
Open Source GIS and Remote Sensing informations Volume 2, Sept 2007

Porting a GRASS raster module to
distributed computing
Examples for MPI and Ninf-G

Shamim Akhter, Yann Chemin, Kento Aida

Abstract

Satellite imagery provides a large amount of use-
ful information. To extract this information and un-
derstand them may require huge computing power
and processing time. Distributed computing can re-
duce the processing time by providing more compu-
tational power. GRASS, an open source software, has
been used for processing the satellite images. To let
the GRASS modules benefit from distributed com-
puting, an example module r.vi is ported in both MPI
(r.vi.mpi) and Ninf-G (r.vi.grid) programming mod-
ules. Their implementation methodologies are the
main discussion issue of this paper which will guide
the basic way of representing any GRASS raster
module in distributed platform. Additionally, a com-
parative study on modified r.vi, r.vi.mpi and r.vi.grid
is presented here.

Introduction

Satellite image processing plays a vital role for re-
search developments in Remote Sensing, GIS, Agri-
culture Monitoring, Disaster Management and many
other fields of study. However, processing those
even increasing spatial resolution satellite images re-
quire a large amount of computation time due to its
complex and large processing criteria. This seems
a barrier for real time decision making. Distributed
computing can be a suitable solution to complete the
job timely. Cluster and Grid are two well-known dis-

tributed systems have been associated with high per-
formance computing of massive CPU bound appli-
cations. GRASS GIS (Neteler et al. , 2003) is an open
source software/tool, which has been used to pro-
cess satellite images. Inside GRASS, different mod-
ules have been developed for processing satellite im-
ages. GRASS module r.vi is developed by (Kam-
ble et al. , 2006), and is used as a test example for
this study. Developing the methodology, which en-
ables to run GRASS GIS environment for satellite im-
age processing on distributed computing systems, is
the main concerning issue of this paper. Addition-
ally, two different implementation methodologies for
distributed r.vi are discussed for two different pro-
gramming platforms MPI (Message Passing Interface
, MPI) and Ninf-G (Ninf-G Homepage. , 2007).

Vegetation Index (VI) is the major set of indicators
for vegetation. The GRASS module r.vi, is used to
process 13 different vegetation indexes for the satel-
lite images. NDVI (Normalized Difference Vegeta-
tion Index (Weier et al. , 2007) is one of them. The
NDVI is calculated from these individual measure-
ments as NDVI=(NIR-Red)/(NIR+Red), where RED
and NIR stand for the spectral reflectance measure-
ments acquired in the red and near-infrared regions,
respectively. Other vegetation indices are as follows:

Contents of this volume:

Porting a GRASS raster module to distributed
computing . 1

GRASS/OSGeo-News Vol. 2, Sept 2007

Figure 1: Vegetation Indexes

They are derived using various methods of dif-
ferentiations and contrast. Fig. 2 shows a snapshot
of an output of GRASS Software.

GRASS module r.vi works with raster images
(rows x columns). Different band raster images are
required for different indices. The generic indices
(NDVI, RVI, etc) use red and NIR (Near Infra-Red)
band images. However, ARVI uses red, NIR and blue
band images, GVI uses red, NIR, blue,green, chan5
and chan 7 of landsat images and GARI uses red,
NIR, blue and green bands. GRASS functions are
used to extract row-wise data from the specific band
images and store them in buffers. Then, each column
value is extracted sequentially from the buffers and
sent for generating the specific VI values. Thus, after
completing the VI from row buffers, the row wise VI
values are put back into output image and this pro-
cess will continue for each row. Fig. 3 presents the
structure of serial running r.vi module (for simplic-
ity only two band images have been presented).

Figure 3: Serially Running r.vi Module Structure

Objectives

Under the assumption that distributed style of com-
puting will remove computational time constraints,
new image processing distributed algorithms for re-
motely sensed images can be considered. Different
GRASS modules have been developed for solving
different Remote Sensing Image analysis problems.
To evaluate the performance of the GRASS modules
in distributed computing environment is the major
objective of this paper. Additionally, it is a new di-
mension for the remote sensing users to port their
jobs in distributed computing environment. Another
issue addressed in this paper is to find out the suffi-
cient amount of workload that is needed to dispatch
among the worker nodes for getting better perfor-
mance than the serial module.

Methodology

To fulfill the above objectives or requirements, the
GRASS module (r.vi) has been parallelized by using
the master-worker model. The master process runs
in the GRASS environment, and decomposes the tar-
get images in rows and dispatches the computation
of rows to multiple worker processes. Worker pro-
cesses are free from GRASS, they just run the com-
putation and send back the row wise result to the
master process. The module r.vi is implemented us-
ing MPI on a PC cluster system (r.vi.mpi) and Ninf-G
on the same PC cluster system (r.vi.grid) to hold the
similarity between the experimental environments.
However, r.vi.grid module has been structured as it
is capable to run in distributed GRID system. Ad-
ditionally, experiments were done to analyse the re-
sults with distributed r.vi modules by increasing the
number of operations, to find out the amount of
workload that is necessary to get a performance ben-
efit from the distributing environments.

In Fig. 4, the implementing structure of dis-
tributed r.vi is presented (for simplicity only two
band images have been presented). Here, S1, S2,
.....,Sn are different worker processes.

ISSN 1614-8746 2

GRASS/OSGeo-News Vol. 2, Sept 2007

Figure 2: NDVI calculations with GRASS

Figure 4: Distributed r.vi Module Structure (r.vi.mpi
and r.vi.grid)

Implementation

MPI and Ninf-G Framework

MPI (Message Passing Interface) is a library of func-
tions (in C) or subroutines (in FORTRAN) that one
can insert into the source code to perform data
communication between processors (Sain et al. ,

1996). MPI was designed for high performance on
both massively parallel machines and on worksta-
tion clusters and developed by a broadly based com-
mittee of vendors, implementors, and users.

The Ninf-G has been developed by AIST (Na-
tional Institute of Advanced Industrial Science and
Technology, Japan) and TITECH (Tokyo Institute of
Technology, Japan). Ninf-G is a reimplementation of
the Ninf system on top of the Globus Toolkit (Foster
et al. , 1997). Globus serves as a robust and com-
mon platform for implementing higher level middle-
ware and programming tools, etc., ensuring interop-
erability amongst such high level components, one of
which being NinfG. NinfG system is based on client
server computing. The computational resources are
available as remote libraries at a remote computation
host which can be called through the global network
from client program written in existing languages
such as FORTRAN, C, or C++.

ISSN 1614-8746 3

GRASS/OSGeo-News Vol. 2, Sept 2007

Specification of the Davinchi Cluster

The Cluster nodes for the experiments are as follows:

Figure 5: Specifications of Davinchi Cluster

Distributed r.vi Module in MPI (r.vi.mpi)

For r.vi.mpi, GRASS source code is installed in mas-
ter node and GRASS libraries are copied to the slaves
local memory location exactly the same as master
(/usr/local/grass-6.0.2/) and the following configu-
ration steps are completed to setup the MPI-GRASS
environment.

- grass.conf file is created inside /etc/ld.so.conf.d/
directory and the required grass library names are
written inside this file.

- Then the /sbin/ld config command is executed.
MPISend and MPIRecv both functions have been

used for data communication.
The following Makefile is created for compilation

MODULE_TOPDIR = ../..

CC=mpicc

PGM = r.vi.mpi

LIBES = \$(GISLIB) \$(GMATHLIB)

DEPENDENCIES = \$(GISDEP) \$(GMATHDEP)

include \$(MODULE_TOPDIR)/include/Make/Module.make

default: cmd

To run the code the following shell command has
been used:

mpirun -np 3 location_of_exec_file parameters..

In this experiment the location of the executable
file is: GRASSCOMPILED IR/dist.i686-pc-linux-
gnu/bin/r.vi.mpi The pseudo-code of r.vi.mpi is ap-
pended here:

#include "gis.h"

#include "glocale.h"

#include "mpi.h"

/* main.c: Declare the following MPI code */

/* NUM_HOSTS is total host number */

/* me is defined processor rank/number */

MPI_Status status;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&NUM_HOSTS);

MPI_Comm_rank(MPI_COMM_WORLD,&me);

/*--*/

/* Master Code Begin: Rank 0 (me=0) */

/* Extract total row and column number */

/* and sends them to the slaves */

for(i=1;i<NUM_HOSTS;i++)

/* i Loop Started:

MPI_Send(&nrows,1,MPI_INT,i,1,MPI_COMM_WORLD);

MPI_Send(&ncols,1,MPI_INT,i,1,MPI_COMM_WORLD);

/* i Loop Finished.

/* Row data are extracted from images and */

/* dispatched them among slaves with specific*/

/* row number by Round Robin Fashion */

for (r = 1; r*(NUM_HOSTS-1) <= nrows;r++)

/* r Loop Started:

for(k=1;k<NUM_HOSTS;k++)

/* k Loop Started:

row=(r-1)*(NUM_HOSTS-1)+k-1;

G_get_raster_row(infd_redchan,...

G_get_raster_row(infd_nirchan,...

for (col=0; col < ncols; col++)

/*col Loop Started:

/*Each column cell values form all bands

/* are extracted and put them in a 2D array

db[0][col]= d_redchan;

db[1][col]= d_nirchan;

/* col Loop Finished.

row_n=k-1;

I[ncols]=row_n;

MPI_Send(I,ncols+1,MPI_INT,k,1,\

MPI_COMM_WORLD);

MPI_Send(db,6*ncols,MPI_DOUBLE,k,1,\

MPI_COMM_WORLD);

/* k Loop Finished.

/* Waiting for the result...

for(k=1;k<NUM_HOSTS;k++)

/* k Loop Start:

MPI_Recv(R,ncols+1,MPI_DOUBLE,k,1,\

MPI_COMM_WORLD,&status);

row_n=R[ncols];

for (cn=0;cn<ncols;cn++)

/* cn Loop Started:

outputImage[row_n][cn]=R[cn];

ISSN 1614-8746 4

GRASS/OSGeo-News Vol. 2, Sept 2007

/* cn Loop Finished.

/* k Loop Finished.

/* Processes row put back to the result images

for(k=0;k<(NUM_HOSTS-1);k++)

/* k Loop Start:

for(j=0;j<ncols;j++)

/* j Loop Start:

((DCELL *) outrast)[j] = outputImage[k][j];

G_put_raster_row(outfd,outrast,data_type_output);

/* j Loop Finished.

/* k Loop Finished.

/* r Loop Finished.

/* If any row left when (row_number%slaves!=0), */

/* the round robin fashion rest rows (lets n) */

/* are distributed from slave 1 to slave n again*/

MPI_Finalize();

G_free(inrast_redchan);

/* Master code Finished */

/*--

/*---

/* Slave Code Begin: Rank not 0 (me!=0) */

MPI_Recv(&nrows,1,MPI_INT,0,1,MPI_COMM_WORLD,\

&status);

MPI_Recv(&ncols,1,MPI_INT,0,1,MPI_COMM_WORLD,\

&status);

n_rows=nrows/(NUM_HOSTS-1);

modv=nrows%(NUM_HOSTS-1);

if(modv>=me)

n_rows++;

/* Data Receiving from master and process

for(i=0;i<n_rows;i++)

/* i Loop Started:

MPI_Recv(I,ncols+1,MPI_INT,0,1,MPI_COMM_WORLD,\

&status);

MPI_Recv(db,6*ncols,MPI_DOUBLE,0,1,MPI_COMM_WORLD,\

&status);

for (col=0; col<ncols; col++)

/* col Loop Started:

ndvi(db[0][col],db[1][col]);// Process ndvi()

/* col Loop Finished.

r[ncols]=I[ncols];

/* results are in r[] and

/* sends back to master

MPI_Send(r,ncols+1,MPI_DOUBLE,0,1,\

MPI_COMM_WORLD);

/* i Loop Finished.

MPI_Finalize();

/* Slave Code Finished. */

/*--

Distributed r.vi Module in GRID
(r.vi.grid)

r.vi is easier to port in Ninf-G environment than
MPI. Here, no need to copy the library files, be-
cause the worker procedure is totally independent
from the master procedure and GRASS environment.
GridRPC (Tanaka et al. , 2003) calling API is used
for communication between the master and workers.
The following Makefile is created for compilation

MODULE_TOPDIR = ../..

CC=ng_cc

PGM = r.vi.grid

LIBES = \$(GISLIB) \$(GMATHLIB)

DEPENDENCIES = \$(GISDEP) \$(GMATHDEP)

include \$(MODULE_TOPDIR)/include/Make/Module.make

default: cmd

Like any other GRASS modules r.vi.grid can run
by the command

r.vi.grid parameters

Worker IDL file is as follow:

Module VI_Server;

Define VI_CALC (IN int n,IN double I[n], \

IN double a[n], IN double b[n], IN double c[n],\

IN double d[n], IN double e[n],\

IN double f[n], OUT double r[n])

Required "VI_ServerC.o"

Calls "C" VI_CALC(n,I,a,b,c,d,e,f,r);

Worker code is as follow:

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#include<unistd.h>

void VI_CALC(int n, int *I, double *a,\

double *b,double *c, double *d, double *e,\

double *f,double *r){

int col;

for (col=0; col<n; col++)

//col Loop Started

/*coloum wise value going to process for

/* specific indexing, put results in r []

ISSN 1614-8746 5

GRASS/OSGeo-News Vol. 2, Sept 2007

/* as for ndvi processing....

r[col]=(a[col]-b[col])/(a[col]+b[col]);

//col Loop Finished.

} //function call finish

Master module code is as following:

#include "gis.h"

#include "glocale.h"

#include "grpc.h" // we need grpc.h header file

#define NUM_HOSTS 5 //how many hosts available

char* hosts[]= {"davinchi1.alab.ip.titech.ac.jp",\

"davinchi1.alab.ip.titech.ac.jp", ... , ... , ... ;

grpc_function_handle_t handles[NUM_HOSTS];

grpc_sessionid_t ids[NUM_HOSTS];

int ret;

if((ret=grpc_initialize("/.../raster/r.vi.grid \

/vi.conf")!=GRPC_NO_ERROR)){

fprintf(stderr, "Error in grpc_initialize, \

%d\n",ret);

exit(2);

}

//creating one handle for each host node

for(i = 0; i < NUM_HOSTS; i++)

grpc_function_handle_init(&handles[i], hosts[i],\

"VI_Server/VI_CALC");

for(row = 0; row < nrows; row++)

/* row Loop Started:

host_n=host_n%NUM_HOSTS;

if(G_get_raster_row(infd_redchan,\

inrast_redchan,row,data_type_redchan)<0)

G_fatal_error(_("Could not read from <%s>"),\

redchan);

if(G_get_raster_row(infd_nirchan,\

inrast_nirchan,row,data_type_nirchan)<0)

G_fatal_error(_("Could not read from <%s>"),\

nirchan);

for(col=0; col < ncols; col++)

/* col Loop Started:

/* each column cell values for all

/* band images are extracted together

/* and put them in 2D arrays

db[0][col]= d_redchan;

db[1][col]= d_nirchan;

db[2][col]= d_greenchan;

db[3][col]= d_bluechan;

db[4][col]= d_chan5chan;

db[5][col]= d_chan7chan;

/* vegetation indexing array valuess are

/* filled in I[ncols] array

/* col Loop Finished.

if(grpc_call(&handles[host_n],ncols,I,db0,db1,\

db2, db3,db4,db5, R) != GRPC_NO_ERROR){

fprintf(stderr,"grpc_call ERROR\n");

exit(2);

}

/* All outputs are put back into raster

for(j=0;j<ncols;j++)

/* j Loop Started:

((DCELL *) outrast)[j] = R[j];

/* j Loop Finished.

if(G_put_raster_row(outfd,outrast,\

data_type_output) < 0)

G_fatal_error(_("Cannot write to output\

raster file"));

host_n++;

/* row Loop Finished.

/*Destruct the handles

for(i = 0;i < NUM_HOSTS; i++)

grpc_function_handle_destruct(&handles[i]);

grpc_finalize();

G_free(inrast_redchan);

G_close_cell(infd_redchan);

...etc...(Free memory)

Experimental Results

Fig. 6 is generated by running r.vi and r.vi.mpi
GRASS module with increasing the operation num-
bers. To calculate different vegetation indices the
workload in the slaves is too small to get benefit from
r.vi.mpi module. Thus, the purpose of this experi-
ment is to find out the sufficient amount of work-
load that will make the parallel version faster. In
Fig. 6, to calculate the NDVI takes only 3 opera-
tions (subtraction, addition and then division) and
this amount of workload takes just few seconds to
execute, where the serial version takes less process-
ing time then parallel version. However, increas-

ISSN 1614-8746 6

GRASS/OSGeo-News Vol. 2, Sept 2007

ing the number of operations provide better perfor-
mance in parallel version. It is clear from Fig. 6
that to get the benefit from the parallel version
the total workload needs to be around 300 opera-
tions or more so that the communication overhead
will be overpassed by the computational workload.

Figure 6: Performance Evaluation of Serial (r.vi) and
MPI (r.vi.mpi) Version

When master with one worker node (slave) are
working together to solve a particular problem, the
master node will dispatch the whole job to his slave
for processing. When there will be 2 slaves, the work-
load will be distributed among two salves. Simi-
larly for 3 slaves, the workload will be distributed
to 3 slaves equally. So the time performance in-
crease for master with 2 slaves will be 2 times than
master with one slave and the ratio will be 3 times
for master with 3 slaves with one slave and so
on... This would highlight a perfect parallelism.

Figure 7: Parallelization Effect of r.vi.mpi Module
with DTT

Concerning the above philosophy and experi-
menting on r.vi.mpi module, Fig. 7 and Fig. 9 have
been generated. In Fig. 7 and Fig. 9, the 2 Slaves
curve presents the ratio of the total running time
between master with two slaves and master with
one slave. The 3 Slaves curve represents the ratio of
the total running time between master node with 3
slaves and master (one slave) with increasing the op-
eration numbers. Increasing the operations, reflects
to increase the workload in slaves and improving the
performance. However, in Fig. 7, the performances
are not satisfying with the desire values (as perfect

parallelism) due to the regular and high communica-
tion overhead.

In equation 1, 2 and 3 the following terms have
been used.

Figure 8: Terms used and their definitions

DTT = {NR × (VDS + VDR)}/(NBW) (1)

VDS = NB × DTS × (NC + 1) (2)

VDR = DTS × (NC + 1) (3)

From equation 2 and 3, equation 1 has been de-
rived as

DTT1 = (6× 8× (8519 + 1))+ (8× (8519 + 1)) (4)

DTT2 = 100 × 1024 × 1024 (5)

DTT = (7630× 8×DTT1)/DTT2 = 277.74Sec (6)

To evaluate the parallel version performance
more precisely, Fig. 9 has been generated. Only the
execution time (Data Transfer Time has been reduced
from the total running time) is concerned here. Due
to a constant amount of data need to transform be-
tween master and slaves, the transfer time (DTT) is
derived from the above equations. Fig. 9 shows that
the performance in the slaves curves are improving
and nearly to the desirable values. It concludes that
r.vi.mpi module is working well in distributed man-
ner.

ISSN 1614-8746 7

GRASS/OSGeo-News Vol. 2, Sept 2007

Figure 9: Parallelization Effect of r.vi.mpi module
without DTT

Fig. 10 evaluates the performance of the GRASS
modules (r.vi, r.vi.mpi, r.vi.grid) in the time domain.
Low, middle and high, three testing workloads have
been set in the modules. When the workload is low,
serial version (r.vi) is performing best because of the
fine-grain parallelism where communication time is
bigger than the execution time. To get the coarse-
grain, the workload need to be increased so that the
communication time will be hidden by the execution
time. As the workload increased to 1800 and 3000 op-
erations, parallel versions are performing better then
the serial version.

Figure 10: Performance Evaluation of GRASS Mod-
ules (r.vi, r.vi.mpi and r.vi.grid)

MPI version, r.vi.mpi provides the best perfor-
mance among the three models. However, MPI is
used mainly in Cluster Computers where the nodes
are homogeneous in their specification. Addition-
ally, available nodes in Clusters are limited up to a
specific range and this will be an obstacle for load
balancing for big processing jobs. In this case, Grid
computing infrastructure is necessary. Indeed, (the
environment maintains heterogeneity as well as dis-
tributed connecting networks). So far Ninf-G is per-
forming better than the serial version for high work
load examples.

Particularly, in this issue, Ninf-G is not perform-
ing better than MPI for the reason that, the communi-
cation overhead (to establish the session with remote
hosts) in Ninf-G is larger than MPI. Ninf-G is spe-

cially made for Grid-Computing environment (not
for running inside Cluster computing environment
as have been done in above experiments). When
the processing workload is much higher than the
communication workload, the real performance im-
provement with Ninf-G platform will show up. So
far, r.vi.grid is developed and tested. In near future,
the experiment on real Grid testbed will be high-
lighted.

Conclusion

Geographic Resources Analysis Support System
(GRASS) has been used for RS and GIS data anal-
ysis and visualization. Currently, GRASS handles
large datasets and the performance and capabilities
of GRASS for large datasets can be greatly improved
by integrating GRASS with parallel and distributed
computing. The major objective of this research was
to provide the Remote Sensing user a compact exam-
ple with Grid and MPI programming for GRASS GIS
distributed processing. Additionally, this type of re-
search will merge the Remote Sensing and GIS with
High Performance Computing communities.

Acknowledgements

The authors would like to acknowledge specially, to
Osawa Kiyoshi San (PhD Candidate in AIDA Lab),
SunHao San (Masters Student in AIDA Lab) and
Nishimora Motokazu San (Masters Student in AIDA
Lab) for their support to create the testbed (Davinchi
Cluster) ready for this experiment. Authors also like
to thanks to all the members in AIDA Lab for the
moral supports.

Bibliography
M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J . Dongarra

(1996) MPI: The Complete Reference. Massachusetts Insti-
tute of Technology. http://www.netlib.org/utk/papers/mpi-
book/mpi-book.html.

I. Foster and C. Kesselman (1997) Globus: A Metacomputing In-
frastructure Toolkit. International Journal of Supercomputer
Applications.

M. Neteler and H. Mitasova (2003) Open Source GIS: A GRASS
GIS Approach. Second Edition. Kluwer Academic Publishers.

Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumarn, S. Matsuoka
(2003) Ninf-G: A Reference Implementation of RPC-based Pro-
gramming Middleware for Grid Computing Journal of Grid
Computing 1: 41-51.

B. Kamble, Y.H. Chemin (2006) GIPE in GRASS Raster Add-
ons. http://grass.gdf-hannover.de/wiki/, GRASSAddOns,
RasterAdd-ons Internet.

MPI(2007) http://www-unix.mcs.anl.gov/mpi/ Internet.

Ninf-G(2007) http://ninf.apgrid.org/ Internet.

ISSN 1614-8746 8

GRASS/OSGeo-News Vol. 2, Sept 2007

J.Weier and D.Herring. (2007) Measuring Vegetation (NDVI/EVI)
http://earthobservatory.nasa.gov/Library/MeasuringVegetation/
Internet.

SUN Grid Engine(2007) http://www.lesc.ic.ac.uk/projects/epic-
gt-sge.html Internet.

Shamim Akhter, Kento Aida
Tokyo Institute of Technology
http: // www. alab. ip. titech. ac. jp/ ~shamim

shamimakhter@gmail.com Yann Chemin
yann.chemin@gmail.com

ISSN 1614-8746 9

http://www.alab.ip.titech.ac.jp/~shamim
mailto:shamimakhter@gmail.com
mailto:yann.chemin@gmail.com

	Porting a GRASS raster module to distributed computing
	Abstract
	Introduction
	Objectives
	Methodology
	Implementation
	MPI and Ninf-G Framework
	Specification of the Davinchi Cluster
	Distributed r.vi Module in MPI (r.vi.mpi)
	Distributed r.vi Module in GRID (r.vi.grid)

	Experimental Results
	Conclusion
	Acknowledgements

