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Abstract

As geoprocessing on the web has matured in recent
years, an increasing number of geoprocessing ser-
vices and functionality are becoming available in the
form of online Web Processing Services (WPS). Con-
sequently, the quality of such geoprocessing services
is of importance to ensure that WPS instances ful-
fill users’ expectations. In this paper, we illustrate,
and discuss initial results from a quantitative analy-
sis of the performance of WPS servers. To do so, we
used two test scenarios to measure response time, re-
sponse size, throughput, and failure rate of five WPS
servers including 52◦ North, Deegree, GeoServer, Py-
WPS, and Zoo. We also assess each WPS server in
terms of qualitative metrics such as software archi-
tecture, perceived ease of use, flexibility of deploy-
ment, and quality of documentation. A case study
addressing accessibility assessment is used to eval-
uate the relative advantages and disadvantages of
each implementation, and point to challenges expe-
rienced while working with these WPS servers.

Keywords: OGC WPS; Geoprocessing; Perfor-
mance Evaluation; Benchmark.

1 Introduction

With the development of geospatial services, web-
based GIS (Geographic Information Systems) have
progressed towards a service-oriented paradigm
(Mayer, Stollberg, & Zipf, 2009). Today, spatial ser-
vices can be used to effectively support common
tasks undertaken by spatial information users, for
example, discovery and access to, process of, or vi-
sualization of spatial data. Catalogue Services for
the Web (CSW), Web Feature Services (WFS), Web
Coverage Services (WCS), Web Mapping Services
(WMS), and WPS are common services defined by
the OWS (Open Geospatial Consortium Web Ser-
vice) initiative. A CSW provides the ability to pub-
lish and search collections of descriptive informa-
tion (metadata) (Solntseff & Yezerski, 1974) for spa-
tial data and services (Nebert, Whiteside, & Vretanos,
2007). A WFS is the main geospatial service for

publishing vector spatial data, generally encoded us-
ing Geography Markup Language (GML) (Vretanos,
2002). A WCS defines a standard interface and oper-
ations that enable interoperable access to spatial cov-
erage (Spatial information representing space/time-
varying phenomena) datasets (Evans, 2003). A WMS
delivers visualizations of data and, unlike WFS and
WCS, does not deliver the data directly (de La Beau-
jardiere, 2004).

In the context of processing services, the Open
Geospatial Consortium (OGC) has standardized the
WPS interface for publishing of spatial processes,
the discovery of, and binding to, those processes by
users (Schut, 2007). A spatial process may include
algorithms, calculations, or various kinds of models,
which are exposed as a service instance, and oper-
ating on spatial data. A WPS, thus, can be used to
design and develop a wide variety of GIS function-
alities, and be made available to users across a net-
work, as well as provide access to previously defined
functions, calculations, or computational models.

With the emergence of geoprocessing on the web,
the WPS specification and its (application) profiles
have been applied to a wide array of use cases,
from accessibility assessment (Steiniger, Poorazizi,
& Hunter, 2013) to ecological modeling (Dubois,
Schulz, Skøien, Bastin, & Peedell, 2013). The increas-
ing use of WPS instances has also raised pertinent
quality concerns — users/developers are likely to
be concerned about the Quality of Service (QoS) at-
tributes such as performance, reliability, and security.

The performance of a particular WPS is often of
importance to users, arguably the most important,
when evaluating the QoS of a specific service. More-
over, performance has a direct effect on other QoS
attributes; for example, poor performance will affect
reliability, scalability, capacity, accuracy, accessibility,
and availability (Cibulka, 2013).

A developer’s concerns, during designing and
development of a WPS, are often twofold. As noted,
from a quantitative perspective, performance is one
of the key principles that can ensure both user and
application developer satisfaction. From a qualita-
tive point of view, quality concerns such as software
architecture, perceived ease of use, flexibility of de-
ployment, quality of documentation, and support ac-
cessibility are important factors that can guide devel-
opers during selection of a WPS framework that fits
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a particular application domain best.
Several reviews have been reported in the litera-

ture that evaluates spatial services from both a quan-
titative and qualitative perspectives. MapServer’s
WMS has been assessed and optimized by Kalbere
(2010). COSMC (Czech Office for Surveying, Map-
ping and Cadastre) and CENIA (Czech Environmen-
tal Information Agency) WMSs have been tested
for availability and performance (Horák, Ardielli,
& Horáková, 2009). Bermudez et al. (2009) com-
pared the ability of WFS and SOS (Sensor Observa-
tion Service) to publish time series data. Tamayo
et al. (2011) presented an empirical study of in-
stances of servers implementing SOS in terms of
compliance with OGC’s SWE (Sensor Web Enable-
ment) and interoperability, and in our previous work
we evaluated performance of three SOS servers – 52◦

North, MapServer, and Deegree – based on differ-
ent test scenarios (Poorazizi, Liang, & Hunter, 2012).
Moreover, a WMS performance shootout has been
presented annually since 2007 at the FOSS4G (Free
and Open Source Software for Geospatial) confer-
ence, which provides a standardized procedure for
measuring and comparing the performance of WMS
server installations (http://wiki.osgeo.org/wiki/
FOSS4G_Benchmark).

Within the geoprocessing domain, there have
been few attempts to evaluate WPS servers. Scholten
et al. (2006) investigated efficiency of web ser-
vices for geoprocessing in a Spatial Data Infras-
tructure (SDI), but focused on caching, network
adaptation, data granularity, and communication
modes. Michaelis and Ames (2009) evaluated the
WPS 0.4.0 specification, identified challenges, and
proposed potential enhancements from an imple-
mentation perspective. In addition, a WPS shootout
was presented at the FOSS4G conference 2011, which
evaluated five WPS servers, 52◦ North, Deegree,
GeoServer, PyWPS, and Zoo, in terms of compli-
ance with OGC’s WPS, and interoperability (http:
//wiki.osgeo.org/wiki/WPS_Shootout). The main
achievement of the aforementioned works is that
they concentrated on influential performance issues,
the WPS protocol and its specification, and compli-
ance and interoperability testing. However, there is
also a need to evaluate WPS functionality and per-
formance. Through performance evaluation, WPS
developers can (i) identify the strengths and weak-
nesses of each system, and (ii) improve WPS servers
to meet both application user and developer require-
ments (Zhu, 2003). These issues are addressed in this
paper. We have evaluated the performance of five
WPS servers – 52◦ North, Deegree, GeoServer, Py-

WPS, and Zoo – using two test plans in an accessibil-
ity assessment scenario. To do so, the WalkYourPlace
Transit Model (Steiniger et al., 2013) was used to de-
sign the geoprocessing workflow. The workflow was
then developed using Python and wrapped and ex-
posed as a standard WPS using the candidate WPS
servers. The sample locations were selected using
a stratified random sampling approach within the
bounds of the City of Calgary, Alberta, Canada. Dur-
ing experiments we controlled the number of concur-
rent requests, and the WPS input parameters to as-
sess the performance and load capacity of the WPS
servers. The remainder of the paper is structured
as follows. Section two introduces the WPS speci-
fication. The specification of candidate WPS servers
is described in section three. Section four explains
the methodology used to evaluate the WPS servers,
along with a description of the case study, technical
architecture, test scenarios, and hardware configura-
tion of the servers used. Section five presents the re-
sult. In section six, the WPS servers are assessed in
terms of qualitative metrics. Section seven summa-
rizes our findings.

2 Web Processing Service

The OGC released version 1.0.0 of the WPS specifi-
cation in June 2007 (Schut, 2007). The specification,
along with the OGC Web Processing Service Best
Practice discussion paper, describe a web service in-
terface that defines how a client and server should
cooperate during the execution of a spatial analysis,
and how results of the process should be presented
(Schäffer, 2012). Clients can send requests via three
core operations using three methods: Key Value
Pairs (KVP) encoding via HTTP’s (HyperText Trans-
fer Protocol) GET, XML (eXtensible Markup Lan-
guage) via HTTP’s POST, or a SOAP/WSDL (Sim-
ple Object Access Protocol/Web Service Description
Language) approach. The WPS specification defines
three mandatory operations that enable spatial pro-
cessing on the Internet (Schut, 2007). The GetCapa-
bilities operation allows a client to request and re-
ceive service metadata documents that describe the
capabilities of a specific server implementation. The
DescribeProcess operation returns detailed informa-
tion about a process’ requirements, such as input
and output parameters, as well as allowable data for-
mats. The Execute operation invokes a specific pro-
cess implemented by the WPS, using the input pa-
rameters provided, and returns the results of the ser-
vice to a client.
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3 WPS Servers

In this paper five WPS servers were used for per-
formance evaluation. 52◦ North WPS (http://
52north.org/communities/geoprocessing/wps/)
is developed by the 52◦ North Initiative for Geospa-
tial Open Source Software GmbH. It implements
the three mandatory operations of the WPS 1.0.0
specification. The 52◦ North WPS server is re-
alized as a servlet and can be deployed in any
servlet container such as Apache Tomcat (http:
//tomcat.apache.org/). Developing a custom
WPS process is implemented using 52◦ North’s
WPS SDK (Software Development Kit) to define pa-
rameters necessary for service configuration, ser-
vice metadata, and business logic. Spatial analysis
functions can be integrated using various libraries
such as JTS (http://www.vividsolutions.com/jts/
JTSHome.htm), GeoTools (http://www.geotools.
org/), R (http://www.r-project.org/), GRASS
(http://grass.osgeo.org/), SEXTANTE (http://
www.sextantegis.com/), and ArcGIS Server (http:
//www.esri.com/software/arcgis/arcgisserver),
for example.

Deegree WPS (http://www.deegree.org/) is a
service built into the Deegree Java framework for
geospatial applications and OGC service implemen-
tations, deegree 3. deegree 3 is an Open Source
Geospatial (OSGeo) Foundation project. It sup-
ports the core profile operations of the WPS 1.0.0
standard specification. The Deegree WPS server is
implemented as a servlet and can be deployed in
any servlet container, i.e., Apache Tomcat. Devel-
oping a custom process requires the creation of a
Maven (http://maven.apache.org/) project. Con-
figuration parameters and service metadata are de-
fined through XML configuration files and busi-
ness logic is implemented as a Java class. Dee-
gree WPS currently supports the SEXTANTE spa-
tial library, but other spatial libraries such as FME
(http://www.safe.com/fme/fme-technology/) and
GRASS (http://grass.osgeo.org/) are being con-
sidered.

GeoServer WPS (http://docs.geoserver.org/
wps) is part of the popular open-source GIS project
GeoServer, a project of the OSGeo Foundation. It
supports the three mandatory operations contained
in the WPS 1.0.0 specification. The GeoServer WPS
server is built using Java technology as a servlet, and
runs in an integrated Jetty or Apache Tomcat web
server environment. Developing a custom process is
accomplished by creating a Maven (https://maven.
apache.org/) project. Configuration parameters and

service metadata are defined through XML configu-
ration files, and business logic is implemented as a
Java class. GeoServer WPS supports GeoTools and
JTS spatial libraries.

PyWPS (http://pywps.wald.intevation.org/)
is a Python-based WPS implementation developed
by Intevation GmbH. It implements the mandatory
operations of the WPS 1.0.0 specification. It runs as
a CGI (Common Gateway Interface) application and
can therefore be deployed in any HTTP Server en-
vironment, Apache HTTP Server, for example. De-
veloping a custom process requires the creation a
python file to implement the business logic and de-
fine service metadata and configuration parameters.
PyWPS enables access to a wide range of analy-
sis functions via GRASS, GDAL (http://www.gdal.
org/), and R libraries.

Zoo (http://www.zoo-project.org/ is an
OSGeo Foundation project that enables existing
open source libraries to interact through its WPS
framework. It supports the mandatory operations
of the WPS 1.0.0 specification. It runs as a CGI
application and so can be deployed in any HTTP
Server environment. Developing a custom pro-
cess requires the creation of a configuration file
(.zcfg) that defines service metadata and config-
uration parameters. Business logic can be imple-
mented in several programming languages includ-
ing C/C++, PHP, JavaScript, Java, Perl, Python, or
FORTRAN. Several spatial libraries such as GRASS,
GEOS (http://trac.osgeo.org/geos/), and GDAL
are supported by default in Zoo WPS framework.

Table 1 lists the technical characteristics of 52◦

North, Deegree, GeoServer, PyWPS, and Zoo WPS
servers.

4 Methodology

In this section, we explain the methodology used
to test and measure the performance of the WPS
servers.

4.1 Case Study

In order to evaluate performance of the WPS servers,
we used the WalkYourPlace Transit Model (http:
//webmapping.ucalgary.ca/WPSClient/), which is
one of the accessibility assessment models developed
for the PlanYourPlace project (Steiniger et al., 2013).
Based on this model, if the users provide (i) their cur-
rent location, or perhaps a location they would like
to start walking from, (ii) a maximum time they are
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Zoo18 is an OSGeo Foundation project that enables existing open source libraries
to interact through its WPS framework. It supports the mandatory operations of
the WPS 1.0.0 specification. It runs as a CGI application and so can be deployed
in any HTTP Server environment. Developing a custom process requires the
creation of a configuration file (.zcfg) that defines service metadata and
configuration parameters. Business logic can be implemented in several
programming languages including C/C++, PHP, JavaScript, Java, Perl, Python, or
FORTRAN. Several spatial libraries such as GRASS9, GEOS19, and GDAL17 are
supported by default in Zoo WPS framework.

Table 1 lists the technical characteristics of 52°North, Deegree, GeoServer,
PyWPS, and Zoo WPS servers.

Table 1: WPS servers’ technical specifications

 52°North Deegree GeoServer PyWPS Zoo
Development
Platform

Java Java Java Python C/C++

License GNU GPL
v2

LPGL GNU GPL
v2

GNU GPL
v2

MIT/X-11
style

Supported 
Libraries

JTS
GeoTools
SEXTANTE
R
GRASS
ArcGIS

SEXTANTE JTS
GeoTools

GRASS
GDAL
R

GRASS
GEOS
GDAL

Natively 
Supported 
Languages 
for Process 
Development

Java Java Java Python C/C++
Fortran
Java
Python
PHP
Perl
JavaScript

Service Servlet Servlet Servlet CGI CGI
DCP Request GET, POST,

SOAP
GET, POST,
SOAP

GET,
POST

GET,
POST,
SOAP

GET,
POST

4  Methodology
18  http://www.zoo-project.org/ 
19  http://trac.osgeo.org/geos/ 

6

Table 1: WPS servers’ technical specifications.

willing to walk to a point of interest, or a transit stop,
(iii) average walk-speed, (iv) a maximum time they
would like to wait for transit, and (v) and the maxi-
mum time they would like to travel by transit, then
the system will evaluate the extent of the area that
is accessible using pedestrian and transit infrastruc-
ture. The services within an accessibility area are
then analysed (e.g., point of interests (POI) such as
parks, stores, libraries, etc.) to determine an accessi-
bility score for the accessibility area. Should the user
wish, they can ask for a distance decay function to
be applied that discounts the contribution of POIs
that are further away from the users start location.
Next, an assessment of crime is undertaken for the
accessibility area. The accessibility area, accessibil-
ity score, and the crime index are final outputs of the
model. For more details about accessibility assess-
ment models deployed as part of the WalkYourPlace
framework see Steiniger et al. (2013).

4.2 Technical Architecture

Figure 1 illustrates the processing service architec-
ture for the WalkYourPlace Transit Model. The
service architecture has been designed to reduce
complexity and enable reuse of geoprocessing ser-
vices. From a service design perspective, a bottom-
up (Granell, Díaz, & Gould, 2010) approach was
used to design the services. The geoprocessing ser-
vices were then implemented using Python in such

a way that to be accessible via HTTP GET/POST.
In this context, PostGIS spatial functions were used
to perform geometric computations such as calcu-
lating distances between pairs of points, calculating
the area of polygons, and merging multiple geomet-
ric objects. Remaining functionality was developed
using Python libraries. The geoprocessing services
were then wrapped and exposed as standard WPSs
using 52◦ North, Deegree, GeoServer, PyWPS, and
Zoo frameworks. In this context, the WPS server
acts as a gateway, which enables standard commu-
nication with the back-end (Python-based) geopro-
cessing services. It actually accepts the Execute re-
quest, parses the query, and sends it to the cor-
responding Python-based service using HTTP han-
dlers. After getting the result, the WPS server pre-
pares it as a standard WPS response and sends it
back to the client. In this study, we developed
seven Python-based geoprocessing modules to per-
form the analysis, and seven WPS instances using
each WPS server to wrap and expose them as stan-
dard WPS services (see Figure 1). A PostgreSQL/-
PostGIS database was used to store various spatial
datasets such as the street and transit networks, the
transit schedule, and crime data, obtained originally
from OpenStreetMap, Calgary Transit, and the Cal-
gary Police, respectively. To search for attractions
within accessibility areas, POI datasets were fetched
on demand from OpenStreetMap and MapQuest
databases using REST (REpresentational State Trans-
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fer) APIs (Application Programming Interfaces). For
the calculation of transit-based accessibility areas we
used the General Transit Feed Specification (GTFS)
formatted data published by the City of Calgary.

Figure 1. The WalkYourPlace processing service ar-
chitecture.

The geoprocessing service framework includes
an accessibility assessment engine that performs
the accessibility analysis through chaining of geo-
processing services in a multi-step pattern, i.e. a
workflow. To achieve desired application flexibil-
ity, service reusability, and improve performance,
the workflow-managed chaining method was used
(Alameh, 2003).

Figure 2 presents a UML sequence diagram that
outlines how an accessibility score is calculated for
pedestrian and transit infrastructure. The client
sends a WPS Execute command to the Manage-
ment WPS, which then initiates an Execute call to
the Walkshed WPS. The Walkshed WPS returns a
GeoJSON polygon of the network-based accessibility
area. The Management WPS then sends an Execute
request to the Transit WPS to find all transit stops
within the accessibility area and generates an accessi-
bility area for each transit stop based on the user de-
fined constraints described in section 4.1. The Tran-
sit WPS returns a GeoJSON-encoded multi-polygon
feature. Next, the Management WPS sends an Exe-
cute request to the Union WPS to merge all the ac-
cessibility areas generated by the Transit WPS. The
Union WPS returns a single polygon feature encoded
as GeoJSON. The Management WPS then sends an
Execute request to the POI WPS to find all attrac-
tors within the accessibility area. The POI WPS re-
turns a point set of services encoded as GeoJSON
points, along with attributes describing the types of
features found. The Management WPS then repeats
the same request to the Crime WPS to obtain inci-
dent locations. Finally, the Management WPS sends
an Execute request to the Aggregation WPS along
with the accessibility polygon, the responses from

the POI and Crime WPS’s, and a Boolean variable to
indicate whether the distance decay function should
be applied or not. The response from the Aggre-
gation WPS includes an accessibility score, a crime
score, and an accessibility area. The Management
WPS then returns the Aggregation WPS’s response
to the client for presentation.

4.3 Test Scenario

In this study, to ensure the same test conditions for all
WPS servers were used, we developed the geopro-
cessing services using Python and then wrapped and
exposed them as WPS services. Given this imple-
mentation the WPS servers (i.e., 52◦ North, Deegree,
GeoServer, PyWPS, and Zoo) act as a gateway that
enables standard interaction between clients (i.e., the
user or other services) and back-end geoprocessing
services, which implemented using Python. For ex-
ample, when the client sends an Execute request to
the Management WPS, it then sends a request to a
corresponding Python service, which is accessible
via HTTP GET/POST. After getting the response, the
Management WPS sends Execute requests to other
WPS services (i.e., Walkshed, Transit, Union, POI,
Crime, and Aggregation WPSs), which in turn com-
municate with back-end Python services to get the
processing result. As such, the Execute method de-
pends on external service calls, and the response time
for invocation of the whole workflow (Figure 2) was
measured to evaluate the “end-to-end” performance,
i.e., the response time includes communication time
and processing time.

To evaluate the performance of the WPS servers,
we designed two test scenarios based on the acces-
sibility assessment case study. In the first scenario
(Scenario A), we randomly chose the WPS input pa-
rameters to generate 45 Execute requests. The num-
ber of concurrent requests was assumed constant
(n=1). The input parameters were selected using the
following criteria:

• Walking Start Point: sample locations were se-
lected using a stratified random sampling ap-
proach within the bounds of the City of Cal-
gary (see Figure 3).

• Walking Start Time: random timestamps be-
tween 5 a.m. and 12 p.m., which is the Cal-
gary Transit hours of operation (http://www.
calgarytransit.com/accesscalgary/hours.

html).

• Walking Time Period: we selected random val-
ues between 5 minutes and 20 minutes.
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Figure 2. UML activity diagram of accessibility assessment workflow.

• Walking Speed: we selected random values be-
tween 3 km/h and 6 km/h with step values of
0.5 km/h.

• Bus Waiting Time: we selected random values
between 0 minutes and the Walking Time Pe-
riod.

• Bus Ride Time: we selected random values be-
tween 0 minutes and Walking Time Period –
Bus Waiting Time.

• Distance Decay Function: a Boolean variable
(i.e., True/False) was selected randomly.

For the second scenario (Scenario B), we focused on
the number of concurrent requests. In this context,
the number of concurrent requests was generated us-
ing a 2n pattern, while variable “n” was selected be-
tween 0 and 7 with step value of 1. 30 WPS Execute
requests were generated for each WPS service and
replicated according to the concurrent request pat-
tern. All other criteria were determined using the
above mentioned approach for Scenario A. Figure 3. Map of the City of Calgary highlighting the

locations used for evaluating the WPS servers.
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4.4 Test Environment

To more accurately reflect the users experience, all
the tests have been measured from the client-side.
On the server-side, a Dell OptiPlex 990 was used
as the host machine, with an Intel Core i5 (3.1GHz)
CPU, 8GB of RAM, and 500GB of disk space, run-
ning Microsoft Windows 7 Professional (64-bit). In
order to deploy and test the WPS servers under the
same conditions, each WPS package was installed
on a separate virtual machine with the same hard-
ware configuration. VMware Player 5.0.1 (http:
//www.vmware.com/) was used to setup five virtual
machines with access to 4GB of RAM, 40GB of disk
space, and use of 4 out of 8 CPU cores, running
Ubuntu 12.04 LTS (64-bit). The network configura-
tion of the virtual machines was set to “Bridged”, al-
lowing them to connect directly to the physical net-
work and obtain a dedicated IP address. Table 2
summarizes the configuration of the server machine
(host), and virtual machines. For more information
about the configuration of database server and soft-
ware libraries used see Appendix A.

Hardware Dell OptiPlex 990
(Host) VMware (VM)

CPU Intel Core i5
3.1GHz 4 Cores of 8

RAM 8GB 4GB

HDD 500GB 40GB

OS Windows 7 Pro-
fessional (64-bit)

Ubuntu 12.04 LTS
(64-bit)

Table 2. Experimental server configuration.

The machine used to run the tests at the client-
side was the host machine. In this study, we used the
same machine to set up the servers and test them,
while according to (VMware, 2006), “an ideal setup
for workloads that involve network traffic is to use
an external client (on a different physical system) to
send network traffic to and receive network traffic
from a virtual machine”. Although this could affect
the performance of the WPS servers, the test con-
ditions (i.e., hardware and software configurations)
were the same for all the servers, which are shown in
Table 2, Table 6, and Table 7. It was assumed that net-
work time would be constant and therefore would
not contribute significantly to differences in response
times.

In order to run the tests and measure perfor-
mance factors (e.g., response time, response size,
etc.), Apache JMeter (http://jmeter.apache.org/)

was used, as it is a widely accepted performance-
testing tool for web applications.

5 Experimental Results

Since each WPS server uses database connections to
execute queries, a warm-up run was first performed.
This ensures that the overhead of establishing a con-
nection to the database is not accounted for in the
metrics (elapsed time). During each performance
test, only one virtual machine was run. Response
time, response size, and whether or not a request
was successful were logged. This data allowed the
estimation of average response times, average server
throughput, average server failure rate, and average
response size returned by each WPS server. Figure 4
to Figure 7 and Table 3 below report the results of the
experiments.

First, the performance test for Scenario A is re-
ported. The average response time, time taken for
a service call to return all response bytes, the aver-
age response size, the quantity of data exchanged be-
tween client and server, for each of the WPS servers
are listed in Table 3 and plotted on Figure 4.

Given the data, the most rapid WPS server was
Deegree, with an average response time of 2.499
± 1.259 s (95% confidence interval (CI)), followed
by GeoServer WPS, 52◦ North WPS, Zoo WPS, and
PyWPS. A one-way Analysis of Variance (ANOVA)
test indicates that all WPS servers respond simi-
larly with no significant difference between them,
F(4,220)=0.739, p=0.566.

In terms of response size, there was no signifi-
cant difference (F(4,220)=1.071, p=0.372) either with
all WPS servers returning similar response package
data volumes (≈ 2.484 kB). The GeoServer WPS re-
turned the least amount of data (2.301 ± 0.267 kB) to
the client, and PyWPS had the most (2.686 ± 0.269
kB).

The reason of having different response sizes
was because of a slight different in XML tags
within the Execute response. For example,
wps:ExecuteResponse content is listed in Table 4
for PyWPS and GeoServer WPSs’ Execute response,
which returned the most, and the least amount of
data, respectively.

Scenario B was designed to assess the effect of in-
creased load on each server. The effect of load was
assessed by increasing the number of concurrent re-
quests from 1, to 2, 4, 8, 16, 32, 64, and finishing with
128 concurrent requests. Individual services and the
service chain were tested using pre-defined input pa-
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rameters under normal condition (n=1) and no error
was observed. Those parameters were then used to
measure the performance of the WPS servers under
high loads (n>1). To get representative results, all of
the experiments were repeated 30 times and the re-
sponse time, response size, and server success/fail-
ure were recorded. These data allowed the estima-
tion and comparison of server throughput. The re-
sults are depicted in Figure 5 to Figure 7.

WPS Server Response Time
(s)

Response Size
(kB)

52◦ North 2.784 ± 1.269 2.448 ± 0.267

Deegree 2.499 ± 1.259 2.505 ± 0.267

GeoServer 2.753 ± 1.255 2.301 ± 0.267

PyWPS 3.995 ± 1.661 2.686 ± 0.269

Zoo 2.999 ± 1.313 2.479 ± 0.269

Table 3. Results for Execute request (Scenario A).

Figure 5 shows that Deegree, GeoServer, and Zoo
generally perform similarly, the only difference is
an improvement in response time by Deegree for
128 concurrent requests. With an increase from 64
to 128 concurrent requests Deegree’s response time
improves to approximately half that of PyWPS and
Zoo. It is apparent that 52◦ North and PyWPS had
difficulty when more than 16 and 64 concurrent re-
quests were received for processing respectively. It is
also evident that when more than 64 concurrent re-
quests were sent to PyWPS and Zoo WPS servers fail-
ure rates increased dramatically, approaching 100%
at 128 concurrent requests. Throughput was also af-
fected significantly by the number of concurrent re-
quests, particularly for 52◦ North, which returned
less than 1 successful request per hour once concur-
rent requests increased above 16. All servers per-
formed substantially better when only one request
was received at a time, with 52◦ North achieving a
throughput of 1,445 successful requests per hour, fol-
lowed by Zoo with 1,145, GeoServer with 1,115, Dee-
gree with 1,024, then PyWPS with 894 requests per
hour.

Because of the variation in the data, when ana-
lyzing the results using a two-way ANOVA, only the
number of concurrent requests had an effect on load
testing (F(1,30)=20.640, p<0.001), individual servers
did not contribute to differences observed. As the
number of concurrent requests increased GeoServer
and Zoo followed a similar (linear) trend. Deegree
tended to perform better, especially under high loads

(n=128). In addition, 52◦ North and PyWPS failed
to respond while processing more than 16 and 64 re-
quests respectively. The failure rate of Deegree and
GeoServer exhibited a same pattern. We observed a
failure rate of 0.8% under high loads (n > 4). PyWPS
and Zoo also followed a same failure rate pattern.
It was constant (≈1.6%) between four and 64 con-
current requests and then approached 100% under
higher loads (n > 64). All the WPS servers performed
similarly in terms of throughput, for example with
four concurrent requests they processed around 600
requests per hour. It suggests that the WPS servers
were capable of handling a request every six seconds
(n = 4). This result requires further investigation
to determine if the servers can be tuned to function
more effectively under real-world conditions. These
results are summarized in Figure 5 to Figure 7.

6 Lessons Learned

In this section, the relative advantages and disad-
vantages of each WPS server, and challenges expe-
rienced while working with them are discussed. In
this context, the WPS servers were evaluated from
a qualitative perspective in terms of: ease of instal-
lation and configuration; perceived ease of use and
flexibility for creating new processes; native support
for development languages; quality of documenta-
tion; and community support. The qualitative com-
parison results are shown in Table 5.

Installation – as 52◦ North WPS, Deegree WPS,
and GeoServer WPS servers are servlet-based appli-
cations, the installation process was straightforward.
For 52◦ North and Deegree, installation is accom-
plished by deploying the downloaded/built WAR
(Web ARchive) file into a servlet container such as
Apache Tomcat. For GeoServer, after deploying the
WAR file into a servlet container, the WPS Extension
should be extracted to the WEB-INF/lib directory of
the GeoServer installation. Library dependency was
the main issue with PyWPS and Zoo WPS servers’
installation process. They have several library de-
pendencies that must be installed first. PyWPS fol-
lows a typical Python installation procedure using a
setup.py script. Further configuration is necessary
to set server paths, and the process folder locations.
Installation of the Zoo Kernel, configuration, and in-
stallation of the Zoo Service Provider were the main
steps required to deploy a service on the Zoo WPS
server.

Creating a new process and configuration –
as 52◦ North WPS, GeoServer WPS, and Zoo WPS
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Figure 4. Response time (left) and size (right) for Execute requests (Scenario A).

Deegree 2.499 ± 1.259 2.505 ± 0.267
GeoServer 2.753 ± 1.255 2.301 ± 0.267
PyWPS 3.995 ± 1.661 2.686 ± 0.269
Zoo 2.999 ± 1.313 2.479 ± 0.269

Given the data, the most rapid WPS server was Deegree, with an average
response time of 2.499 ± 1.259 s (95% confidence interval (CI)), followed by
GeoServer WPS, 52°North WPS, Zoo WPS, and PyWPS. A one-way Analysis of
Variance (ANOVA) test indicates that all WPS servers respond similarly with no
significant difference between them, F(4,220)=0.739, p=0.566. 
In terms of response size, there was no significant difference (F(4,220)=1.071,
p=0.372) either with all WPS servers returning similar response package data
volumes (≈ 2.484 kB). The GeoServer WPS returned the least amount of data
(2.301 ± 0.267 kB) to the client, and PyWPS had the most (2.686 ± 0.269 kB).

The reason of having different response sizes was because of a slight different in
X M L t a g s w i t h i n t h e Execute r e s p o n s e . F o r e x a m p l e ,
wps:ExecuteResponse content is listed in Table 4 for PyWPS  and 

Table 4: A portion of the Execute response document returned by PyWPS and
GeoServer WPS.

WPS Server The Execute Response

PyWPS �814��9(&65(�(410/4(� 9.-/4�814��*551���888�01(/)+4�/(5�814�������
9.-/4�084��*551���888�01(/)+4�/(5�084�����
9.-/4�9-+/,��*551���888�8
�03)������9-+/,�
9.-/4�94+��*551���888�8
�03)�	����"�� &*(.$�+/45$/&(�
94+�4&*(.$�0&$5+0/��*551���888�01(/)+4�/(5�814������
*551���4&*(.$4�01(/)+4�/(5�814�������814�9(&65(#3(410/4(�94'�
4(37+&(��!� �� 7(34+0/��������� 9.-�-$/)��(/����
4(37+&(�/45$/&(��*551���-0&$-*045�&)+�%+/�814�
4(37+&(�!� �$.1�3(26(45��(5�$1$%+-+5+(4�$.1�7(34+0/�������
45$564�0&$5+0/��*551���-0&$-*045�8140651654�1:814��
��	���	�
��9.-��

GeoServer �814��9(&65(�(410/4(� 9.-�-$/)��(/�� 4(37+&(��!� �
4(37+&(�/45$/&(��*551���������	��	�������)(04(37(3�084��� 7(34+0/��������
9.-/4�814��*551���888�01(/)+4�/(5�814�������
9.-/4�084��*551���888�01(/)+4�/(5�084�����
9.-/4�9-+/,��*551���888�8
�03)������9-+/,��

GeoServer WPSs’ Execute response, which returned the most, and the least
amount of data, respectively.

13

Table 4: A portion of the Execute response document returned by PyWPS and GeoServer WPS.
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Figure 5. Response time when increasing concurrent requests.

Figure 6. Failure rate with increasing concurrent requests.

Figure 7. Throughput with increasing concurrent request.
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documentation; and community support. The qualitative comparison results are
shown in Table 5.

Table 5: WPS servers and their features from a qualitative perspective
52°North Deegree GeoServer PyWPS Zoo

Installation* Easy Easy Easy Difficult Difficult
Create new 
processes and 
Configuration* 

Easy Medium Easy Difficult Easy

Native 
Development 
Languages

Java Java Java Python

C/C++
Fortran
Java
Python
PHP
Perl
JavaScript

Quality of 
Documentation** Great Good Great Good Good

Community 
Support

Mailing
list, Wiki,
Forum,
Issue
Tracker,
SVN,
GitHub

Mailing
list, Wiki,
Forum,
Issue
Tracker,
SVN,
GitHub

Mailing list,
Forum,
Issue
Tracker,
SVN, IRC
Meeting,
GitHub

Mailing
list,
GitHub

Mailing
list,
Forum,
Issue
Tracker,
SVN,
GitHub

* Ranking ranges: Easy; Medium; Difficult
** Ranking ranges: Weak; Good; Great

Installation – as 52°North WPS, Deegree WPS, and GeoServer WPS servers are
servlet-based applications, the installation process was straightforward. For
52°North and Deegree, installation is accomplished by deploying the
downloaded/built WAR (Web ARchive) file into a servlet container such as
Apache Tomcat. For GeoServer, after deploying the WAR file into a servlet
container, the WPS Extension should be extracted to the WEB-INF/lib directory
of the GeoServer installation. Library dependency was the main issue with
PyWPS and Zoo WPS servers’ installation process. They have several library
dependencies that must be installed first. PyWPS follows a typical Python
installation procedure using a setup.py script. Further configuration is necessary
to set server paths, and the process folder locations. Installation of the Zoo
Kernel, configuration, and installation of the Zoo Service Provider were the main
steps required to deploy a service on the Zoo WPS server.

17

Table 5. WPS servers and their features from a qualitative perspective.

frameworks were well-documented, a new process
was simple to create and easy to configure. For 52◦

North WPS, this procedure was accomplished using
the WPS SDK in three steps: (i) create a Java class
for the process, (ii) export the process as a JAR (Java
ARchive) file, and (iii) deploy the process into 52◦

North’s WPS framework. For GeoServer WPS, a new
process is developed by creating a Maven project in
three steps: (i) create a Java class and an XML config-
uration file for the process, (ii) compiling the project
as a JAR file, and (iii) deploying the process into
GeoServer’s WPS framework. To create a new pro-
cess for Zoo WPS, two steps have to be completed: (i)
create a service file using one of the supported pro-
gramming languages, and a zcfg configuration file
for the process, and (ii) deploy the CGI application
into Zoo’s WPS framework. Although Deegree’s
documentation (http://download.deegree.org/
documentation/3.3.3/html/), was well-organized
and comprehensive, it was not particularly clear how
to build and deploy a new process within Deegree’s
WPS framework, nor were there many examples to
base development on. However, a Maven project
should be created and three steps should be followed
to add a new process to Deegree’s WPS: (i) create a

Java class and an XML configuration file for the pro-
cess, (ii) compile the project as a WAR file, and (iii)
deploy the servlet application into any servlet con-
tainer. To add a new process to PyWPS framework,
two steps should be followed: (i) create a service file
and modify the configuration files (i.e., pywps.cfg
and pywps.cgi), and (ii) deploy the CGI application
into PyWPS’s framework. On occasion the PyWPS
server returned an HTTP Error 500 that prevented it
from fulfilling WPS requests, especially after a new
process had been added. To resolve this failure sev-
eral access permission settings were required (for
more details see Hamre (2011)).

Native Development languages – 52◦ North
WPS, Deegree WPS, GeoServer WPS, and PyWPS
frameworks support one native programming lan-
guage each for the development of a new process,
while the Zoo WPS framework supports seven pro-
gramming languages. This adds flexibility for devel-
opers, as they are able to either develop new process-
ing services in their language of choice, or develop
services as independent modules that may draw on
libraries from many different languages.

Quality of documentation – 52◦ North WPS and
GeoServer WPS documentation was comprehensive
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and provide clear instruction for installation and
configuration of the WPS servers, along with clear
instructions for developing new process instances.

Community support – 52◦ North WPS, Deegree
WPS, GeoServer WPS, and Zoo WPS frameworks
have large communities of users/developers and
provide different communication mediums to sup-
port them. PyWPS does not appear to have an active
community of users/developers, which may make
access to support difficult.

7 Discussion and Conclusions

We have evaluated performance of WPS servers us-
ing two test scenarios via a case study that focuses
on accessibility assessment. In the first scenario, the
WPS servers were tested using 45 randomly gener-
ated Execute requests, holding the number of con-
current requests constant (n=1). The results show
that on average Deegree returns the response pack-
age most rapidly. However, a one-way ANOVA test
showed that, given the data, there is no significant
difference in response time between the WPS servers
tested (F(4,220)=0.739, p=0.566), nor data volume re-
turned (F(4,220)=1.071, p=0.372).

In the second scenario, load testing was under-
taken by varying the number of concurrent requests.
Overall Deegree and GeoServer performed similarly,
although Deegree tended to perform better under
high loads. 52◦ North had difficulty when more
than 16 concurrent requests were received for pro-
cessing, but performed more effectively under low
loads compared to other WPS servers. Under low
loads, n=1, 52◦ North had the highest throughput
completing 1,445 requests per hour, followed by Zoo
with 1,145 requests per hour, GeoServer with 1,115
requests per hour, and Deegree and PyWPS com-
pleting 1,024 and 894 requests per hour respectively.
Throughput for 52◦ North effectively went to zero re-
quests per hour once the load increased to more than
16 concurrent requests. Although no failed requests
were encountered under low loads, n=1, success rate
for Deegree and GeoServer stabilized at four or more
concurrent requests, to approximately 99.2%. Py-
WPS and Zoo followed the same pattern, with a suc-
cess rate of 98.4% between four and 64 concurrent
requests.

While four CPU cores were allocated to each WPS
server during testing, upon reviewing CPU load
logs it was evident that, except for PyWPS, only
one CPU core was generally being used at any time
during testing. Specifically, Deegree used only one

CPU core; 52◦ North, GeoServer, and Zoo each used
around 20% of one CPU core and 5% of the other
cores. PyWPS used all cores during testing. In addi-
tion, memory usage of all WPS servers was constant
(with minor fluctuations) during testing. On aver-
age memory use was 30%. This suggests that perfor-
mance improvements may be possible if server spe-
cific tuning, or more effective development strategies
are implemented. For example, the use of multiple
CPU cores in Java-based applications is handled via
JVM (Java Virtual Machine), which generally tends
to be problematic. In this context, if particular im-
plementation approaches or software libraries (e.g.,
concurrency libraries) are used it may result in a bet-
ter performance.

We must also note that a WPS server’s response
time is dependent upon the intensity of a service’s
processing requirements. As such, performance re-
sults will depend on the complexity of the work-
flow, the complexity of individual back-end pro-
cesses, and the complexity of the data.

The WPS servers have also been assessed in terms
of qualitative metrics. 52◦ North WPS, Deegree WPS,
and GeoServer WPS servers are easy-to-install and
are well documented. They also have worldwide
communities of developers/users, and provide dif-
ferent ways of communication to support their user-
s/developers. The documentation for PyWPS was
not complete, nor was it always clear and concise,
making it difficult to install and configure the Py-
WPS server. PyWPS does not appear to have an ac-
tive community of users/developers, and users/de-
velopers, as a consequence, may suffer from lack of
support. Zoo WPS does have accessible documen-
tation and an accessible support community. It also
supports several programming languages and offers
powerful and flexible approaches to develop WPS in-
stances. Generally, compared to other WPS servers,
52◦ North and GeoServer seem to be the best choices
when considering qualitative metrics, as they met
most of the evaluation criteria we chose in this study.

It should be noted that standard compliance is a
major issue in the WPS domain, which was not inves-
tigated in this study. Interoperability and standard
compliance tests can be undertaken as a part of qual-
itative evaluation process, which focuses on schema,
semantics, and encodings.

To conclude, when selecting an appropriate WPS
server, we believe it is important to consider both
quantitative and qualitative metrics. The impor-
tance of each metric can be weighted based on dif-
ferent application requirements. Generally speak-
ing, from a user’s perspective, performance is one
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of the most important factors when choosing a web-
based application, while from developers’ perspec-
tive, qualitative factors such as perceived ease of in-
stallation and configuration, variety of development
languages, quality of documentation and accessibil-
ity of support may be more critical. To choose a
WPS server, we suggest starting an evaluation pro-
cess with a basic set of questions that are linked to
the evaluation criteria. The questions could be “who
is the user of the system?” “What should the end-
user be able to do with the system?” “What program-
ming languages are developers comfortable with for
develop of the system?” “How complex are the back-
end processes?” “How should the system function,
synchronous or asynchronous?” “What is the ar-
chitecture used to design the processing workflow?”
“What is the expected number of users?” In the
end, the most appropriate WPS server should be se-
lected based on a trade-off between quantitative per-
formance metrics and qualitative “ease of use” met-
rics for a specific application or use case. This may
lead to the selection of different WPS servers for dif-
ferent applications.

Note: the developed Python-based geoprocess-
ing services, WPS instances, and test scripts are pub-
licly available, see Appendix B.
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Hardware Dell OptiPlex 960

CPU Intel Core 2 Quad 3.0GHz

RAM 8GB

HDD 500GB

OS Ubuntu 13.04 (64-bit)

Table 6. Experimental database server configuration

Software Version

52◦ North 3.2.0

Deegree 3.0.4

GeoServer 2.4.3

PyWPS 3.2.1

Zoo 1.3.0

Java Oracle JDK 7

Servlet Container Apache Tomcat 7.0.30

Python 2.7.3

PostgreSQL/PostGIS 9.1.12/1.5.3

Table 7. Software libraries used to setup WPS servers

Appendix B

The developed Python-based geoprocessing ser-
vices, WPS instances, and test scripts are publicly
available at the following URLs:

Test Scripts:

• https://github.com/mepa1363/foss4g-test-
script

Python-based geoprocessing services:

• https://github.com/mepa1363/wyp-server-
52north-foss4g

• https://github.com/mepa1363/wyp-server-
deegree-foss4g

• https://github.com/mepa1363/wyp-server-
geoserver-foss4g

• https://github.com/mepa1363/wyp-server-
pywps-foss4g

• https://github.com/mepa1363/wyp-server-
zoo-foss4g

WPS instance:

• https://github.com/mepa1363/wyp-wrapper-
52north-centralized-transit

• https://github.com/mepa1363/wyp-wrapper-
deegree-centralized-transit

• https://github.com/mepa1363/wyp-wrapper-
geoserver-centralized-transit

• https://github.com/mepa1363/wyp-wrapper-
pywps-centralized-transit

• https://github.com/mepa1363/wyp-wrapper-
zoo-centralized-transit

OSGEO Journal Volume 14 Page 42 of 48



GRASS GIS, Star Trek and old Video Tape

GRASS GIS, Star Trek and old Video Tape
by Peter Heinz Löwe1, Janna Neumann1, Margret Plank1,
Frauke Ziedorn1, Robert Lozar2, James Westervelt2 and
Roger Inman3

1National Library of Science and Technology (Ger-
many), 2ERDC-RDE-CERL (USA), 3Movingpictures
TV (USA). peter.loewe@tib.uni-hannover.de

Abstract

This paper discusses the need for the preservation of
audiovisual content in the OSGeo communities be-
yond the established software repositories. Audiovi-
sual content related to OSGeo projects such as train-
ing videos can be preserved by multimedia archiving
and retrieval services which are currently developed
by the library community. This is demonstrated by
the reference case of a newly discovered version of
the GRASS GIS 1987 promotional video which is be-
ing included into the AV-portal of the German Na-
tional Library of Science and Technology (TIB). Ac-
cess to the video will be provided upon the release of
the web-based portal, allowing for extended search
capabilities based on enhanced metadata derived by
automated video analysis. This is a reference case
for future preservation activities regarding semantic-
enhanced Web2.0 content from OSGeo projects.

Keywords: GRASS GIS, OSGeo, digital preser-
vation, educational material, audio visual media,
Youtube, GRASS 1987 promotional video, Digital
Object Identifiers, audiovisual history, screen casts,
Web 2.0, Multimedia retrieval.

1 Knowledge Preservation in the
OSGeo Communities

1.1 The Role of OSGeo

Since its launch in 2006, the Open Source Geospa-
tial Foundation (OSGeo) has distinguished itself as
an umbrella organisation, incubation tank and soft-
ware license clearinghouse for a large and growing
number of geospatial Free and Open Source (FOSS)
software projects (OSGeo 2014).

Work in these projects is done by international
communities of volunteers. It is centered, but not
limited to the development of software tools. Tasks
like software testing, the creation of reference data,
technical writing for user-and developer-manuals,
multi-language translation and the creation of tutori-

als/educational material augment the core software
development activities. Without these tasks, the ac-
cess to the software would be seriously hampered for
the majority of users.

1.2 Use of Repositories and Web 2.0 use in
OSGeo projects

While the software of the OSGeo projects is main-
tained in repository systems such as CVS, SVN and
Git, most of the audiovisual educational material is
currently provided via virtual Web 2.0 communi-
ties, including Slideshare and YouTube. References
to the content are made by links and free classifica-
tion (Folksonomy/Tagging). For the licensing of this
intellectual property are often Creative Commons li-
censes used.

The content which is shared on the Web2.0 chan-
nels consists of experience gained with specific soft-
ware instances for geospatial analysis or processing
tasks. This is an important source of practical know-
how for Geo–informatics practitioners.

1.3 The Challenge of Audiovisual Content
Preservation

The audiovisual content provided through the Web
2.0 channels continues to grow for all OSGeo
projects. With the ubiquity of screen capture soft-
ware and video recording, this approach has dis-
tinguished itself as a fast and affordable alternative
to preserve the underlying knowledge in text doc-
uments. Collaborative tagging is used to provide
searchable keywords regarding the actual content.
While this is sufficient to search for the names of
specific OSGeo software projects, it is an ineffective
means to query specific software versions or the de-
scription of complex or specialized workflows. Until
now, there are no explicit community rules or best
practices how long such geospatial-themed audiovi-
sual content will be kept available. It may be eventu-
ally removed by its creator without previous notice,
but might also go offline once the Web 2.0 portal is
retired.

The discussion of long term preservation of au-
diovisual content and effective search access for au-
diovisual content within the scope of OSGeo has just
begun. Most content providers still consider the Web
2.0 portals as ubiquitous untrustworthy providers of
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