
SEXTANTE, a free platform for geospatial analysis

Olaya, Victor

March 4, 2009

1 Introduction

The SEXTANTE project 1 aims to create
a platform for the development of geoalgo-
rithms that makes it easy both to imple-
ment and to use those algorithms. By do-
ing that, SEXTANTE wants to become a
reference element for geospatial analysis in
the Java GIS world. Currently, more than
230 extensions have been developed so far.

SEXTANTE is being developed by the
Junta de Extremadura (local government of
Extremadura, Spain) to fulfil their needs in
terms of geographical analysis. This follows
the current line of work in the region, which
started with the largely acclaimed Linex
(a custom Linux distribution) and supports
free software through the development of
new free tools.

2 A bit of history

The SEXTANTE project was launched in
2004 with the main goal of developing a GIS
solution specially designed for the needs of
regional goverment foresters. Though it
was originally targeted at professional of
forest management, it has proved to be an
all–purpose solution suitable for any user in

1http://www.sextantegis.com

need of strong geospatial analysis capabili-
ties, and it is developed as such nowadays.
Additional elements for forest inventory are
being developed as well within the project,
but they will not be covered in this article..

The first version of SEXTANTE was
based on the German software SAGA2, a
GIS mainly focused on analysis. The orig-
inal SAGA set of 120+ analysis modules
was enriched by more that 70 new ones,
and some modifications were also made to
the core of the system. A very close re-
lation existed between the SAGA and the
SEXTANTE teams, and both the exten-
sions and the core modification eventually
made their way to the SAGA official distri-
bution and are nowadays included in cur-
rent SAGA releases.

By that time, gvSIG was not yet a ma-
ture GIS product, and it was deemed un-
suitable for the goals of the project. How-
ever, gvSIG soon experimented an impres-
sive growth and quickly became a full–
fleged GIS, including many features not
found in SAGA, such as connections to Web
services. The decision was taken to migrate
all the previous work and apply all the ex-
pertise acquired in our work with SAGA to

2http://www.saga-gis.uni-goettingen.de/
html/index.php

1

http://www.sextantegis.com
http://www.saga-gis.uni-goettingen.de/html/index.php
http://www.saga-gis.uni-goettingen.de/html/index.php


turn gvSIG into a powerful geospatial anal-
ysis tool. Although rich in functionalities,
gvSIG had a lack of analysis functions (ex-
cept for a small set of geoprocesses for vec-
tor layers, including operations like buffer-
ing, cut, merge an join, among others), so
the result would be benefitial for both par-
ties.

The following steps were taken to develop
the gvSIG version of SEXTANTE

• Creating a base layer on top of which
extensions for geospatial analysis could
be easily implemented. That would en-
capsulate the complexity of the gvSIG
extension and plug–in architecture,
and make it easier to implement new
geoalgorithms, following the ideas of
SAGA.

• Migrating all original SAGA exten-
sions and all the ones developed in
the previous version of SEXTANTE to
gvSIG, using the aforementioned base
layer. Some extension not related with
analysis, such as input/output ones,
were, however, not implemented, since
they already existed in gvSIG. New
ones were also added, up to a total of
more than 220, aproximately half of
which come from the original SAGA
version.

• Including new elements to better ex-
ploit the possibilities of the set of anal-
ysis extensions. These elements will be
reviewed as well in this article.

Currently, SEXTANTE is not a set of
extensions for gvSIG, but an independent
Java library based on the code developed
for that previous gvSIG version. This way,

it can be easily incorporated into gvSIG to
add the same functionalities as the previ-
ous version, but also into other GIS appli-
cations. This includes other desktop GIS
(it is already integrated into OpenJUMP,
and prototypes exist for uDig, Kosmo and
OrbisGIS), other kinds of applications and
libraries, or even to serve SEXTANTE
geoalgorithms via WPS (integration with
GeoServer and 52North is currently being
developed along with de development teams
of those projects).

Let’s see a bit more about SEXTANTE’s
architecture and its philosophy.

3 The architecture of

SEXTANTE

There are two main parts in SEXTANTE:

• A set of base classes which constitute
a robust analysis platform and a set of
220+ algorithms built on top of them.
These can be used by programmers
to incorporate geoanalysis capabilities
to their software, simply calling the
corresponding algorithm. The design
of the base classes makes it easy to
call SEXTANTE algorithms regardless
of the data model used in the appli-
cation, by wrapping its data objects.
Binding for popular libraries such as
GeoTools, used in many GIS applica-
tions, have already been developed, so
in most cases the algorithms can be di-
rectly used without having to develop
those wrapper classes.

Usage of SEXTANTE algorithms from
Java code is not covered in this arti-
cle. Developers can check the SEX-

2



TANTE website, where information is
given about how to use them or develop
new ones based on the core classes of
the library.

• A set of graphical elements (a toolbox,
a graphical model builder, a command
line interface...) that make it easier to
use and call SEXTANTE algorithms
from a GUI. These elements give ac-
cess to a set of functionalities based on
all those algorithms, and they will be
described in detail in other sections of
this article. All these elements can be
easily integrated into a GIS applica-
tion, adding all the powerful analysis
capabilities of SEXTANTE to it.

Having a fixed set of graphical ele-
ments also makes it easier for users to
adapt to a different desktop GIS, since
all operations based on SEXTANTE
algorithms will have the same inter-
face. In other words, performing anal-
ysis in SEXTANTE is exactly the same
whether you use the gvSIG–based ver-
sion, the OpenJUMP–based one, or
any other that might be developed, as
long as they reuse the graphical ele-
ments provided by the SEXTANTE li-
brary.

Of course, developers can create their
own graphical interfaces and run algo-
rithms from them, using just the core
classes and the algorithms from the li-
brary.

4 Graphical elements

Four are the main graphical elements of
SEXTANTE:

• The SEXTANTE toolbox (Figure 1),
which represents the main element of
SEXTANTE. Most users will use only
this element in a normal session. From
its window, extensions can be run as
single processes, and also as batch pro-
cesses, executing the corresponding al-
gorithm on a set of input data files.

Figure 1: The SEXTANTE toolbox

• The Graphical Modeller. Extensions
can be used to define a global process
than involve several single processes,
each of them consisting of a geoalgo-
rithm. Relation between those pro-
cesses can be defined so the input of
one of them can be the output of a pre-
vious one, thus setting a workflow. All
this is done through a intuitive inter-
face that we will see shortly.

• The Command Line Interface. A built-

3



in command line for advanced users,
which gives more flexibility and allows
for the creation of small scripts.

• The Command History Manager.
Whenever a SEXTANTE extension
is run, a new element is added to
the SEXTANTE history. Using this
element, the command history can be
browsed and certain actions can be
repeated, just double clicking on a
single command or selecting a block of
them (Figure 2).

Figure 2: Commands can be re–run using
the history manager

A toolbar with five buttons gives access
to all these elements3 (Figure 3).

Figure 3: The SEXTANTE toolbar

3Depending on the implementation, access to
SEXTANTE elements can also be done via menu
items

5 Executing a single al-

gorithm

Running a single algorithm is as easy as
double clicking on its name in the SEX-
TANTE toolbox. A new window will
appear, which is automatically generated
based on the requirements of the algorithm
you are going to execute. However, it is easy
to define a different interface if needed, as
is shown in figure 4.

A tab named Parameters allows the user
to select or enter the input data (layers, ta-
bles, numerical values, strings...). New lay-
ers and tables are saved by default to a tem-
porary folder. The user can enter a filepath
in case he wants to store an output object
permanently.

When the algorithm generates raster lay-
ers, a second tab named Raster output (Fig-
ure 5) is found as well. Using this tab, the
user can set the extent and cell size for all
raster layers generated by the algorithm.

Figure 5: The raster output tab

Most GIS which include raster analysis
capabilities need layers to have the same
raster output and cellsize in order to com-
bine them. Some GIS, like GRASS, re-
quire the user to define an output region.
In SEXTANTE, this region is defined each

4



Figure 4: Parameters windows are automatically generated, but can be easily modified
to adapt them to a particular extension

time the extension is executed, and the user
can enter the corresponding values manu-
ally, select them from an existing layer, se-
lect them from the extent of a view, or let
SEXTANTE adjust it automatically based
on the input layers characteristics. This last
method is the one selected by default, so
most of the time there is no need to use
the raster output tab, since the default be-
haviour is the same as one could expect
from any other GIS (specially if there is a
single input layer, since the output layers
will have its same characteristics)

With this philosophy, data from differ-
ent sources can be seamlessly integrated to
run a process, and the user does not have
to worry about preparing those data be-
forehand. Moreover, preparation of data
involves resampling techniques that most
users really do not understand enough, be-
ing an error prone procedure. Since those
resampling tasks are carried on by SEX-
TANTE, the developer of each algorithm is
responsible of how resampling methods are
used, so he can let the user select which of

them to use or, in most cases, hardcoding
it to better fit the algorithm.

Context help for each extension is avail-
able, and can be accessed from the dialog
box. Users can edit these help files to en-
hance them or add comments, using the
built–in authoring tools (Figure 6). These
tools guarantee that help files have the right
structure and semantics to be used in dif-
ferent contexts within SEXTANTE, such
as the command–line interface that we will
later see.

Context help can be accessed also di-
rectly from the SEXTANTE toolbox, and
the whole set of algorithms can be filtered
using keywords, so as to make it easier to
find the right extension in each case.

6 Creating a model

When working with a GIS, it is frequent
to perform calculations that involve several
steps. For example, the Topographic Wet-
ness Index is defined by [2] as

5



Figure 6: Help files can be edited using the built–in help–authoring tools

TWI = ln(a′/ tan β) (1)

where a′ is the upslope contributing area
and β is the slope.

Therefore, calculating this index in a GIS
implies calculating a slope layer from a
DEM, an upslope contributing area also
from a DEM, and then combining both of
them. A great improvement in productiv-
ity would be obtained if a user could easily
and graphically define a single process that
included all this steps, and could execute
them all at once.

While proprietary GIS contain such tools
(e.g. ModelBuilder in ESRI ArcGIS or
MacroModeller in IDRISI) no free GIS has
a similar functionality. GRASS commands
can be used to create scripts and define
compound processes, but most users find it
not user–friendly, and would prefer a graph-
ical interface. Attempts have been made to
integrate GRASS with scientific workflow
systems such as Kepler (see [?]), but the

complexity of the resulting solution is way
beyond the skills of an average (or even ad-
vanced) GIS user.

SEXTANTE includes a graphical mod-
eller which is unique in the FOSS4G scene,
allowing users to quickly and effectively cre-
ate a model, just following two steps:

• Defining the inputs needed by the
model

• Defining the processes to run. Data for
each process is introduced through a
window similar to the one shown when
executing the corresponding extension
as a single process. In this case, how-
ever, instead of selecting input data
from the current gvSIG projects, they
are selected from the model inputs (de-
fined in the previous step) and the out-
puts generated by other processes, thus
defining a global workflow.

Figure 7 shows the main window of the
model builder, with an example model. On

6



the right side of the window, two tabs are
found: Inputs and Processes. Double click-
ing on their elements, these can be added
to the model to define its structure.

Model are saved in XML–based files, and
can be easily shared between users.

Once it has been created, the model is
treated just as another SEXTANTE algo-
rithm, as if it had been developed directly
programming it. It can be run straight from
the model builder or incorporated to the al-
gorithms’ tree of the toolbox (just saving it
to a user–defined models folder), and exe-
cuted from there as a single process or a
batch process, as we will see next.

Models can also have their own context
help, which can be edited using the help
authoring tools of SEXTANTE.

7 Executing an exten-

sion as a batch process

All SEXTANTE algorithms (including
models) may be executed as batch pro-
cesses. That is, they can be executed re-
peatedly on a group of entry parameters
without the need of calling each time the
corresponding extension through the exten-
sion manager.

This can be used, among other things,
to execute one operation (for example, the
application of a filter) on a group of layers,
like, for instance, all the ones in a given
folder.

Executing a batch process is not really
different from executing a SEXTANTE al-
gorithms in the usual way. The user just
has to set the parameters needed to run the
corresponding algorithm, and its inputs and

outputs. These tasks are done using a table
similar to the one shown in figure 8.

Figure 8: The batch processing window

Each line of the table represents an indi-
vidual execution of the algorithms and the
cells of this line contain the values of the
parameters, in the same way as they would
have been introduced in the different fields
of the usual parameters panel.

Inputs are not taken from the GIS di-
rectly, but directly from data sources (files).
Output layers are not added to the GIS
interface, but just saved to the selected
filepath.

In order to make it easier to process
large sets of files, several additional func-
tionalities have been added, such as auto-
matic completion of output filepaths using
a predefined schema (an enumeration, or
the value of an input field) and intelligent
copy–paste features). Parameters sets can
be saved as comma–separated values, and
later opened.

8 Using the command–

line interface

Although most users will prefer using the
graphical interface, the command–line in-
terface provides a powerful way of running

7



Figure 7: The graphical modeller window, with an example model

SEXTANTE extensions (Figure 9). When
a certain task is repeated frequently, it
is easier an more productive to use the
command–line interface instead of the tool-
box.

Figure 9: The command–line interface

Scripts can be written and run from the
SEXTANTE interface. They can incorpo-
rate standard Java elements such as vari-
ables, conditional sentences or loops, since
the command–line interface is based on the
free Java interpreter BeanShell. Additional

commands have been added to allow the ex-
ecution of SEXTANTE geoalgorithms from
it.

Scripts can be used to create models and
describe compound processes, but there is
not yet a link between scripts and models
created using the graphical model builder.

9 The community

Although SEXTANTE is a small project
(three people with just one developer), the
community built around it is considerable
large, mainly due the increasing popularity
of gvSIG and the effort made by the gvSIG
team to promote SEXTANTE along with
their own software.

Changing from a gvSIG–based concep-
tion to an independent library has remark-
ably increased the number of developers
using SEXTANTE. Despite having a large

8



community of users, there was not a large
developers community before, something
that is gradually changing as more appli-
cations start using SEXTANTE as their
source of geospatial algorithms.

Developers can access SEXTANTE
source code using our SVN repository4, to
get a daily updated version.

10 More information

For further information, please visit our
website at http://www.sextantegis.com

or send an email to volaya@unex.es with
your questions.

References

[1] Zhang, J.; Pennington, D.; Mich-
ener, W. K. Automatic Transformation
from Geospatial Conceptual Workflow
to Executable Workflow Using GRASS
GIS Command Line Modules in Kepler.
First International Workshop on Work-
flow Systems in e-Science (WSES06).
Springer Lecture Notes in Computer
Science. Volume 3993/2006.

[2] Beven, K. J. & Kirkby, M. J. (1979)
A physically based, variable contributing
area model of basin hydrology, Hydrol.
Sci. Bull. 24, 43–69.

4see https://svn.forge.osor.eu/svn/
sextante

9

http://www.sextantegis.com
volaya@unex.es
https://svn.forge.osor.eu/svn/sextante
https://svn.forge.osor.eu/svn/sextante

	Introduction
	A bit of history
	The architecture of SEXTANTE
	Graphical elements
	Executing a single algorithm
	Creating a model
	Executing an extension as a batch process
	Using the command--line interface
	The community
	More information

