OSGeo Journal

In This Volume

Topology Basics

1Spatial: Data Quality Concepts

Introducing MapWindow & GeoNetwork
LizardTech: Why we use Open Source software
Local Chapter Reports: Taiwan, U.K., Francophone, Spanish...
Case studies: UN FAO, Fishing Vessel Tracking...
Community Event Reports: India, France

GRASS & distributed computing

News & Software Updates...

OSGeo Journal

Porting a GRASS raster module to distributed computing

Vol. 2, September 2007

Programming Tutorial

Porting a GRASS raster module to
distributed computing

Examples for MPI and Ninf-G

Shamim Akhter, Yann Chemin, Kento Aida

Abstract

Satellite imagery provides a large amount of use-
ful information. To extract this information and un-
derstand them may require huge computing power
and processing time. Distributed computing can re-
duce the processing time by providing more compu-
tational power. GRASS, an open source software, has
been used for processing the satellite images. To let
the GRASS modules benefit from distributed com-
puting, an example module r.vi is ported in both
MPI (r.vi.mpi) and Ninf-G (r.vi.grid) program-
ming modules. Their implementation methodolo-
gies are the main discussion issue of this paper which
will guide the basic way of representing any GRASS
raster module in distributed platform. Additionally,
a comparative study on modified r.vi, r.vi.mpi
and r.vi.grid is presented here.

ISSN 1994-1897

Introduction

Satellite image processing plays a vital role for re-
search developments in Remote Sensing, GIS, Agri-
culture Monitoring, Disaster Management and many
other fields of study. However, processing those
even increasing spatial resolution satellite images re-
quire a large amount of computation time due to its
complex and large processing criteria. This seems
a barrier for real time decision making. Distributed
computing can be a suitable solution to complete the
job timely. Cluster and Grid are two well-known dis-
tributed systems have been associated with high per-
formance computing of massive CPU bound appli-
cations. GRASS GIS (,) is an open
source software/tool, which has been used to pro-
cess satellite images. Inside GRASS, different mod-
ules have been developed for processing satellite im-
ages. GRASS module r.vi is developed by (

,), and is used as a test example for
this study. Developing the methodology, which en-
ables to run GRASS GIS environment for satellite im-
age processing on distributed computing systems, is
the main concerning issue of this paper. Addition-
ally, two different implementation methodologies for
distributed r.vi are discussed for two different pro-
gramming platforms MPI (

OSGeo Journal

Porting a GRASS raster module to distributed computing

Vol. 2, September 2007

,) and Ninf-G (,).

Vegetation Index (VI) is the major set of indicators
for vegetation. The GRASS module r.vi, is used to
process 13 different vegetation indexes for the satel-
lite images. NDVI (Normalized Difference Vegeta-
tion Index (,) is one of them. The
NDVI is calculated from these individual measure-
ments as NDVI=(NIR-Red)/(NIR+Red), where RED
and NIR stand for the spectral reflectance measure-
ments acquired in the red and near-infrared regions,
respectively. Other vegetation indices are as follows:

RVI Ratio Vegetation Index

IPVI Infrared Percentage Vegetation Index

DVI Difference Vegetation Index

PVI Perpendicular Vegetation Index

WDVI Weighted Difference Vegetation Index

SAVI Soil Adjusted Vegetation Index

GARI Green Atmospherically Resistant Vegetation Index
MSAVI Modified Soil Adjusted Vegetation Index
MSAVI2 Second Modified Soil Adjusted Vegetation Index
GEMI Global Environmental Monitoring Index

ARVI Atmospherically Resistant Vegetation Index
GVI Green Vegetation Index

Figure 1: Vegetation Indexes

They are derived using various methods of dif-
ferentiations and contrast. Fig. 2 shows a snapshot
of an output of GRASS Software.

2. as7m (@
[SER)

TT— w
I RS S Y AT

) (8 umimetimizlo .| G .2 anager e B s .02) B Gk €3 ot o | M v 552 oo il

Figure 2: NDVI calculations with GRASS

ISSN 1994-1897

GRASS module r.vi works with raster images
(rows x columns). Different band raster images are
required for different indices. The generic indices
(NDVI, RVI, etc) use red and NIR (Near Infra-Red)
band images. However, ARVI uses red, NIR and blue
band images, GVI uses red, NIR, blue,green, chan5
and chan 7 of landsat images and GARI uses red,
NIR, blue and green bands. GRASS functions are
used to extract row-wise data from the specific band
images and store them in buffers. Then, each column
value is extracted sequentially from the buffers and
sent for generating the specific VI values. Thus, after
completing the VI from row buffers, the row wise VI
values are put back into output image and this pro-
cess will continue for each row. Fig. 3 presents the
structure of serial running r.vi module (for simplic-

ity only two band images have been presented).

VI
Processin;

RVI

T 1
Redbuffer |,
1 | a_red

Red Band I

for (row=10 to nrows)

R =G-_get_raster_row

Infrabuffer=G_get_raster_row [
B
5

MSVI

d_infa

T T
Infrabuffer
1 | for (col=0 to ncols)
i
A d_red=double ({(CELL*)Redbuffer)[col]

. d_infa=double ((CELL*)Infrabuffer)[col]
3

INIR Band Image

Figure 3: Serially Running r.vi Module Structure

Objectives

Under the assumption that distributed style of com-
puting will remove computational time constraints,
new image processing distributed algorithms for re-
motely sensed images can be considered. Different
GRASS modules have been developed for solving
different Remote Sensing Image analysis problems.
To evaluate the performance of the GRASS modules
in distributed computing environment is the major
objective of this paper. Additionally, it is a new di-
mension for the remote sensing users to port their
jobs in distributed computing environment. Another
issue addressed in this paper is to find out the suffi-
cient amount of workload that is needed to dispatch
among the worker nodes for getting better perfor-
mance than the serial module.

Methodology

To fulfill the above objectives or requirements, the
GRASS module (r . vi) has been parallelized by using

OSGeo Journal

Porting a GRASS raster module to distributed computing

Vol. 2, September 2007

the master-worker model. The master process runs
in the GRASS environment, and decomposes the tar-
get images in rows and dispatches the computation
of rows to multiple worker processes. Worker pro-
cesses are free from GRASS, they just run the com-
putation and send back the row wise result to the
master process. The module r.vi is implemented
using MPI on a PC cluster system (r.vi.mpi) and
Ninf-G on the same PC cluster system (r.vi.grid)
to hold the similarity between the experimental en-
vironments. However, r.vi.grid module has been
structured as it is capable to run in distributed GRID
system. Additionally, experiments were done to
analyse the results with distributed r.vi modules by
increasing the number of operations, to find out the
amount of workload that is necessary to get a perfor-
mance benefit from the distributing environments.
In Fig. 4, the implementing structure of dis-
tributed r.vi is presented (for simplicity only two
band images have been presented). Here, S1, S2,

tional Institute of Advanced Industrial Science and
Technology, Japan) and TITECH (Tokyo Institute of
Technology, Japan). Ninf-G is a reimplementation of
the Ninf system on top of the Globus Toolkit (

,). Globus serves as a robust and com-
mon platform for implementing higher level middle-
ware and programming tools, etc., ensuring interop-
erability amongst such high level components, one of
which being NinfG. NinfG system is based on client
server computing. The computational resources are
available as remote libraries at a remote computation
host which can be called through the global network
from client program written in existing languages
such as FORTRAN, C, or C++.

Specification of the Davinchi Cluster

The Cluster nodes for the experiments are as follows:
Number of hosts 4

Each Host 2 CPUs(Xeon 2.4GHz x 2)

..... ,Sn are different worker processes. Host Spec 512 KB Cache Size
1 GB Hard Disk
Red Band Rowl RVI
m:'—» NDVT GRASS Version 6.0.2
D]:'_, MPICH Version 1
WSV
e Ninf-G Version 1.1.0
Globus Toolkit Version 4.0.3
Red Band Image Red Band Row2 o Tocal Job Manager Tor - -
‘ 11 el = Eosatid modute SGE (SUN Grid Engine, 2007)
FREmRnt Figure 5: Specifications of Davinchi Cluster
INIR Band Image
RﬁR_w, = Distributed r.vi Module in MPI (r.vi.mpi)
NDVT
[T} — For r.vi.mpi, GRASS source code is installed in
NI Bend B master node and GRASS libraries are copied to the
MASTER

Figure 4: Distributed r.vi Module Structure (r.vi.mpi
and r.vi.grid)

Implementation

MPI and Ninf-G Framework

MPI (Message Passing Interface) is a library of func-
tions (in C) or subroutines (in FORTRAN) that one
can insert into the source code to perform data
communication between processors (,
)- MPI was designed for high performance on
both massively parallel machines and on worksta-
tion clusters and developed by a broadly based com-
mittee of vendors, implementors, and users.
The Ninf-G has been developed by AIST (Na-

ISSN 1994-1897

slaves local memory location exactly the same as
master (/usr/local/grass-6.0.2/) and the following
configuration steps are completed to setup the MPI-
GRASS environment.

e grass.conf fileis created inside /etc/Id.so.conf.d/
directory and the required grass library names
are written inside this file.

* Then the /sbin/ld_config command is exe-
cuted.

MPI_Send and MPI_Recv both functions have
been used for data communication.
The following Makefile is created for compilation

MODULE_TOPDIR = ../..

CC=mpicc

PGM = r.vi.mpi

LIBES = $(GISLIB) $(GMATHLIB)
DEPENDENCIES = $(GISDEP) $(GMATHDEP)

OSGeo Journal

Porting a GRASS raster module to distributed computing

Vol. 2, September 2007

include $(MODULE_TOPDIR)/include/Make/Module.make
default: cmd

To run the code the following shell command has
been used:

mpirun -np 3 location_of_exec_file parameters..

In this experiment the location of the executable
file is: GRASS_COMPILE_DIR/dist.i686-pc-linux-
gnu/bin/r.vi.mpi The pseudo-code of r.vi.mpi is ap-
pended here:

#include "gis.h"
#include "glocale.h"
#include "mpi.h"

/* main.c: Declare the following MPI code */
/* NUM_HOSTS is total host number */
/* me is defined processor rank/number */

MPI_Status status;

MPI_Init(&argc,&argv) ;

MPI_Comm_size (MPI_COMM_WORLD,&NUM_HOSTS) ;
MPI_Comm_rank (MPI_COMM_WORLD,&me) ;

[k=== - - - */
/* Master Code Begin: Rank 0 (me=0) */
/* Extract total row and column number */
/* and sends them to the slaves */

for(i=1;i<NUM_HOSTS;i++)
// i Loop Started:

MPI_Send(&nrows,1,MPI_INT,i,1,MPI_COMM_WORLD) ;
MPI_Send(&ncols,1,MPI_INT,i,1,MPI_COMM_WORLD) ;

// i Loop Finished.

/* Row data are extracted from images and */
/* dispatched them among slaves with specificx/
/* row number by Round Robin Fashion x/

for (r = 1; r*(NUM_HOSTS-1) <= nrows;r++)
// r Loop Started:

for (k=1;k<NUM_HOSTS; k++)
// k Loop Started:

row=(r-1)*(NUM_HOSTS-1)+k-1;
G_get_raster_row(infd_redchan,...
G_get_raster_row(infd_nirchan,...
for (col=0; col < ncols; col++)
// col Loop Started:

ISSN 1994-1897

//Each column cell values form all bands

// are extracted and put them in a 2D array
db[0] [coll= d_redchan;

db[1] [col]l= d_nirchan;

// col Loop Finished.
row_n=k-1;
I[ncols]l=row_n;
MPI_Send(I,ncols+1,MPI_INT,k,1,\
MPI_COMM_WORLD) ;
MPI_Send(db,6#*ncols,MPI_DOUBLE,k,1,\
MPI_COMM_WORLD) ;

// k Loop Finished.

// Waiting for the result...

for (k=1;k<NUM_HOSTS;k++)
// k Loop Start:

MPI_Recv(R,ncols+1,MPI_DOUBLE,k,1,\
MPI_COMM_WORLD,&status);
row_n=R[ncols];
for (cn=0;cn<ncols;cn++)
// cn Loop Started:
outputImage [row_n] [cn]=R[cn];
// cn Loop Finished.
// k Loop Finished.
// Processes row put back to the result images
for (k=0;k<(NUM_HOSTS-1) ; k++)
// k Loop Start:

for(j=0;j<ncols;j++)
// j Loop Start:

((DCELL *) outrast) [j] = outputImage[k][j];
G_put_raster_row(outfd,outrast,data_type_output);

// j Loop Finished.
// k Loop Finished.
// r Loop Finished.
/* If any row left when (row_numberyslaves!=0), */
/* the round robin fashion rest rows (lets n) x/

/* are distributed from slave 1 to slave n again*/

MPI_Finalize();
G_free(inrast_redchan);

/* Master code Finished */

/=== -- -/

OSGeo Journal

Porting a GRASS raster module to distributed computing

Vol. 2, September 2007

/*==
/* Slave Code Begin: Rank not O (me!=0)

*/
*/

MPI_Recv(&nrows,1,MPI_INT,0,1,MPI_COMM_WORLD,\
&status) ;
MPI_Recv(&ncols,1,MPI_INT,0,1,MPI_COMM_WORLD, \
&status) ;

n_rows=nrows/ (NUM_HOSTS-1);
modv=nrowsY (NUM_HOSTS-1) ;
if (modv>=me)

n_Trows++;

// Data Receiving from master and process

for(i=0;i<n_rows;i++)

// i Loop Started:
MPI_Recv(I,ncols+1,MPI_INT,0,1,MPI_COMM_WORLD,\
&status) ;
MPI_Recv(db,6#*ncols,MPI_DOUBLE,0,1,MPI_COMM_WORLD
&status) ;

for (col=0; col<ncols; col++)
// col Loop Started:

ndvi(db[0] [col]l,db[1] [coll); // Process ndvi()
// col Loop Finished.
r[ncols]=I[ncols];

// results are in r[] and

// sends back to master
MPI_Send(r,ncols+1,MPI_DOUBLE,O0,1,\
MPI_COMM_WORLD) ;

// i Loop Finished.

MPI_Finalize();

/* Slave Code Finished. */
[*=—=== - —-*/
Distributed r.wvi Module in GRID
(r.vi.grid)

r.vi is easier to port in Ninf-G environment than
MPI. Here, no need to copy the library files, be-
cause the worker procedure is totally independent
from the master procedure and GRASS environment.
GridRPC (,) calling API is used
for communication between the master and workers.
The following Makefile is created for compilation

MODULE_TOPDIR = .
CC=ng_cc

..

ISSN 1994-1897

\

PGM = r.vi.grid

LIBES = $(GISLIB) $(GMATHLIB)

DEPENDENCIES = $(GISDEP) $(GMATHDEP)

include $(MODULE_TOPDIR)/include/Make/Module.make
default: cmd

Like any other GRASS modules r.vi.grid can
run by the command:

r.vi.grid parameters
Worker IDL file is as follow:

Module VI_Server;

Define VI_CALC (IN int n,IN double I[n], \

IN double al[n], IN double b[n], IN double c[n],\
IN double d[n], IN double e[n],\

IN double f[n], OUT double r[n])

Required "VI_ServerC.o"

Calls "C" VI_CALC(n,I,a,b,c,d,e,f,r);

Worker code is as follow:

<stdio.h>
<math.h>
<stdlib.h>
<unistd.h>

#include
#include
#include
#include

void VI_CALC(int n, int *I, double *a,\
double *b,double *c, double *d, double *e,\
double *f,double *r){
int col;

for (col=0; col<n; col++)
//col Loop Started

//column wise value going to process for

// specific indexing, put results in r []
// as for ndvi processing....
rlcoll=(alcol]l-blcoll)/(alcoll+blcoll);

//col Loop Finished.

} //function call finish

Master module code is as following:

#include "gis.h"

#include "glocale.h"

#include "grpc.h" // we need grpc.h header file
#define NUM_HOSTS 5 //how many hosts available

char* hosts[]= {"davinchil.alab.ip.titech.ac.jp",\
"davinchil.alab.ip.titech.ac.jp", ... , ... ,
grpc_function_handle_t handles[NUM_HOSTS];
grpc_sessionid_t ids[NUM_HOSTS];

int ret;

if ((ret= \

grpc_initialize("/.../raster/r.vi.grid/vi.conf") \

>

OSGeo Journal

Porting a GRASS raster module to distributed computing

Vol. 2, September 2007

I=GRPC_NO_ERROR)) {
fprintf(stderr, "Error in grpc_initialize, \
%d\n" ,ret);
exit(2);
}

//creating one handle for each host node

for(i = 0; i < NUM_HOSTS; i++)

grpc_function_handle_init(&handles[i], hosts[i],\
"VI_Server/VI_CALC");

for(row = 0; row < nrows; row++)
// row Loop Started:

host_n=host_n%NUM_HOSTS;
if (G_get_raster_row(infd_redchan,\
inrast_redchan,row,data_type_redchan)<0)
G_fatal_error(_("Could not read from <%s>"),\
redchan) ;
if (G_get_raster_row(infd_nirchan,\
inrast_nirchan,row,data_type_nirchan)<0)
G_fatal_error(_("Could not read from <%s>"),\
nirchan);

for(col=0; col < ncols; col++)
// col Loop Started:

// each column cell values for all

// band images are extracted together
// and put them in 2D arrays

db[0] [col]l= d_redchan;

db[1] [col]l= d_nirchan;

db[2] [col]l= d_greenchan;

db[3] [col]l= d_bluechan;

db[4] [col]l= d_chan5chan;

db[5] [col]l= d_chan7chan;

// vegetation indexing array valuess are
// filled in I[ncols] array

// col Loop Finished.

if (grpc_call(&handles [host_n],ncols,I,db0,dbl,\
db2, db3,db4,db5, R) !'= GRPC_NO_ERROR){

fprintf (stderr,"grpc_call ERROR\n");

exit(2);
}

// All outputs are put back into raster
for(j=0;j<ncols;j++)
// j Loop Started:

ISSN 1994-1897

((DCELL *) outrast)[j] = R[j];
// j Loop Finished.

if (G_put_raster_row(outfd,outrast,\
data_type_output) < 0)

G_fatal_error(_("Cannot write to output\
raster file"));

host_n++;
// row Loop Finished.

// Destruct the handles

for(i = 0;i < NUM_HOSTS; i++)
grpc_function_handle_destruct (&handles[i]) ;

grpc_finalize();

G_free(inrast_redchan);

G_close_cell(infd_redchan);

// ...etc...(Free memory)

Experimental Results

Fig. 6 is generated by running r.vi and r.vi.mpi
GRASS module with increasing the operation num-
bers. To calculate different vegetation indices the
workload in the slaves is too small to get benefit
from r.vi.mpi module. Thus, the purpose of this
experiment is to find out the sufficient amount of
workload that will make the parallel version faster.
In Fig. 6, to calculate the NDVI takes only 3 op-
erations (subtraction, addition and then division)
and this amount of workload takes just few seconds
to execute, where the serial version takes less pro-
cessing time then parallel version. However, in-
creasing the number of operations provide better
performance in parallel version. It is clear from
Fig. 6 that to get the benefit from the parallel ver-
sion the total workload needs to be around 300 oper-
ations or more so that the communication overhead
will be overpassed by the computational workload.

OSGeo Journal

Porting a GRASS raster module to distributed computing

Vol. 2, September 2007

3500
3000 -
'gzsoo -
8 2000
23
1500 |
= 1000
500 |

3 150 300 450 600 750 900 1050 1200 1350 1500
No. of Operations

Figure 6: Performance Evaluation of Serial (r.vi) and
MPI (r.vi.mpi) Version

When master with one worker node (slave) are
working together to solve a particular problem, the
master node will dispatch the whole job to his slave
for processing. When there will be 2 slaves, the work-
load will be distributed among two salves. Simi-
larly for 3 slaves, the workload will be distributed
to 3 slaves equally. So the time performance in-
crease for master with 2 slaves will be 2 times than
master with one slave and the ratio will be 3 times
for master with 3 slaves with one slave and so
on... This would highlight a perfect parallelism.

251 ——2Slaves
—8— 3 Slaves

2 |

Parallelization Effect
=

Figure 7: Parallelization Effect of r.vimpi Module
with DTT

Concerning the above philosophy and experi-
menting on r.vi.mpi module, Fig. 7 and Fig. 9 have
been generated. In Fig. 7 and Fig. 9, the 2 Slaves curve
presents the ratio of the total running time between
master with two slaves and master with one slave.
The 3 Slaves curve represents the ratio of the total
running time between master node with 3 slaves
and master (one slave) with increasing the operation
numbers. Increasing the operations, reflects to in-
crease the workload in slaves and improving the per-
formance. However, in Fig. 7, the performances are
not satisfying with the desire values (as perfect par-
allelism) due to the regular and high communication
overhead.

In equation 1, 2 and 3 the following terms have
been used.

ISSN 1994-1897

Term Name |Term Meaning

DTT Data Transfer Time (Sec)

VDS Volume of Data Send (each time)
VDR Volume of Data Receive (each time)
NC Number of Columns = 8519

NR Number of Rows = 7630

NB Number of Band Images = 6

DTS Data Type Size = 8 Bytes

NBW Network Band Width = 100Mb

Figure 8: Terms used and their definitions

DTT = {NR x (VDS + VDR)}/(NBW) (1)

VDS = NB x DTS x (NC + 1))
VDR = DTS x (NC +1) 3)

From equation 2 and 3, equation 1 has been de-
rived as

DTT1 = (6 x 8 x (8519+1)) + (8 x (8519+1)) (4)

DTT2 =100 x 1024 x 1024 (5)

DTT = (7630 x 8 x DTT1)/DTT2 = 277.74Sec (6)

To evaluate the parallel version performance
more precisely, Fig. 9 has been generated. Only the
execution time (Data Transfer Time has been reduced
from the total running time) is concerned here. Due
to a constant amount of data need to transform be-
tween master and slaves, the transfer time (DTT)
is derived from the above equations. Fig. 9 shows
that the performance in the slaves curves are improv-
ing and nearly to the desirable values. It concludes
that r.vi.mpi module is working well in distributed
manner.

==
—=— 3 Slaves

§2.5*

§ 2r

515’

E :

g osr

%

0 L L
S ‘59{90459«,‘96f1§0w§'§%®6
No.of Operations

Figure 9: Parallelization Effect of r.vimpi module
without DTT

OSGeo Journal

Bibliography

Vol. 2, September 2007

Fig. 10 evaluates the performance of the GRASS
modules (r.vi, r.vi.mpi, r.vi.grid) in the time
domain. Low, middle and high, three testing work-
loads have been set in the modules. When the work-
load is low, serial version (r.vi) is performing best
because of the fine-grain parallelism where commu-
nication time is bigger than the execution time. To
get the coarse-grain, the workload need to be in-
creased so that the communication time will be hid-
den by the execution time. As the workload in-
creased to 1800 and 3000 operations, parallel ver-
sions are performing better then the serial version.

7000 1 O Serial
6000 [|® Ninf-G with 4 Nodes
5000 |- 0 MPI with 4 Nodes
4000 F
3000
2000
1000
0

Time (Seconds)

3 1800 3000
No. of Operations

Figure 10: Performance Evaluation of GRASS Mod-
ules (r.vi, r.vimpi and r.vi.grid)

MPI version, r.vi.mpi provides the best perfor-
mance among the three models. However, MPI is
used mainly in Cluster Computers where the nodes
are homogeneous in their specification. Addition-
ally, available nodes in Clusters are limited up to a
specific range and this will be an obstacle for load
balancing for big processing jobs. In this case, Grid
computing infrastructure is necessary. Indeed, (the
environment maintains heterogeneity as well as dis-
tributed connecting networks). So far Ninf-G is per-
forming better than the serial version for high work
load examples.

Particularly, in this issue, Ninf-G is not perform-
ing better than MPI for the reason that, the com-
munication overhead (to establish the session with
remote hosts) in Ninf-G is larger than MPIL. Ninf-
G is specially made for Grid-Computing environ-
ment (not for running inside Cluster computing en-
vironment as have been done in above experiments).
When the processing workload is much higher than
the communication workload, the real performance
improvement with Ninf-G platform will show up.
So far, r.vi.grid is developed and tested. In near
future, the experiment on real Grid testbed will be
highlighted.

ISSN 1994-1897

Conclusion

Geographic Resources Analysis Support System
(GRASS) has been used for RS and GIS data anal-
ysis and visualization. Currently, GRASS handles
large datasets and the performance and capabilities
of GRASS for large datasets can be greatly improved
by integrating GRASS with parallel and distributed
computing. The major objective of this research was
to provide the Remote Sensing user a compact exam-
ple with Grid and MPI programming for GRASS GIS
distributed processing. Additionally, this type of re-
search will merge the Remote Sensing and GIS with
High Performance Computing communities.

Acknowledgements

The authors would like to acknowledge specially, to
Osawa Kiyoshi San (PhD Candidate in AIDA Lab),
SunHao San (Masters Student in AIDA Lab) and
Nishimora Motokazu San (Masters Student in AIDA
Lab) for their support to create the testbed (Davinchi
Cluster) ready for this experiment. Authors also like
to thanks to all the members in AIDA Lab for the
moral support.

Bibliography

M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J . Dongarra
(1996) MPIL: The Complete Reference. Massachusetts Insti-
tute of Technology. http:/ /www.netlib.org/utk/papers/mpi-
book/mpi-book.html.

I. Foster and C. Kesselman (1997) Globus: A Metacomputing In-
frastructure Toolkit. International Journal of Supercomputer
Applications.

M. Neteler and H. Mitasova (2004) Open Source GIS: A GRASS
GIS Approach. Second Edition. Kluwer Academic Publisher-
s/Springer.

OSGeo Journal Programming Tutorial Vol. 2, September 2007

Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumarn, S. Matsuoka
(2003) Ninf-G: A Reference Implementation of RPC-based Pro-
gramming Middleware for Grid Computing Journal of Grid
Computing 1: 41-51.

B. Kamble, Y.H. Chemin (2006) GIPE in GRASS Raster Add-
ons. http://grass.gdf-hannover.de/wiki/, GRASSAddOns,
RasterAdd-ons Internet.

MPI(2007) http:/ /www-unix.mcs.anl.gov/mpi/ Internet.
Ninf-G(2007) http:/ /ninf.apgrid.org/ Internet.

J.Weier and D.Herring. (2007) Measuring Vegetation (NDVI/EVI)
http://earthobservatory.nasa.gov/Library /Measuring Vegetation
Internet.

ISSN 1994-1897

SUN Grid Engine(2007) http://www.lesc.ic.ac.uk/projects/epic-
gt-sge.html Internet.

Shamim Akhter, Kento Aida

Tokyo Institute of Technology

http: //www. alab. ip. titech. ac. jp/ “shamim
shamimakhter AT gmail.com

Yann Chemin
yann.chemin AT gmail.com

http://www.alab.ip.titech.ac.jp/~shamim
mailto:shamimakhter AT gmail.com
mailto:yann.chemin AT gmail.com

OSGeo Journal

Programming Tutorial

Vol. 2, September 2007

Editor in Chief:
Tyler Mitchell - tmitchell AT osgeo.org

Editor, News:
Jason Fournier

Editor, Case Studies:
Micha Silver

Editor, Project Spotlights:
Martin Wegmann

Editor, Integration Studies:
Martin Wegmann

Editor, Programming Tutorials:
Landon Blake

Editor, Event Reports:
Jeff McKenna

Editor, Topical Studies:
Dr. Markus Lupp

Peer Review Manager:

Daniel Ames
Acknowledgements

Various reviewers & the GRASS News Project

The OSGeo Journal is a publication of the OSGeo Foundation. The
base of this journal, the IATEX 2¢style source has been kindly pro-
vided by the GRASS and R News editorial board.

JOSGeo

This work is licensed under the Creative Commons Attribution-
No Derivative Works 3.0 License. To view a copy of this licence,
visit:

http://creativecommons.org/licenses/by-nd/3.0/ orsend a
letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California 94105, USA.

All articles are copyrighted by the respective authors. Please
use the OSGeo Journal url for submitting articles, more details
concerning submission instructions can be found on the OSGeo
homepage.

Journal online: http://www.osgeo.org/journal

OSGeo Homepage: http://wuw.osgeo.org

Mail contact through OSGeo, PO Box 4844, Williams Lake,
British Columbia, Canada, V2G 2V8

MBI RN
i

9 ‘771994 189002
ISSN 1994-1897

ISSN 1994-1897

10

mailto:tmitchell AT osgeo.org
http://creativecommons.org/licenses/by-nd/3.0/
http://www.osgeo.org/journal
http://www.osgeo.org

	Programming Tutorial
	Porting a GRASS raster module to distributed computing
	Abstract
	Introduction
	Objectives
	Methodology
	Implementation
	MPI and Ninf-G Framework
	Specification of the Davinchi Cluster
	Distributed r.vi Module in MPI (r.vi.mpi)
	Distributed r.vi Module in GRID (r.vi.grid)

	Experimental Results
	Conclusion
	Acknowledgements

