

OSGeo Journal Volume 8

Volume 8 Contents

Editorial 2
From the Editor 2

News & Announcements 3
Brief News and Event Announcements from the

OSGeo Community 3
r.in.swisstopo . 5

Case Studies 8
An Image Request Application Using FOSS4G Tools 8

Integration Examples 10
Exporting Geospatial Data to Web Tiled Map Ser-

vices using GRASS GIS 10

FOSS4G 2009 Conference Proceedings 15
From the Academic Track Chair 15
Geoprocessing in the Clouds 17
Media Mapping 23
MapWindow 6.0 31
A Data System for Visualizing 4-D Atmospheric

CO2 Models and Data 37
Collaborative Web-Based Mapping of Real-Time

Flight Simulator and Sensor Data 48
A Modular Spatial Modeling Environment for GIS 53

From the Editor
OSGeo has just past its 5th
birthday, along with this 8th
volume of the OSGeo Journal!
With this edition we bring a
few news headlines from the
past couple months, a few
general articles and, most sig-
nificantly, several top papers
from the FOSS4G 2009 con-
ference event held in Sydney, Australia.

The Journal has become a diverse platform for sev-
eral groups and growth in each area is expected to con-
tinue. The key groups that read and contribute to the
Journal include software developers sharing informa-
tion about their projects or communities, power users
showing off their solutions, academia seeking to pub-
lish their research and observations in a peer-reviewed,
open source friendly medium. OSGeo also uses the
Journal to share community updates and the annual
reports of the organisation.

Welcome to those of you who are new to the OSGeo
Journal. Our Journal team and volunteer reviewers and
editors hope you enjoy this volume. We also invite you
to submit your own articles to any of our various sec-

tions. To submit an article, register as an "author" and
sign in at http://osgeo.org/ojs. Then when you log
in you will see an option to submit an article.1

We look forward to working with, and for, you in
the upcoming year. It’s sure to be an interesting year as
we see OSGeo, Open Source in general and all our relate
communities continue to grow. Nowhere else is this
growth more apparent than at our annual conference:
FOSS4G 2011 Denver, September, 2011.2 Keep an eye
on your OSGeo mailing lists, blogs and other feeds to
follow the latest FOSS4G announcements, including
the invitation to submit presentation proposals.3 It will
be as competitive as ever to get a speaking slot, so be
sure to make your title and abstract really stand out.

Wishing you the best for 2011 and hoping to see you
in Denver!

Tyler Mitchell
tmitchell@osgeo.org

Editor in chief, OSGeo Journal
Executive Director, OSGeo

1The direct URL for article submission is: https://www.osgeo.org/ojs/index.php/journal/author/submit
2FOSS4G 2011 Denver: http://2011.foss4g.org
3FOSS4G 2011 Abstract Submission: http://2011.foss4g.org/program

Page 2 of 63

http://osgeo.org/ojs
mailto:tmitchell@osgeo.org
https://www.osgeo.org/ojs/index.php/journal/author/submit
http://2011.foss4g.org
http://2011.foss4g.org/program

OSGeo Journal Volume 8 From the Academic Track Chair

FOSS4G 2009 Conference Proceedings

From the Academic Track Chair
Prof. Thierry Badard

The FOSS4G 2009 academic
track aimed to bring together
researchers, developers, users
and practitioners – all who
were carrying out research
and development in the free
and open source geospatial
fields and who were willing
to share original, recent devel-
opments and experiences.

The primary goal was to promote cooperative re-
search between OSGeo developers and academia, but
the academic track has also acted as an inventory of cur-
rent research topics. This track was the right forum to
highlight the most important research challenges and
trends in the domain and let them become the basis
for an informal OSGeo research agenda. It has fostered
interdisciplinary discussions in all aspects of the free
and open source geospatial domains. It was organized
to promote networking between the participants, to
initiate and favour discussions regarding cutting-edge
technologies in the field, to exchange research ideas
and to promote international collaboration.

In addition to the OSGeo Foundation23, the ICA (In-
ternational Cartographic Association) working group
on open source geospatial technologies24) was proud
to support the organisation of the track.

The coordinators sought to gather paper submis-
sions globally that addressed theoretical, technical, and
practical topics related to the free and open source
geospatial domain. Suggested topics included, but
were not limited to, the following:

• State of the art developments in Open Source GIS
• Open Source GIS in Education
• Interoperability and standards - OGC, ISO/TC 211,

Metadata
• Spatial Data Infrastructures and Service Oriented Ar-

chitectures
• Free and open source Web Mapping, Web GIS and

Web processing services
• Cartography and advanced styling
• Earth Observation and remote sensing
• Spatial and Spatio-temporal data, analysis and inte-

gration
• Free and Open Source GIS application use cases in

Government, Participatory GIS, Location based ser-
vices, Health, Energy, Water, Urban and Environmen-
tal Planning, Climate change, etc.

In response to the call for papers, 25 articles were
submitted to the academic track. The submissions were
highly diversified, and came from USA, Canada, Thai-
land, Japan, South Korea, Sri Lanka, Australia, New
Zealand, Italy, Denmark, France, Germany, Switzer-
land, Romania and Turkey. Selection of submissions
were based on the full papers received. All submis-
sions were thoroughly peer reviewed by two to three
members of the international scientific committee and
refereed for their quality, originality and relevance. The
scientific committee selected 12 papers (48% acceptance
rate) for presentation at the FOSS4G 2009 conference.
From those, 6 papers were accepted for presentation
in the proceedings of the academic track, which are
published in this volume of the OSGeo Journal. They
correspond to the 6 best papers assessed by the interna-
tional scientific committee.

The accepted and published papers covered a wide
23OSGeo: Open Source Geospatial Foundation: http://osgeo.org
24ICA open source working group: http://ica-opensource.scg.ulaval.ca/

Page 15 of 63

http://osgeo.org
http://ica-opensource.scg.ulaval.ca/

OSGeo Journal Volume 8 FOSS4G 2009 Conference Proceedings

range of cutting-edge research topics and novel applica-
tions on Free and Open Source Geospatial technologies.
I am particularly proud and happy to see some very
high quality scientific contributions published in the
OSGeo Journal. This will undoubtedly encourage more
interesting research to be published in this volume, as
our OSGeo journal is an open access journal. In addi-
tion, it helps draw attention to this important project of
the OSGeo Foundation. I hope the publication of these
proceedings in the OSGeo journal will encourage fu-
ture scientists, researchers and members of academia to
consider the OSGeo Journal as an increasingly valuable
place to publish their research works and case studies.

As a concluding note, I would like to take the op-
portunity to thank the individuals and institutions that
made the FOSS4G 2009 academic track possible. First,

I would like to thank the international scientific com-
mittee members and external reviewers for evaluating
the assigned papers in a timely and professional man-
ner. Next, I would like to recognize the tremendous
efforts put forward by members of the local organis-
ing committee of FOSS4G 2009 for accommodating and
supporting the academic track. Finally, I want to thank
the authors for their contributions, efforts, patience and
support that made this academic track a huge success.

January, 2011
Prof. Thierry Badard
Laval University, Canada
Chair, FOSS4G 2009 Academic Track
Co-chair, ICA Working Group on Open Source Geospatial Tech-
nologies

Page 16 of 63

OSGeo Journal Volume 8 MapWindow 6.0

MapWindow 6.0
An Extensible Architecture for Cartographic Symbol-
ogy

Harold A. Dunsford Jr., Daniel P. Ames

Abstract
A robust, extensible architecture is critical to open
source projects that have a distributed developer and
user base. The MapWindow 6.0 project is using a new
architectural paradigm where extensibility is handled
from several different plug-in points, rather than a sin-
gle, application wide design. This allows new kinds
of extensibility to be explored such as tools and data
providers in addition to the more conventional appli-
cation wide extensibility. This presentation outlines
some of the improvements in the built in cartography,
but primarily addresses the .Net architectural decisions
that permit run-time discovery of new kinds of custom
symbology. Improvements include layering of differ-
ent kinds of symbols to make a compound symbol as
well as establishing cartographic sub-categories based
on vector attributes or raster values. The open ended
framework allows for an extremely flexible system of
run-time discovery so that the core libraries do not have
to be recompiled each time an external cartographic im-
provement is developed.

Introduction
The problem addressed in this paper is the inability
for an open source core application to anticipate all
of the symbolic requirements for new sorts of data.
Changes in the design model for the 6.0 version of the
open source MapWindow GIS project allow for new
kinds of plug-ins. One new kind of plug-in actually al-
lows for external libraries to control the business logic
of data management for a specific data format. The
software that controls the business logic that runs the
interface based run-time recognition of these new data
providers has also been encapsulated in the form of a
non-graphical component that can be easily added to a
new project as easily as dragging the Map control or the
legend onto that project. The inevitable consequence for
this is that eventually there maybe new styles of data
which need to be symbolized in an unconventional way.
This paper seeks to address the problem of how we can
design an architecture that is at once extremely flexible
and versatile, supplying a built in symbol set that is
as rich as professional software, but that is also mal-
leable, so that future developers can easily extend the
symbolic capabilities without having to recompile the
architectural core.

The techniques outlined in this paper are important

because architectures that support extensibility form a
robust framework for successful open source GIS plat-
forms to build on. While this quality is important for
both proprietary and open source systems, it is essential
when a spatially distributed developer base must co-
ordinate their efforts. Multi-tiered, modular and trans-
parent design standards allow for greater security and
design control of the low-level, shared libraries, and
also act as a contract to unify a wide range of extensi-
bility and customization that is added on top of that
core. This provides future and co-developers with a
common platform that can be extended without fear of
breaking other parts of the code – hence saving time
and development costs.

We propose that it is non-obvious as to how to use a
common interface or custom attribute to allow the core
library and other developers to use extension classes
effectively if the most critical content is not described
by the interface itself. The conventional, run-time dis-
covery of extension classes traditionally relies on using
either System.Reflection or the Microsoft Add-In frame-
work in order to specify light weight contract interfaces
that then can be fleshed out with code that implements
those interfaces. For something like a data provider,
where the end result is an in-memory data format that
always matches a given interface, this sort of traditional
extensibility interface is ideal because you know what
to expect from each additional data provider. Symbol-
ogy, however, is something that should support a rich
and versatile collection of properties that can’t be pre-
dicted in advance. For instance, extending a point sym-
bol to be represented by an image requires completely
different attributes and properties than describing the
point using a color, size and shape. What’s wrong with
previous proposed solutions?

Previous GIS architectures fail to address these ver-
satile areas of extensibility. The conventional open
source approach is that tasks like handling data for-
mats and rendering those data formats are handled
internally and modified or developed by only a select
few that are privileged to be working on the core li-
brary. Even the most cutting edge advancements in
Microsoft’s Add-In Framework simply allow contract
interfaces to be updated to newer versions, and don’t
address a way to easily extend the project with effec-
tively unbounded components.

The first key component of our approach is the de-
sign of the base interface. This includes an ISymbol, for
points, an IStroke for lines and an IPattern for polygons.
These basic elements have minimal common attributes,
but they all have methods that allow for those symbols
to render themselves, given the set of coordinates, or
a graphics path, to draw. The important thing from
the standpoint of the rendering is that it won’t matter

Page 31 of 63

OSGeo Journal Volume 8 MapWindow 6.0

what kind of properties control that rendering method,
since all the symbols, for instance, evoke the same basic
drawing method. These base interfaces also allow for
run-time identification of classes that extend symbol-
ogy.

The second topic of discussion by this paper is how
to design a corresponding user interface that can allow
for largely unpredictable symbol elements to be success-
fully modified by the user without knowing them in
advance. The Dot Net Property Dialog component will
be discussed as an option for a default user interface
if one is not specified, but more importantly we will
illustrate how software can allow developers to provide
a custom control, or tab-page where they handle their
own symbology.

Finally, we will address using extension methods
(first made available with the 3.0 version of the .Net
Framework) to allow developers to create new methods
that are programmatically discoverable to intellisense,
but also allow easy configuration of their new symbols
without requiring the core library to be recompiled.

Background

MapWindow
The MapWindow project was first established in 1998
at Utah Water Research Lab in Logan as an alternative
to using MapObjects LT 1.0. (1) The proprietary con-
trols provided by ESRI prevented users from modifying
the underlying data, however, which was of limited
use for research oriented applications. The project re-
quirements included being able to dynamically alter the
shapes of vector data, or access the data values for grids.
They created the core MapWinGIS.ocx component, an
ActiveX control that could provide the low level access
to the data formats that developers could then rapidly
turn into successful projects. This ultimately led to
the development of the MapWindow application be-
cause many of the common features that were shared
between projects ended up being replicated over and
over again. The fully developed project today is called
MapWindow 4.x.

The MapWindow 6.0 project is focused on devel-
oping modular components written in C#. (3) Since
everything written for MapWindow 6.0 is in a man-
aged, Dot-Net language, it will be far more portable
in terms of using the project in web applications or
across platforms using the open source Mono frame-
work. The MapWindow 6.0 version of the project began
in the summer of 2007 as an effort to develop a topology
toolkit for MapWindow 4.x. In 2007, the team added
the Net Topology Suite into the project. This required
such a serious re-thinking of the underlying objects that
it was beneficial to start development of a completely
new version of MapWindow from scratch, which is
now MapWindow version 6.0. (2)

Other GIS Extensibility Architectures
ArcGIS

The ESRI ArcGIS object model consists of a host of
interconnected objects, each with a very precisely de-
fined role. The paradigm is to provide programmatic,
macro-style access to the underlying objects through
interfaces that restrict the functionality. In the Visual
Basic for Applications (VBA) Macro development en-
vironment that is associated with ArcGIS versions 8.0
and larger, directly accessing an object doesn’t expose
the majority of its properties or methods. An example
is the MxDocument object. In order to access more, you
must first dimension a new IMxDocument interface,
and point it at the object. This allows tight control over
what aspects of the software external developers can
control by exposing only a limited subset of members.
Access permissions could be adjusted so that the full
object is only viewable to developers working within
the ArcMap project itself. There is no model in place
to allow other developers to provide the base applica-
tion with support for new data formats, though they
are beginning to rely on the open source community
projects like GDAL for some of their data member sup-
port. They also do not provide direct access to outside
developers to low level functionality like rendering.

Grass

The extensibility model for the GRASS project involves
creating new libraries that can perform new, indepen-
dent operations. As is evident from their book Open
Source GIS A GRASS GIS Approach, GRASS 6 is writ-
ten in the ANSI C programming language and hosts
more than 350 modules for management, processing,
analysis and visualization of GIS data. The strategy that
they have adopted is to require that all data formats
be converted to their standardized raster and vector
formats before any other module can work with the
data. This allows for analysis of data directly from a
file that might be too large to store in memory, while
reducing the complexity of the analysis methods to
working with a single data format. They also recog-
nize that not every user will be an expert coder. In
order to support this intermediate level of program-
mer, the GRASS supports script programming. UNIX
Shell, PERL and Python scripts are supported, allowing
repetitious tasks to be handled through their scripting
language. They are the most mature version of truly
open-source GIS today, and can be thought of as a text-
book example of how to run a successful, long-term
open source venture. GRASS shows us that in order to
be a good, open-source project; you must have a frame-
work that allows for future development and expansion
over a long time. Our extensibility model explores how
to give the .Net libraries a common GIS framework to
use in order to talk to each other through the use of
common interfaces, rather than the use of a common

Page 32 of 63

OSGeo Journal Volume 8 MapWindow 6.0

data format, but ultimately the long term goal is the
same.

Quantum GIS

Given that there are hundreds of open source projects
that feature GIS today, some of which are featured at
http://opensourcegis.org/, it is hard to choose one
to best illustrate the extensibility models that are cur-
rently available from applications that fall in the middle
spectrum. One of the more complete and well known
systems is Quantum GIS. The approach from Quantum
GIS has always been more like a standard windows-
style programming environment, instead of the tra-
ditional, Linux-style command prompt that was the
principal mechanism for working with GRASS until
just recently.

Quantum GIS supports a plug-in architecture that
is more reminiscent of what you would likely find in
a traditional software package. They even support a
special type of Data Provider plug-in that allows de-
velopers to specifically extend the data formats that
can be supported by the project. There are posts about
Data Providers on their bulletin going back as far as
2006, so even though a big part of this presentation is
about introducing plug-ins with distinct capabilities,
this isn’t an entirely unproven concept. The plug-in
architecture for QGIS works by using python script
or C++ files that satisfy certain criteria, i.e. hosting a
particular script file with the name plugin.py and in
essence writing script to match specific method names
or schema. The weakness of this model is that the pow-
erful development environment tools like intellisense
are not generally available when working with a script-
ing language. With an interface, modern development
environments are able to flesh out a skeleton with the
correct signature that is type-checked at compile time.
Further, while the special plug-ins exist to support data
formats, those must first be accepted by the community
and then manually added into the core library.

Programming Methods
Interfaces
An interface acts as a kind of skeleton framework for
classes. In the C# language, dual-inheritance is not
allowed, but it is possible to implement as many in-
terfaces as you want. (5) Therefore, it has become
fairly conventional to devise small interfaces that can
be re-used in many different contexts. Many examples
are built into the .Net Framework, such as the IClone-
able interface which simply specifies that there will
be a Clone() method that returns a new object. There
are many classes that support this method, and those
classes come from very diverse sets of class hierarchies.
An interface can be thought of as a contract that des-
ignates what a particular class will do, regardless of

the actual code that is used to fulfill the contract. As
was illustrated in an earlier paper published in Position
IT (2) the minor performance characteristics of virtual
calls through an interface is insignificant compared to
the performance penalty of using property accessors.
There is a limitation in the sense that public variables
called fields cannot be defined on an interface, and so
using an interface forces the use of property accessors
or methods, and using property accessors can slow
down performance significantly in large loops.

Property-Grid

Figure 1: Property-Grid Control

The Property Grid control shown in Figure 1 is a
.Net control that creates a kind of tabular layout that
itemizes each of the public properties on a class, and
next to that, provides an interactive spot where a value
can be changed. The default behavior of the editing
region is type dependant, so that simple values might
only allow a text-box style editing, while more com-
plex members might have a drop-down control or even
provide a button that launches an entire dialog. These
behaviors can be customized for new class data types
using so called ‘Editor’ classes that control how the
property grid behaves during the editing process. The
editor to use for a new class is controlled by the use of
attributes.

The significance of this control is that it does not
require any pre-existing knowledge of what properties
exist on a variable. While we don’t recommend that
everything relies on property grids, we are using it as
an example of an open ended user interface design.
Without relying on anything more complex than a .Net
property grid, it then becomes possible to provide a
default user interface for any new symbol classes that

Page 33 of 63

http://opensourcegis.org/

OSGeo Journal Volume 8 MapWindow 6.0

do not explicitly define a user interface editor.

Extension Methods
Extension methods have been a part of the of the .Net
framework since version 3.0. These methods appear
to extend the number and type of methods that can
be accessed programmatically from an existing class
or interface, even if the class is a sealed class and can-
not be modified through inheritance. (4) The methods
and properties that appear in intellisense are normally
limited by the type definition of that variable. How-
ever, with extension methods, new methods can be
‘appended’ to the existing class, without ever modify-
ing the source code for the class. In the visual studio
development environment, these extension methods
are designated by a purple down arrow to the left of the
method. The importance of extension methods for this
paper is that they represent the means by which inter-
mediate level developers can design programmatic ac-
cess to control new symbology members, making them
programmatically discoverable through intellisense to
future developers.

Between open ended user interface components like
the property grid dialog and the extension methods,
applications like MapWindow can support a new de-
sign concept which can easily build from or extend core
libraries.

Figure 2: Transpose Extension Method

MapWindow 6.0 Symbology

Symbol Class Hierarchy
As of 6/29/2009, the architecture for the symbology
interfaces follows a standard idea where a random but
simple coloring scheme is applied to an entire layer
as soon as the layer is added to the map. The layer
does not host the descriptive characteristics directly, but
rather stores a reference to a single scheme. The type
of scheme depends on the type of features being repre-

sented. A PointScheme, for instance, works with point
data, while PolygonScheme and LineScheme represent
schemes that are specific to describing polygons and
lines. The classes use a collection concept, so that each
Scheme represents a collection of Categories. The strict
role of a category is that it combines a query string with
a Symbolizer. The string is used to select the members
that the symbology will be applied to. This enables an
easy programmatic access to hosting complex attribute
based symbology. Finally, a PointSymbolizer is made
up of at least one, but potentially several overlapping
Symbols. A LineSymbolizer is made up of Strokes. A
PolygonSymbolizer is made up of Patterns.

Point Symbology

Figure 3: Point Symbol Classes

While each of the members above has a correspond-
ing interface, it should be pointed out that only the
lowest level need be developed in order for the devel-
oper to extend the graphical representations for vector
features. For instance, if you wanted to design a new
class to draw point types, implementing the ISymbol is
sufficient, allowing it to use the pre-existing structure
of symbolizers, categories and schemes. The existing
symbol classes implement this interface and currently
control their own drawing. All of the point symbol
classes provide an offset, size and angle, but even char-
acteristics like color are not universal. A PictureSymbol
uses an image to control the drawing and has no infor-
mation about coloring, though it can have an outline.
A CharacterSymbol provides properties to control the
font family name, the style and the character. The Char-
acters can consist of artistically created symbol sets
which support vector drawing and so will look good
at any scale. A SimpleSymbol provides the most ba-
sic point symbology with an enumeration of default
shapes. This simply uses GDI+ drawing methods to
build the shapes programmatically.

Page 34 of 63

OSGeo Journal Volume 8 MapWindow 6.0

Line Symbology

Figure 4: Line Stroke Classes

The equivalent concept for lines uses the IStroke
interface. Each stroke represents a pass with a pen. At
the moment, there is a SimpleStroke and Cartographic-
Stroke. The simple stroke allows for a color, width and
dash pattern selected from an enumeration. It uses a
default choice of rounded end caps. The Catographic
stroke extends the capabilities of the simple stroke. It
adds a custom dash pattern, custom contour pattern,
line cap styles, and the ability to specify a number of
point symbols as decorations along the line. Since these
strokes are then layered one on top of the other, very
complex line structures are now possible. If, however,
a user wanted to design a new kind of stroke that was
designed entirely by point symbols drawn at fixed dis-
tances, it could be done easily by creating a plug-in
that implements the IStroke interface. Currently, the
drawing is handled by passing the GraphicsPath for
the lines to draw (after they have been translated to
screen coordinates) to each stroke in sequence where it
handles its own drawing using GDI+ graphics calls.

Polygon Symbology

The final set of descriptive symbols is for polygons. The
PolygonSymbolizer is slightly more complex than the
symbolizers for points or lines because in addition to
having a collection of patterns, it also specifies a line
symbolizer to use for drawing the borders. In this way,
we get to re-use the drawing code for the lines when
drawing the borders of the polygon. The individual
patterns include a SimplePattern that only specifies a
fill color. A PicturePattern is created using a collection
of tiled images. Finally a GradientPattern uses linear,
circular or rectangular gradients with various rotations
and colors. The gradient can be controlled programmat-
ically to work with many colors and positions (ranging
from 0 to 1).

These new cartographic capabilities give an extraor-

dinarily rich way to draw, color, or depict vector feature
content, but what is most innovative is that the sym-
bology itself is extensible. Raster symbology also ex-
ists, but is not tremendously different from techniques
dating back to earlier versions of MapWindow, where
several color breaks subdivide a raster.

Figure 5: Polygon Pattern Classes

User Interface Design

Figure 6: Point Symbolizer User Interface

Double clicking on the representation below the
layer automatically launches a complex dialog that al-
lows the customization of that symbol. As is illustrated
in Figure 3, a fairly straight forward collection of prop-
erties exists described on the Simple Properties tab.
A Drop-down currently set to ‘Simple’ controls what
elements appear in the tab control. The extensibility

Page 35 of 63

OSGeo Journal Volume 8 FOSS4G 2009 Conference Proceedings

allows new Symbol types to appear in this drop-down,
and, while still in the planning stages, we plan on sup-
porting a ISymbolUIEditor interface that allows users
to specify the exact layout of a tab control for editing
their custom symbol type chosen from the drop-down.
In such a case, the layering (shown in the graphical list
representations on the left side of the form) and content
in the placement group would be re-used as common
content, while new controls would appear where the
style, color and outline groups currently appear. Simi-
lar interfaces exist for specifying character and picture
symbols as well as all the types of stroke or pattern.

Discoverable Extension
It would be elegant for this paper if we could use ex-
amples of existing discoverable extension methods that
control properties on symbol classes in order to best il-
lustrate its usefulness in connection with an extensible
symbology. Unfortunately, these haven’t been writ-
ten yet. However, we can gain important insights by
drawing an analogy from an extensible data provider
interface instead. At the time of submitting this paper,
we have mostly begun using the extension methods for
adding topology methods to the IFeature. The original
intent of extension methods was to allow an easier way
to work with sealed enumerable classes when working
with System.Linq. The most common use of extension
methods is simply to extend an existing class without
changing it. However, the benefit that we have found
to be the most useful from an extensibility standpoint
is that we can make the interfaces that new developers
have to implement much leaner. For instance, an IFea-
ture currently specifies a coupling between vector in-
formation and attributes. This would be fairly straight
forward to implement. However, adding an apparently
simple new method called Intersects on this interface
would force every individual that only wanted to sup-
port a new data format to also implement their own
intersection code. Since topology methods are quite
advanced and require a sizeable infrastructure to draw
on, we chose to support the intersect behavior using ex-
tension methods. Any IFeature can now intersect with
another IFeature, though it must yield to the definition
provided by the extension method.

The danger of extension methods is that they can
only be replaced with ‘new’ functionality and can’t ever
be overridden. This means that if a feature class im-
plements its own Intersects logic, if an instance of that
class is cast as an IFeature interface, then it will call

the Intersects extension method, and not allow the new
logic to replace the built in logic.

Summary and Conclusions
Symbology is a critical part of feature representation,
but in both proprietary and open source GIS systems,
this fundamental aspect of the representation is seldom
extensible. The usual mechanism for managing exten-
sibility tends to be limited to allowing automation of
repetitive tasks, working well within the existing data
management, analysis and rendering architectures. The
extensible architecture used by this version of MapWin-
dow allows symbolizers to be discovered at run-time,
opening up a vast new domain for customization and
personalization of the open source framework. The
user interface design allows a coupling between cus-
tomizable forms and smart default controls that work
reasonably well even if no custom form is provided.
The difficulty of working with open ended interfaces
programmatically can largely be addressed by the in-
troduction of new extension methods that access or set
values. These extension methods can function at many
different levels.

Harold A. Dunsford Jr.
Department of Geosciences
Idaho State University
Idaho, USA
dunsharo@isu.edu

Daniel P. Ames P.E.
Department of Geosciences
Idaho State University
Idaho, USA
amesdani@isu.edu

Bibliography
[1] D. P. Ames. MapWinGIS Reference Manual: A function guide for the

free MapWindow GIS ActiveX component. Lulu.com, Morrisville,
North Carolina, 2007.

[2] H. Dunsford. Restructuring of the mapwindow gis project. Posi-
tionIT, April/May:54–59, 2009.

[3] H. Dunsford et al. Community code development: A new
paradigm for geospatial software in support of the data for en-
vironmental modeling(d4em) project. In AWRA Spring Specialty
Conference GIS and Water Resources V, San Mateo, California, 2008.

[4] Microsoft. Extension methods (c# programming guide). 2008.
URL http://msdn.microsoft.com/en-us/library/bb383977.

aspx.
[5] MSDN. Explicit interface implementation: C# program-

ming guide. 2008. URL http://msdn.microsoft.com/en-us/

library/ms173157.aspx.

Page 36 of 63

mailto:dunsharo@isu.edu
mailto:amesdani@isu.edu
http://msdn.microsoft.com/en-us/library/bb383977.aspx
http://msdn.microsoft.com/en-us/library/bb383977.aspx
http://msdn.microsoft.com/en-us/library/ms173157.aspx
http://msdn.microsoft.com/en-us/library/ms173157.aspx

This PDF article file is a sub-set from the larger

OSGeo Journal. For a complete set of articles

please the Journal web-site at:

http://osgeo.org/journal

http://osgeo.org/journal

Imprint
Editor in Chief:
Tyler Mitchell - tmitchell AT osgeo.org

Assistant Editor:
Landon Blake

Section Editors & Review Team:
Eli Adam
Daniel Ames
Dr. Franz-Josef Behr
Jason Fournier
Dimitris Kotzinos
Scott Mitchell
Barry Rowlingson
Jorge Sanz
Micha Silver
Dr. Rafal Wawer
Zachary Woolard

Acknowledgements
Daniel Holt, LATEX magic & layout support
Various reviewers & writers

The OSGeo Journal is a publication of the OSGeo Foundation. The base
of this journal, the LATEX 2εstyle source has been kindly provided by
the GRASS and R News editorial boards.

This work is licensed under the Creative Commons Attribution-No
Derivative Works 3.0 License. To view a copy of this licence, visit:
http://creativecommons.org/licenses/by-nd/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California 94105, USA.

All articles are copyrighted by the respective authors. Please use the
OSGeo Journal url for submitting articles, more details concerning
submission instructions can be found on the OSGeo homepage.

Journal online: http://www.osgeo.org/journal

OSGeo Homepage: http://www.osgeo.org

Mail contact through OSGeo, PO Box 4844, Williams Lake,
British Columbia, Canada, V2G 2V8

ISSN 1994-1897

mailto:tmitchell AT osgeo.org
http://creativecommons.org/licenses/by-nd/3.0/
http://www.osgeo.org/journal
http://www.osgeo.org

!"#$!%!&#

