provides
a key postulate in the modelling method suggested
in Section 2. The content unit based on this view of
M then has the ability to store not only the data I and
the intermediate results of the computation, but also
to store the transition function δ that brought about
the computation. In Figure 1 is such compact unit
depicted as T2, in which T2B would correspond to
the model instance I and T2C to the transition func-
tion δ. The introduction of established computability
theory formulated by Equation 1 is essential for ad-
dressing the concepts of space, fields and objects in
the geospatial modelling method.

2 Method

A new method for geospatial modelling is based on
the equivalence of finite composition of computable
models M mentioned in Section 1.1. This composi-
tion equivalence can be expressed as:

M = (M1, ...,Mn) | n ≥ 1 (3)
δ = (δ1, ..., δn) (4)

Note that δ1 is the transition function of M1, δn is
the transition function of Mn, and therefore δ is the
function(s) of the computable model M . The prin-
ciple of Equation 3 is applied to a universal geospa-
tial model supported by the definition of geographic
space.

2.1 Geographic Space

Every information system is constituted by a unique
space and by contents associated with that space.
This is true of any space. Not only abstract spaces
used in database systems for querying and index-
ing of data, but any space with certain order, can
be used as a basis for an information system. This
includes the representation of the real-world space
where the Earth exists. The conception of contents
here are the computable models and their instances,
but the space must be defined first. Space is criti-
cal for an information system because points of the
space are the means of accessing the content. For
example the World-Wide-Web (the Web) employs a
non-topological, URL address space, which makes it
possible to access a concrete Web page. Without the
URL space the Web cannot exist.

The idea of devising a unique definition of space
for all geospatial modelling is easy to express, but

OSGEO Journal Volume 13 Page 104 of 114



Bytecode unification of geospatial computable models

a good, general solution is missing. The definition
of geographic space must sufficiently correspond to
physics, but at the same time must facilitate the na-
ture of the computable content. Modern geoinforma-
tion applications utilize many different spaces with
two, three, and in rare cases with four and more
dimensions resulting in more than thousand differ-
ent coordinate systems used in practice (EPSG, 2013).
The arguments for unique geocentric space are well
known (Burkholder, 2000, Kjems & Kolar, 2005), but
a definition that supports various geospatial models
and that can be adopted by a broad variety of ap-
plications at different dimensions and scales still re-
mains to be found.

The majority of geospatial applications can use
the Newtonian description of space to obtain val-
ues that are correct to a sufficiently high order of ac-
curacy. The realization of the geocentric reference
frame, however, uses astrometry operating at the
angular resolution exceeding one milliarcsecond, or
atomic clock ticking at nanosecond level and mov-
ing on high precision orbits. Modelling events at
such precision level, high speeds and gravitation dif-
ferences requires consideration of general relativity
(Kopeikin, 2007), and relativistic corrections must be
used. Neglecting the relativistic curvature of space
in these cases would degrade the observed measure
(Pogge, 2013).

The geographic space is represented through a ref-
erence system, which relates coordinates of points
existing in reality to a unique and common basis for
computational geospatial models. The coordinates of
the geographic space S have six-dimensions:

S = X×Y × Z×T× Γ×Ω (5)

The space S is defined close to the Earth and is
co-rotating with it. Following the Newtonian physics
the space is considered as Euclidean using Cartesian
right-handed coordinates C with the same unit used
for each dimension.

C = X×Y × Z ⊂ S (6)

The origin is close to the Earth’s center of mass (geo-
center), the orientation uses X and Y coordinates to
represent the equatorial plane and the z+ axis is the
direction of the north pole and of the Earth’s rota-
tion axis. In addition to Cartesian coordinates, other
coordinates, e.g. geographical coordinates, could be
used (Boucher, 2001). The temporal coordinates T
are associated with the time running at the reference
geopotential level (geoid) of the Earth.

It was mentioned that the coordinates are the
means of accessing contents. However, due to the

continuity of the Euclidean space, where all points
are topologically relevant to each other, obtaining
geospatial models for a given coordinates leads to a
progressive loading of contents from the entire space
(all the contents). Following the principle that closer
things are more relevant than distant things the ge-
ographic space S has two proximity dimensions. The
proximity dimensions in Equation 5 are time proxim-
ity Ω, and spatial proximity Γ.

The spatial proximity Γ represents the extent of
geometric neighborhood, and indicates a relative ge-
ometric magnitude within the space S. Given a po-
sition p ∈ C the spatial proximity Γ allows to decide
the range of relevant neighborhood for models of
various geometric magnitude (size) on the scale from
the largest to the smallest geometric magnitude. The
spatial proximity level γ = 0 is for models of the largest
geometric magnitude, γ = 1 is for smaller and so
on. The levels of spatial proximity are obtained by a
recursive octant subdivision (Weisstein, 2103) of the
Euclidean space C. In order to perform computation-
ally such octant subdivision bounds for the ranges of
coordinates X, Y and Z must be specified. Choosing
the same symmetric range for all three coordinates
implies that the shape of the geometric space C is
a cube, and its center coincides with the geocenter.
This "root" cube also corresponds to the spatial prox-
imity level γ = 0.

Analogously the time proximity Ω is a dimension
that facilitates decision about which models are rel-
evant for a given instant on scale ranging from the
shortest-term duration to the longest-term duration.
The levels of time proximity are obtained from the
interval of all time coordinates T by its binary recur-
sive subdivision.

2.2 Geospatial Models

A computable geospatial model has a concrete for-
mulation, but it is an abstract entity that can be
applied to an arbitrary more concrete geospatial
model. These models can be object-based, field-
based, or complex including models combining both
approaches. All computable geospatial models are
defined in the geographic space S introduced in the
previous section and carry several common prop-
erties. With consideration of Equation 3 the com-
putable geospatial model G is expressed as a three-
tuple:

G = (Msdx,Mref ,Mfun) (7)

The key part is the functional model Mfun, which
can represent any computable model, again by fol-

OSGEO Journal Volume 13 Page 105 of 114



Bytecode unification of geospatial computable models

lowing the concept behind Equation 3. While tra-
ditional solutions strictly separate the functionality
δ from data I this method, in contrast, allows struc-
tures of data together with functionality. Together
they form the content that is exchanged between ap-
plications. Although this perspective is common to
programmers it is unfamiliar to content providers
who store and exchange data. The traditional sep-
aration is depicted in Figure 1 by P1 and P2. Using
this method means fusion of P1 and P2 into a sin-
gle entity as denoted by the dashed line in Figure1.
This is a significant concept and a key to the uniform
approach to object-based and field-based geospatial
models.

The second term in Equation 7 is the reference
model Mref , which provides values that reference the
model G in the geographic space S. There are three
types of reference values:

Pref (x, y, z) ∈ C | Pref ∈Mref (8)
γref ∈ Γ | γref ∈Mref (9)

Tref (tstart, tend) | tstart < tend, Tref ∈Mref (10)

The reference point Pref specifies Cartesian coordi-
nates with which the model G is associated. The
spatial proximity γref indicates the metric size of
both the model and its spatial neighborhood. Ev-
ery model in the geographic space S exists for a lim-
ited period of time bounded by temporal coordinates
tstart ∈ T and tend ∈ T. The value Tref represents
these temporal bounds. The only mission of Mref is to
return these reference values whenever needed.

2.3 Geospatial Index

According to Equation 7 each geospatial model G in-
cludes the model of geospatial index Msdx. The geospa-
tial index has two components with close relation-
ship to the spatial proximity Γ, and to the time prox-
imity Ω introduced in Section 2.1. They facilitate
several properties common for all geospatial models.
The spatial index csdx maps from Pref and γref to a
set of index coordinates Csdx by:

csdx : C× Γ→ Xsdx ×Ysdx × Zsdx =

Csdx ⊆ C | csdx ∈Msdx. (11)

Every Csdx is a subspace of the Euclidean space C in
such a way that it coincides with some octant gen-
erated by the subdivision of the spatial proximity Γ.
Given a spatial proximity level γ = k ∈ Γ there are 8k

distinct octants denoted as Ck
sdx. All Ck

sdx have equal
size, never intersect each other, and their sum fills the

entire space C. It is assumed that the reference point
is one of the index coordinates Pref ∈ Ck

sdx. The sig-
nature of each octant id(Csdx) is used for a redun-
dant indexing structure that facilitates rapid access
to spatially relevant models and can also provide a
paging mechanism for the access. Because Γ sub-
division that generates Csdx is space-driven rather
then content-driven the indexing is applicable in dis-
tributed, decentralized information systems. When
considered as local coordinate system Csdx can be
also utilized for more data-efficient geometry rep-
resentation because fewer significant digits can be
used. In this sense Csdx also facilitates visual ren-
dering and multiple levels of resolution because uti-
lizing a fixed number of significant digits over large
range and over smaller subsection leads to different
resolution over these spatial domains.

The temporal index component is represented by
function tsdx that maps the temporal bounds Tref to
a unique interval of the linear time coordinates Tsdx

as follows:

tsdx : T×T → Tsdx ⊆ T | tsdx ∈Msdx. (12)

The signature id(Tsdx) is utilized for fast access to
temporally relevant models, which is an analogy to
the use of id(Csdx) for indexing purposes. Because
the Euclidean space C and the time T are indepen-
dent dimensions of the geographic space S it is con-
venient to combine csdx and tsdx in the single index-
ing model Msdx.

2.3.1 Geospatial Object

An object-based representation of any geographic
feature that is computable can be described using the
geospatial model G expressed in Equation 7, and is
called computable geospatial object. As used in the
introduction, "object-based" is meant as a contrast
to the field-based representation of geographic fea-
tures, which will be addressed in the next section. It
must be stressed that an abstract word "object", es-
pecially when computer science and engineering is
involved, can easily lead to a confusion. The context
to which the term "object" is related must be clarified.
Here the geospatial object refers to an object related
to the geographic space S. We will see in Section 2.4
that the geospatial model itself can be called as ob-
ject, but in context of an engineering solution to com-
putable models - hence completely different type of
object compared to the geospatial object.

The simplest geospatial object can be described
by Equation 7 in which the functional model Mfun

OSGEO Journal Volume 13 Page 106 of 114



Bytecode unification of geospatial computable models

does nothing. Such model of geospatial object pro-
vides the reference values Pref , γref , Tref , and
through the spatial index csdx and temporal index
tsdx they also have access to their proximity coordi-
nates Csdx and Tsdx. If any of the reference values
are missing then either geospatial model G cannot
be made, or appropriate default values must be spec-
ified or generated by the application.

Any geospatial object can, however, through the
functional model Mfun use other models arbitrarily,
for instance dealing with various geometric types,
topological operations, exchange data formats and
other subjects as depicted in Figure 2. Note that the
geospatial model is not only an entity in the system
diagram, but also a content unit that can be stored
and exchanged. The relatively simple representa-
tion described by Equation 7 is used, regardless of
the specialization or complexity behind a particular
geospatial object, . If an instance requires any spe-
cialized model that is part ofMfun it will be provided
by the geospatial model G. That provides almost
arbitrary flexibility to geospatial modelling while
keeping the actual computable geospatial model G
relatively simple for adoption by broad variety of
applications. All the properties of geospatial ob-
jects described in this section also apply to the field-
based models described in the following section.

Figure 2: Geospatial model in relationship to the ap-
plication interface.

2.3.2 Geospatial Field

A field-based representation of any computable geo-
graphic feature can be described using the geospatial
model G from Equation 7, and is called computable
geospatial field. The functional model Mfun of every
geospatial field is characterized by a function f that
maps from a spatial domain D to a field V as follows:

f : D → V × S | f ∈ δfun ∧ δfun ∈Mfun(13)

The domain D is a geometric space, which may be

a subset of the geographic space S. The function f
associates every point from D with value v ∈ V × S,
which means that the value v is also associated with
the geographic space S. The values V can be of any
non-variable kind as long as it is computable by the
function f . The function f must be expressed as
part of the transition function δfun of the functional
model Mfun. The extra (relatively to geospatial ob-
jects) function f for geospatial fields is required for
the reason of computability and aggregates discrete
values v over computable representation of space us-
ing discrete coordinates.

Every field-based model requires a certain do-
main D and a the type of field values. A good ex-
ample of such domain is a three-dimensional Eu-
clidean space with computable value v being the
Cartesian coordinates (x, y, z) ∈ C. Note that in
this example both D and C are representations of
three-dimensional Euclidean space, but their defini-
tion might be different as long as D allows function f
to be computable. Hence the domain D might cover
the geographic space S entirely or partially, but will
always be a redundant representation of S specific
to only some model G. The resulting field of coor-
dinates would contain a set smaller or equal to all
coordinates of the geographic space S.

If we consider a geospatial model G with an
empty Mfun as the simplest case, one can argue that
the object-based approach is superior to the field-
based approach. This is true in the context of this
method. All "computable" is based on a finite set
of discrete steps calculated by a discrete model (see
Section 1.1), which effectively prevents making truly
continuous representations. We always end up 1)
with many discrete values within a geospatial model,
or 2) with many discrete geospatial models. Either
case manifesting the principles of object-based. At
best fields can be represented using a set of com-
putable coordinates that sample the field sufficiently.
Quite similarly to the coordinates of the geographic
space S, but with an important difference that all
the coordinates of the field must be evaluated, which
in computable modelling always depends on some
transition function δ.

Since model G allows for an arbitrary function
δ under Mfun an arbitrary computable field-based
model can be achieved. A true unification method
for object-based and field-based modelling cannot a
priori discount either approach. This requirement is
fulfilled, but on the basis that geospatial model G
with empty Mfun has object-based properties, and
therefore each computable geospatial field inherits
these object-based properties resulting in two layers

OSGEO Journal Volume 13 Page 107 of 114



Bytecode unification of geospatial computable models

of structure: first an object, then a field structure.
Both approaches share the resolution limit of the ge-
ographic space coordinates S.

2.4 Engineering Hierarchy of Computable
Models

The design and engineering aspects must be ad-
dressed In order to facilitate practical creation and
exchange of the computable geospatial model G,
which has been presented in theory. This section in-
troduces four engineering layers considered for the
realization of Equation 7 together with its conceptual
design.

Each computable model is expressed as a sep-
arate Turing machine M - a theoretical computer.
Manufacturing a special device for every computable
model would make this method impossible to ap-
ply, but because of Equation 3 this requirement can
be avoided. The design of general-purpose comput-
ers, first addressed in Burks et al. (1946), utilizes
the equivalence of finite composition of computable
models expressed in Equation 3. A general-purpose
computer is a single electronic device that allows to
load and run different computable models.

The assembly of electronic circuitry that can run
computable models is the first engineering layer to
consider. It is denoted as L1 in Figure 3. The cen-
tral processing unit (CPU) chip L1A runs machine
code. The general-purpose computer uses machine
code that keeps both the transitional functions δ (al-
gorithms) and the model inputs I (data) of com-
putable models together. A special kind of an in-
chip model that can start loading computable models
from an attached secondary memory is denoted as
L1B. This loader L1B is the first computable model
that is loaded and run automatically on every com-
puter L1A start-up.

When successful, the loader L1B passes the con-
trol over loading and starting of computable mod-
els to the next engineering layer depicted in Figure 3
as L2. Layer L2, which is called an operating sys-
tem kernel, makes it easier to make and run pro-
grams by abstracting attached physical devices by
computable models called drivers. Drivers together
with the loader model denoted as L2B are the main
interfaces used by programs, and introduce differ-
ences between operating systems. The loader L2B
can manage the machine code included in programs
and start them.

The third engineering layer L3 consists of pro-
grams that require a particular kernel for their exe-
cution. Note that "program" is yet another term for

a computable model following Equation 3. Figure 3
shows three relevant types of programs; 1) geoinfor-
mation program L3A that can utilize the computable
geospatial model G (see Equation 7); 2) compiler
L3B that can translate source code into an executable
code for certain operating system or virtual machine
(VM); and 3) VM L3C that implements similar fea-
tures as entire layer L2 for the sake of making pro-
grams independent of a particular kernel. Hence VM
L3C also has a component L3D that can load and
start programs.

The fourth layer L4 depicted in Figure 3 contains
programs that require a particular VM L3C for their
execution, but can (in principle) be independent of
layer L2. Such independence is achieved by an in-
termediate code that is executed by the VM L3C.
The independent executable code is called bytecode
(dictionary.com, 2013) and is the key engineering
concept used for the unification of geospatial com-
putable models. The independence of bytecode from
operating systems is attractive because it allows com-
putable models to be portable over a broad variety of
devices and systems in a similar manner as data in
traditional exchange formats. Another advantage of
VM based on bytecode is that the functionality δ can
be coded using many input languages. The layer L4
conceptually mimics the layerL3, but for this work is
necessary only the geoinformation programL4A that
can utilize, on the basis of bytecode, the computable
geospatial model G from Equation 7.

Figure 3: Engineering Hierarchy of Computational
Models.

2.5 GMO: Geospatial Managed Object

The engineering hierarchy of general computable
models suggests two nodes where the geospatial

OSGEO Journal Volume 13 Page 108 of 114



Bytecode unification of geospatial computable models

model G can be implemented. The two nodes are
highlighted in Figure 3 as L3A and L4A, and the
dashed line denotes the interface to the geospatial
model G depicted in Figure 2. Due to the compar-
ative properties of layers L3 and L4 the most flexi-
ble design is to implement the geospatial model G
under the node L4A in Figure 3. The on-demand
provision of components from the functional model
Mfun, which is the key concept described in Section
2.2.2, then rely on the loader L3D. The ability of stor-
ing the geospatial model G depends on the serializa-
tion32 model depicted in Figure 3 as L3E.

Design employing the loader model L3D and the
serialization model L3E is considerably more ad-
vanced then traditional designs for exchange of geo-
graphic data. The traditional exchange data formats
enforce fixed predefined structure and exchange of
functionality is usually impossible or very limited,
in contrast the geospatial model G in form of byte-
code allows for variable structure and exchange of
functionality. The nodes L3D and L3E from Figure 3
provide the engineering solution for Equation 3. The
computable geospatial model G implemented under
the node L4A using the loader L3D and the serial-
ization model L3E is called geospatial managed object
(GMO). GMO is the engineering design associated
with this method.

Design similar to GMO can be implemented un-
der the node L3A from Figure 3, but with limited ap-
plicability in practice. It is also possible to implement
the geospatial modelG under the node L4A in a way
that is dependent on layer L2, or limited in serial-
ization of the geospatial model G. Such designs can-
not be called geospatial managed objects. The GMO
option is the most powerful engineering design in
terms of sustainability, portability, applicability, and
ability to reuse the geospatial model G.

The term "object" in GMO refers to an engineer-
ing paradigm called "object-oriented paradigm" used
for programing of computable models and systems
in general. In contrast the "geospatial object" is from
the context of the geographic space S. Keeping
this in mind, the GMO is an engineering entity that
corresponds to the computable geospatial model G.
Hence GMO can be used for modelling of "geospa-
tial fields" as well as of "geospatial objects" (see Sec-
tion 2.2.3 and Section 2.2.2.) The term "managed"
in GMO refers to the management of both data and
functionality at the level of content, which is the key
property of the presented method. The management
of functionality is more complicated than manage-

ment of only data. The bytecode and VM model L3C
solves this "management" of data and functionality
on a common basis.

2.6 Model Incompleteness

The method of geospatial model G fully utilizes the
computability theory for modelling geospatial phe-
nomena. GMOs provide the optimal engineering de-
sign, but certain conceptual limits cannot be avoided.
They come in three levels: computability, complexity
and incompleteness. For example real or irrational
numbers cannot be used in computational models -
only their representations. An attempt to enumerate
numbers such as π or 1/3 would take eternity. The
computable transition function δ must be always re-
ducible to a sequence of basic arithmetic and logi-
cal operations that are physically implemented in the
CPU L1A.

Complexity limits are given by the time and
memory resources needed for computation. The pre-
cision of computable numbers used by GMOs is one
aspect, because too precise representations of num-
bers (too much data) may not fit into the memory
or take too long to evaluate. Also, many problems
are inefficient when described by the transition func-
tion δ resulting in an algorithm with complex set of
problem-solving operations. For example, a geospa-
tial model deciding the shortest path through given
number of cities n starting and ending in the same
point requires handling of (n − 1)! distances (Ap-
plegate et al., 2007). A computer capable of billion
operations a second (THz) would compute the so-
lution for n = 20 cities in about 3.8 years, and for
n = 25 cities would already need almost twenty mil-
lion years. In the logistics and telecommunication in-
dustry, this example is an essential algorithm. But be-
cause it is so hard to compute, the practical solutions
must use approximations and heuristic assumptions,
leaving the exact solution unknown. This example is
not exceptional, there are hundreds of such complex
problems (wikipedia.org, 2013). Due to their inher-
ent complexity, many solutions to well defined mod-
els are computationally intractable.

The limits of computability and complexity might
be surprisingly constraining, but the reality is even
worse. In 1931 Kurt Gödel derived a mathematical
proof showing that a consistent set of axioms can-
not be complete. There he also showed that proof of
consistency cannot be derived from the given set of
axioms alone (Hirzel, 2000). This has a profound im-

32In terms of computer science the process of transforming computable models from the form suitable for execution to a form suitable
for storage and exchange is called "serialization".

OSGEO Journal Volume 13 Page 109 of 114



Bytecode unification of geospatial computable models

plication on computational geospatial models, which
are in essence axiomatic systems using arithmetic.
The Gödel’s theory informally says the best we can
do about any geospatial model is to assume its con-
sistency and at the same time hope that it sufficiently
addresses the problem we want to model. We have
to accept that all important aspects may NOT be ad-
dressed by the model, because there is always some
true statement that is relevant but that cannot be cov-
ered by the model (Devlin, 1998).

Let’s consider an example of a geospatial model
from Goodchild (2012) that shifts a representation of
a polygon in 2d by a given vector. This is a typi-
cal object-based model, which might be incomplete
for field-based features. The shift by a given vec-
tor can lead to a result when polygon intersects other
polygon, which for cadaster boundaries or contour-
lines is an invalid result. It highlights again that
field-based and object-based considerations are ubiq-
uitous in geospatial modelling, but the main point
here is the nature of incompleteness. Regardless
the limits of computability and complexity there is
always more specialized case for which a geospa-
tial model is incomplete. Hence, each computable
geospatial model G and all its applications are pri-
marily (and naturally) incomplete, and only then
functional, field- or object-based, complex, secure, el-
egant and so on.

These limitations are valid for any computational
model. They are included due to their importance
in order to provide more consistent description of
the method. The nature of incompleteness is often
underestimated in geoinformation science and ne-
glected by geospatial industry despite its implica-
tions on sustainability and efficiency of geospatial in-
formation systems. The geospatial modelG provides
an effective and flexible way how to deal with the na-
ture of incompleteness.

3 Implementation

The design of geospatial managed objects introduced
in Section 13 has been implemented as a software li-
brary named geospatial reference interface for Internet
networks (GRIFIN). This experimental library addi-
tionally implements practical features not addressed
in this article including mechanisms for storage and
retrieval of GMOs, exchange of GMOs over network,
automatic 2d interpretation of 3d geometries, sup-
port for visualization, and API for client applica-
tions to use GMOs. The experiment is maintained
at http://grifinor.net, and the author’s intention is

to provide the library to everyone under the GNU
General Public License.

In order for the GMO implementation to be ap-
plicable and robust few already existing technolo-
gies have been applied. The most crucial in this re-
gard is the selection of the VM technology. Note
that the utilization of VM here is not a mere soft-
ware engineering convenience for implementation
or porting to different operating systems. The na-
ture of VM, as described in Section 13, is an inher-
ent part of the GMO method. The role of the VM’s
bytecode relatively to GMOs is similar to the impor-
tance of HTML relatively to Web pages. The conse-
quence of a future change to a different VM would
have an analogy in changing HTML to, let’s say,
PDF format - making all the previous content obso-
lete and nonfunctional. Hence requirements on the
VM technology are relatively strict and include: non-
proprietary solution, strong focus on backward com-
patibility, production quality with commercial lead-
ership, and widely established availability. Given
these priorities the HotSpot VM, which is the origi-
nal VM used within the Java ecosystem, stands out
as nearly unchallenged choice, despite its currently
marginal availability on mobile platforms.

The GMO concept has been coded in form of
an abstract class, which implements the referencing
mechanism Mref and an abstract method manage
representing Mfun. This guarantees access to the ref-
erencing mechanism and custom functionality for all
implementing subclasses and their GMO instances.
The geospatial index Msdx introduced in Section 13
has been implemented as a hash function mapping
from the geospatial coordinates S to an array of
32 bytes. Examples at http://grifinor.net/examples
also provide references to the source code. In order
to facilitate prototyping and re-use of GMO mod-
els most of the examples utilize Scala language and
GRIFIN Shell (GShell), which allows for an inter-
active use. GShell can be used to create, manage
and consume the geospatial content on GRIFIN plat-
form. It has all management, server, and remote
access features available from a uniform environ-
ment and provides a way to exchange and execute
code on GRIFIN’s distributed network. This follows
the original vision of a space for collaboration on
model development, and not just a one-way pub-
lishing medium for static, predefined, and hard-to-
change types of geospatial information.

Since 2006 several projects used GRIFIN, and
many different GMO models were implemented as
both object- and field-based representations of the
real world environment. Figure 4 depicts results

OSGEO Journal Volume 13 Page 110 of 114

http://grifinor.net
http://grifinor.net/examples


Bytecode unification of geospatial computable models

from InfraWorld project (Kolar, 2010) in three differ-
ent software clients.

Figure 4: Three different software clients consuming
identical GMOs from a server.

The city model and a daily energy consumption
per building spanning a one-year-period were mod-
elled as GMOs. While the model is relatively com-
plex the software clients only implement the API for
handling GMOs, which accounts circa twenty meth-
ods. The city model itself has several times more
methods. The model brings all its functionality to
the different clients, its specification and definition
undertook big changes while the API for GMO could

be implemented independently in parallel, and once
the GMO API is done the software client is ready
for all future models using the GMO method. This
summarized three practical properties, which might
be hard to address using non GMO solutions. Fig-
ure 5 depicts two examples of field-based represen-
tations. The right-hand side depicts a GMO model
for "Nomenclature of Units for Territorial Statistics"
including its hierarchical subdivision of administra-
tive units. The spherical grids in Figure 5 show a
GMO implementation of the Global Indexing Grid
described in Kolar (2009), which is suitable for a
spherical subdivision at arbitrary resolution and is a
convenient basis for more complex models using the
nearest neighbor queries. Energy City Frederikshavn
(Wen et al., 2010) is other project based entirely on
GMO method, featuring an object-based city model
and a field-based terrain representation.

Figure 5: Field-based geospatial representations
modelled using the GMO method.

4 Conclusion

A uniform theoretical and engineering solution sup-
porting both field- and object-based computable
geospatial models was presented and implemented.
The geospatial model G and its GMO engineering
design supports any computable representation of
object-based or field-based geographic features, as
well as complex geospatial models combining both
approaches. The unification of the method leans
on the definition of geographic space S, which in-
cludes time, and which can be adopted at different
scales and subdimensions. Scales are represented as
unit-less dimensions of the space S. Computable
geospatial field inherits certain object-based prop-
erties enforced by the computability theory result-
ing in two layers of structure: first an object, then
a field associated with the function δ. The key con-
cept of the method is keeping the structured data to-
gether with the functionality δ as one content unit.

OSGEO Journal Volume 13 Page 111 of 114



This is not new in general, but the method fully un-
folds this potential of computability theory in GISc
and brings it to geospatial applications. The byte-
code, which is the engineering solution for keeping
data and functionality together, is inherently associ-
ated with a particular VM. That is a unique require-
ment compared to solutions based on more tradi-
tional data exchange. GMO, as the optimal engineer-
ing design for the geospatial model G, encapsulates
models on the level L4. This design is more flexible
in addition and changes of models, more portable,
and easier to deploy than solutions designed on the
level L3 as well as those on L4 without the GMO en-
capsulation. GMOs make it possible to handle data
and functionality at all ends of a distributed network,
also after the object is instantiated, exchanged and
consumed on the client side. This could facilitate
the exchange of research developments of geospatial
models. It was stressed that computational models
are naturally incomplete, which has profound impli-
cations for the geospatial industry in terms of effi-
cient sustainability of geospatial applications and for
synergy of various information systems into larger
infrastructures. Although the incompleteness is an
unsolvable issue, GMOs provide an effective and
flexible way to mitigate it. It also avoids many is-
sues met by standardization efforts ongoing in the
geospatial industry. The GMO design was imple-
mented in the GRIFIN framework and is associated
with the HotSpot VM. The VM requirement is the
key engineering disadvantage of the method. Prac-
tice shows, however, that for the useful models the
VM overhead can be minimized to a negligible level
by applying adequate representations.

References

Applegate, D. L., Bixby, R. E., Chvatal, V. & Cook, W. J. (2007),
The traveling salesman problem: a computational study, Prince-
ton University Press.

Boucher, C. (2001), Terrestrial coordinate systems and frames,
in ‘Encyclopedia of Astronomy and Astrophysics’, Nature
Publishing Group, pp. 3289–3292.

Burkholder, E. F. (2000), The global spatial data model, in ‘Inter-
national Conference on Discrete Global Grids’, Santa Bar-
bara, California, USA.

Burks, A. W., Goldstine, H. H. & von Neumann, J. (1946),
‘Preliminary discussion of the logical design of an elec-
tronic computing instrument’, http://grifinor.net/

cite/2013/FOSS4G2013/4.

Devlin, K. J. (1998), The Language of Mathematics: Making the In-
visible Visible, W.H. Freeman & Company.

Dictionary.com (2013), ‘Define byte-code’. URL: http://

grifinor.net/cite/2013/FOSS4G2013/2

EPSG (2013), ‘European Petroleum Survey Group: Geodesy Pa-
rameters Archived Versions’. URL: http://www.epsg.
org/archive.html

Goodchild, M. F. (2012), ‘Field-based spatial modeling’, http:
//grifinor.net/cite/2013/FOSS4G2013/3.

Hirzel, M. (2000), ‘On formally undecidable propositions of
Principia Mathematica and related systems I’, http://

grifinor.net/cite/2013/FOSS4G2013/7.

Kjems, E. & Kolar, J. (2005), From mapping to virtual geography,
in ‘CUPUM’, London, U.K.

Kolar, J. (2009), GIG: a projection-free global grid system suitable
for indexing, in ‘Proceedings of the 6th Symposium of the
International Society for Digital Earth’, Beijing, China.

Kolar, J. (2010), ‘InfraWorld Project, The VERDIKT-Conference
2010’, http://blog.grifinor.net/post/3360221925.

Kopeikin, S. M. (2007), Relativistic reference frames for astrome-
try and navigation in the solar system, in ‘AIP Conference
Proceedings’, p. 268.

Pogge (2013), ‘GPS and Relativity by Richard W. Pogge’. URL:
http://grifinor.net/cite/2013/FOSS4G2013/1

Sipser, M. (1996), Introduction to the Theory of Computation, 1 edn,
PWS Pub. Co., pp. 125–130.

Weisstein, E. W. (2013), ‘”Octant.” From MathWorld–A Wolfram
Web Resource’. URL: http://gri[FB01?]nor.net/cite/
2013/FOSS4G2013/6

Wen, W., Kjems, E., Bodum, L. & Kolar, J. (2010), Dynamic fea-
tures in a 3d city model as an energy system, in ‘ISPRS Con-
ference: International Conference on 3D Geoinformation’,
Berlin, Germany.

Wikipedia (2013), ‘List of NP-complete problems’. URL: http:
//grifinor.net/cite/2013/FOSS4G2013/5

OSGEO Journal Volume 13 Page 112 of 114

http://grifinor.net/cite/2013/FOSS4G2013/4
http://grifinor.net/cite/2013/FOSS4G2013/4
http://grifinor.net/cite/2013/FOSS4G2013/2 
http://grifinor.net/cite/2013/FOSS4G2013/2 
http://www.epsg.org/archive.html 
http://www.epsg.org/archive.html 
http://grifinor.net/cite/2013/FOSS4G2013/3
http://grifinor.net/cite/2013/FOSS4G2013/3
http://grifinor.net/cite/2013/FOSS4G2013/7
http://grifinor.net/cite/2013/FOSS4G2013/7
http://blog.grifinor.net/post/3360221925
http://grifinor.net/cite/2013/FOSS4G2013/1 
http://gri[FB01?]nor.net/cite/2013/FOSS4G2013/6 
http://gri[FB01?]nor.net/cite/2013/FOSS4G2013/6 
http://grifinor.net/cite/2013/FOSS4G2013/5 
http://grifinor.net/cite/2013/FOSS4G2013/5 

