

OSGeo Journal Volume 8

Volume 8 Contents

Editorial 2
From the Editor 2

News & Announcements 3
Brief News and Event Announcements from the

OSGeo Community 3
r.in.swisstopo . 5

Case Studies 8
An Image Request Application Using FOSS4G Tools 8

Integration Examples 10
Exporting Geospatial Data to Web Tiled Map Ser-

vices using GRASS GIS 10

FOSS4G 2009 Conference Proceedings 15
From the Academic Track Chair 15
Geoprocessing in the Clouds 17
Media Mapping 23
MapWindow 6.0 31
A Data System for Visualizing 4-D Atmospheric

CO2 Models and Data 37
Collaborative Web-Based Mapping of Real-Time

Flight Simulator and Sensor Data 48
A Modular Spatial Modeling Environment for GIS 53

From the Editor
OSGeo has just past its 5th
birthday, along with this 8th
volume of the OSGeo Journal!
With this edition we bring a
few news headlines from the
past couple months, a few
general articles and, most sig-
nificantly, several top papers
from the FOSS4G 2009 con-
ference event held in Sydney, Australia.

The Journal has become a diverse platform for sev-
eral groups and growth in each area is expected to con-
tinue. The key groups that read and contribute to the
Journal include software developers sharing informa-
tion about their projects or communities, power users
showing off their solutions, academia seeking to pub-
lish their research and observations in a peer-reviewed,
open source friendly medium. OSGeo also uses the
Journal to share community updates and the annual
reports of the organisation.

Welcome to those of you who are new to the OSGeo
Journal. Our Journal team and volunteer reviewers and
editors hope you enjoy this volume. We also invite you
to submit your own articles to any of our various sec-

tions. To submit an article, register as an "author" and
sign in at http://osgeo.org/ojs. Then when you log
in you will see an option to submit an article.1

We look forward to working with, and for, you in
the upcoming year. It’s sure to be an interesting year as
we see OSGeo, Open Source in general and all our relate
communities continue to grow. Nowhere else is this
growth more apparent than at our annual conference:
FOSS4G 2011 Denver, September, 2011.2 Keep an eye
on your OSGeo mailing lists, blogs and other feeds to
follow the latest FOSS4G announcements, including
the invitation to submit presentation proposals.3 It will
be as competitive as ever to get a speaking slot, so be
sure to make your title and abstract really stand out.

Wishing you the best for 2011 and hoping to see you
in Denver!

Tyler Mitchell
tmitchell@osgeo.org

Editor in chief, OSGeo Journal
Executive Director, OSGeo

1The direct URL for article submission is: https://www.osgeo.org/ojs/index.php/journal/author/submit
2FOSS4G 2011 Denver: http://2011.foss4g.org
3FOSS4G 2011 Abstract Submission: http://2011.foss4g.org/program

Page 2 of 63

http://osgeo.org/ojs
mailto:tmitchell@osgeo.org
https://www.osgeo.org/ojs/index.php/journal/author/submit
http://2011.foss4g.org
http://2011.foss4g.org/program

OSGeo Journal Volume 8 From the Academic Track Chair

FOSS4G 2009 Conference Proceedings

From the Academic Track Chair
Prof. Thierry Badard

The FOSS4G 2009 academic
track aimed to bring together
researchers, developers, users
and practitioners – all who
were carrying out research
and development in the free
and open source geospatial
fields and who were willing
to share original, recent devel-
opments and experiences.

The primary goal was to promote cooperative re-
search between OSGeo developers and academia, but
the academic track has also acted as an inventory of cur-
rent research topics. This track was the right forum to
highlight the most important research challenges and
trends in the domain and let them become the basis
for an informal OSGeo research agenda. It has fostered
interdisciplinary discussions in all aspects of the free
and open source geospatial domains. It was organized
to promote networking between the participants, to
initiate and favour discussions regarding cutting-edge
technologies in the field, to exchange research ideas
and to promote international collaboration.

In addition to the OSGeo Foundation23, the ICA (In-
ternational Cartographic Association) working group
on open source geospatial technologies24) was proud
to support the organisation of the track.

The coordinators sought to gather paper submis-
sions globally that addressed theoretical, technical, and
practical topics related to the free and open source
geospatial domain. Suggested topics included, but
were not limited to, the following:

• State of the art developments in Open Source GIS
• Open Source GIS in Education
• Interoperability and standards - OGC, ISO/TC 211,

Metadata
• Spatial Data Infrastructures and Service Oriented Ar-

chitectures
• Free and open source Web Mapping, Web GIS and

Web processing services
• Cartography and advanced styling
• Earth Observation and remote sensing
• Spatial and Spatio-temporal data, analysis and inte-

gration
• Free and Open Source GIS application use cases in

Government, Participatory GIS, Location based ser-
vices, Health, Energy, Water, Urban and Environmen-
tal Planning, Climate change, etc.

In response to the call for papers, 25 articles were
submitted to the academic track. The submissions were
highly diversified, and came from USA, Canada, Thai-
land, Japan, South Korea, Sri Lanka, Australia, New
Zealand, Italy, Denmark, France, Germany, Switzer-
land, Romania and Turkey. Selection of submissions
were based on the full papers received. All submis-
sions were thoroughly peer reviewed by two to three
members of the international scientific committee and
refereed for their quality, originality and relevance. The
scientific committee selected 12 papers (48% acceptance
rate) for presentation at the FOSS4G 2009 conference.
From those, 6 papers were accepted for presentation
in the proceedings of the academic track, which are
published in this volume of the OSGeo Journal. They
correspond to the 6 best papers assessed by the interna-
tional scientific committee.

The accepted and published papers covered a wide
23OSGeo: Open Source Geospatial Foundation: http://osgeo.org
24ICA open source working group: http://ica-opensource.scg.ulaval.ca/

Page 15 of 63

http://osgeo.org
http://ica-opensource.scg.ulaval.ca/

OSGeo Journal Volume 8 FOSS4G 2009 Conference Proceedings

range of cutting-edge research topics and novel applica-
tions on Free and Open Source Geospatial technologies.
I am particularly proud and happy to see some very
high quality scientific contributions published in the
OSGeo Journal. This will undoubtedly encourage more
interesting research to be published in this volume, as
our OSGeo journal is an open access journal. In addi-
tion, it helps draw attention to this important project of
the OSGeo Foundation. I hope the publication of these
proceedings in the OSGeo journal will encourage fu-
ture scientists, researchers and members of academia to
consider the OSGeo Journal as an increasingly valuable
place to publish their research works and case studies.

As a concluding note, I would like to take the op-
portunity to thank the individuals and institutions that
made the FOSS4G 2009 academic track possible. First,

I would like to thank the international scientific com-
mittee members and external reviewers for evaluating
the assigned papers in a timely and professional man-
ner. Next, I would like to recognize the tremendous
efforts put forward by members of the local organis-
ing committee of FOSS4G 2009 for accommodating and
supporting the academic track. Finally, I want to thank
the authors for their contributions, efforts, patience and
support that made this academic track a huge success.

January, 2011
Prof. Thierry Badard
Laval University, Canada
Chair, FOSS4G 2009 Academic Track
Co-chair, ICA Working Group on Open Source Geospatial Tech-
nologies

Page 16 of 63

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

A Modular Spatial Modeling Environment
for GIS
Brian Marchionni & Daniel Ames, Idaho State University

Abstract
Development of an open source modeling environment
for use with spatial-temporal data in a Geographic In-
formation System (GIS) is presented. MapWindow GIS,
a free and open source desktop GIS, has been used
extensively in watershed modeling and is the under-
lying engine of the U.S. EPA BASINS system. To date,
legacy versions of MapWindow have lacked an inte-
grated modeling environment suitable for linking to-
gether geospatial and temporal independent processes
at a granular level. Development efforts focused on
creating an extensible graphical, open source modeling
environment with easy to use programming objects.

This development was made possible due to the
new design of the MapWindow GIS 6 project. This new
modeling environment allows users and developers
to easily create models which can take advantage of
spatial and temporal data objects and analytical tools.
The design approach involves the extensive use of in-
terfaces, which are essentially skeleton programming
tools that detail how an object programmatically inter-
acts with other objects, but not necessarily how it works
internally. By using interfaces, the new MapWindow
GIS modeler makes it relatively simple to take existing
modeling processes, wrap them in an appropriate in-
terface, and execute them as part of a more complex
model.

The central underlying design consideration of the
newest version of MapWindow GIS was to keep the
entire project as modular as possible, this has been
extended to encapsulate the development efforts of
the modeler as well. The new modeling environment
allows developers to automatically generate user in-
terfaces for their processes. Because all tools in the
MapWindow modeler must implement the same inter-
face, developers wishing to use a tool directly in their
own application need not add the graphical modeler if
they do not so desire.

MapWindow GIS 6 and the modeler are entirely de-
veloped using the Microsoft .NET Framework which
allows it to be run on a variety of operating systems
including Windows, Linux or OS X (via the Mono com-
piler).

Introduction
The goal of the project described here was to create a
cutting edge open source modeling environment that

worked within the Microsoft .Net framework and con-
tained both a graphical user interface and easy to use
programming object. The project was designed to run
along side the next generation of the MapWindow
project, MapWindow GIS 6. MapWindow GIS 4 is the
current version of the project and is under continued de-
velopment at Idaho State University in the Department
of Geosciences. MapWindow GIS 5 was a short-lived
prototype project that was never released publicly.

Originally developed at Utah State University, and
now maintained primarily at Idaho State University
with an international development team, MapWindow
GIS is a free and open source software project that is
downloaded over 6000 times per month. It has an ac-
tive community of users and developers on the Map-
Window.org web site. The community collaborates on
making updates and introducing new features.

The existing project is divided into two components:
the MapWindow GIS desktop application, and the Ac-
tiveX map control. These two components work to-
gether to form the entire project. This modularity al-
lows the ActiveX control to be used in other stand alone
applications as well as within the main MapWindow
GIS desktop application. (1)

The need to develop a modeling environment arose
from other developments in the GIS community. A
general need to simplify the task of using spatial and
temporal processes had been brought forward by many
MapWindow users and by several other communities
who are using the MapWindow components in their
own projects. Furthermore, the use of modeling in a
GIS environment has been suggested by several other
researchers including Xie and Brown in their 2007 pa-
per noting, ’simulation in spatial analysis and modeling
has been one of the key approaches of many researchers
of GeoComputation’ (9).

The modeler requirements are closely tied to other
developments in the MapWindow 6 project and in-
clude:

• all user interfaces need to be as simple to use and as
well documented as possible;

• users should need no programming experience to
use the software;

• the software must have high portability: software
should work on many different systems including
MS Windows, Linux and Macintosh OS X;

• the code needs to be highly extensible and reusable;
• the code should be easy to maintain for new devel-

opers.

The modeling environment should also be designed
such that it can be integrated into other applications

Page 53 of 63

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

with minimal dependency on external libraries, includ-
ing the MapWindow library itself. Since the design of
MapWindow GIS 6 was well underway at the time of
the modeling environment’s conception, it was decided
that components and data types from this new architec-
ture would be used because of the advantages that it
afforded, including being memory managed and highly
extensible. The data types are not directly link to their
sources, which allows many different data formats to
be present as a single data type.

MapWindow GIS 6

MapWindow GIS 6 is the next generation of the Map-
Window open source project. Early in the planning
stages of MapWindow GIS 6 it became apparent that
the technology behind the original MapWindow Ac-
tiveX map component would not be capable of meeting
all of the new project’s requirements. Specifically since
the original code was written as a Microsoft COM ob-
ject it could never be cross platform compatible. For
this reason it was decided that a complete rewrite of
the map component would be required.

The design of the new architecture focused on an ex-
tremely modular system using class interfaces. Figure 1
highlights the interface architecture of MapWindow
GIS 6. This design allows for any single component to
be replaced by another component that uses the same
interface. This design stemmed from the successful
plug-ins methodology from the original MapWindow
GIS 4 that allowed third party developers to extend the
functionality of the application by writing their own
class which implements the plug-in class interface (2).
The improvement presented in MapWindow GIS 6 is
that this interface based architecture is extended to ev-
ery modular component of the architecture and not just
to plug-ins.

Figure 1: MapWindow GIS 6 Architecture

The MapWindow Modeler Project

Project Requirements
The MapWindow Modeler environment has been de-
veloped specifically to meet the requirements of several
use cases identified by the United States Environmental
Protection Agency (EPA) Data for Environmental Mod-
eling (D4EM) project. Some of the key requirements
and constraints of the system are defined as follow:

• the tool should be written in Microsoft .NET so that
it can be ported to Windows Mobile and Mono for
Linux;

• the available tools and available data types should
be extensible;

• the tool should integrate both spatial and temporal
components;

• the tool should be easy to use for end users;
• the tool should be compatible with existing versions

of MapWindow GIS;
• the tool should be robust and easy for new develop-

ers to add to and enhance.

Several existing open source projects were identified
to see if they could meet the requirements for a model-
ing tool for MapWindow. Sextante (7) meets some of
the requirements, however it lacks temporal data type
support and is written in the Java language and hence
would not meet the requirement of being written in Mi-
crosoft .NET. No other open source modeling products
that were available were written in Microsoft .NET and
could handle both spatial and temporal data interac-
tion. The OpenMI system (4) was examined, but it too
failed to meet all of the requirements of the system as
its scope was well beyond a simple graphical tool for
linking spatial and temporal processes, but rather is
designed to link larger complex models.

Use Cases
There are three primary use cases for the modeling en-
vironment. The first covers the modelers’ use while
integrated into MapWindow GIS 6. In this mode a stan-
dard extension to the MapWindow GIS 6 desktop appli-
cation will include the modeling environment. These
two environments are tightly linked to allow data from
the MapWindow GIS 6 map component to be added
seamlessly from the modeler, and conversely they allow
data from the map to be used in models. The second
use case involves integration with the legacy code of
MapWindow GIS 4. This is similar to integration with
version 6 of MapWindow, but only a specific subset of
the data will be made available to the MapWindow GIS
4 application because of format compatibility issues.
The final use case covers using the modeler as a stand
alone component for use in third party applications.
Since all possible uses of the modeler in other appli-

Page 54 of 63

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

cations cannot be considered, the modeler must be as
versatile and customizable as possible.

Software Design Technique

Since many different users and developers will be work-
ing with the system, the initial design specifications
needed to be well defined at the outset. Once this ini-
tial design was completed a small group of developers
created a set of simple tools to test the general design. It
was at this stage that critical modifications were made
to the design to address specific problems that develop-
ers and users were facing.

The rapid prototyping development technique al-
lowed for feedback from testers and other developers
while ensuring a quick time to deployment. Initial de-
velopment efforts took only six months. Once this criti-
cal initial development stage was completed the second
phase continued until such time as all parties involved
were satisfied with the resulting architecture. Once
completed most major design considerations were done
and the overall architecture finalized. While changes
can still be made at this point they must take into ac-
count the existence of other dependant components
that need to be integrated and cannot have their func-
tionality impaired. For example, if a new version of an
interface is created once this second stage of develop-
ment is completed, it must ensure that any components
using the already existing interface must continue to
function seamlessly.

This second stage of development is potentially the
most important. Feedback from developers creating
tools that will ensure the ease of use of the interface for
new developers wishing to create tools or data types
for the system.

Software Design

Modeler Design

The MapWindow modeler is composed of two inter-
related parts: the ToolManager and the Modeler. The
ToolManager lists all of the available tools to the user
while also providing access to tools in the Modeler. The
Modeler displays, loads, saves, and executes models in
a graphical environment.

The Modeler and ToolManager itself are actually
.NET form components. Like other programming ob-
jects in the .NET environment they have a graphical
representation that allows programmers to drag and
drop it onto a form without writing any code. This
greatly reduces the time needed for programmers to
develop an application that uses the modeler. Figure 2
shows the class diagram on the ToolManager and Mod-
eler. Many of the classes are interdependent and used
by both components. Figure 3 shows an instance of the
ToolManager on the left running within MapWindow

6 displaying the tools it has found, and the Modeler
on the right displaying a simple model containing one
tool.

Figure 3: The ToolManager and Modeler running with Map-
Window 6 on Microsoft Windows

Building for Extensibility
Since the use cases for the modeler cover many different
applications it was imperative that the modeler be de-
signed such that it can be extended in several different
ways, such as:

• tool definitions;
• parameter definitions;
• user interface representation of parameter defini-

tions.

To allow each of these areas to be expanded upon, sev-
eral programming concepts needed to be employed.
These concepts are widely used through the architec-
ture of MapWindow GIS 6 so programmers familiar
with this environment can more easily add functional-
ity to the modeler.

To accomplish this, a class interface was defined
for tool definitions and parameter definitions called
ITool and IParameter, respectively. Using interfaces,
blank class templates which programmers can popu-
late with functions (5), allows developers to rapidly
develop software which implements the needed opera-
tions of software they are interacting with (3). ’A well-
recognized method for reducing program complexity
involves structuring the model as a set of distinct mod-
ules with well-defined interfaces’ (6).

Since tools and parameter types can be generated
in a variety of different ways, the Modeler never loads
ITools or IParameters from disk directly; rather, it relies
on a ToolManager to handle loading, and instantiating
tools, and parameter types as needed. The ToolMan-
ager loads tools by scanning specified folders for as-
semblies that implement the IToolProvider interface.
Once a class that implements this interface is found,
it is instantiated and queried for a list of the tools it

Page 55 of 63

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

Figure 2: The ToolManager and Modeler class diagram

is capable of providing. This allows tool providers to
create tools from a wide variety of sources. A default
tool provider is included in the ToolManager. This tool
provider scans specified folders for assemblies which
implement the ITool interface directly. Loading of pa-
rameter definitions and their user interface is also done
the same way with the ToolManager looking for assem-
blies that implement the IParameterProvider interface,
and a default provider which scans for IParameter im-
plementing assemblies.

The ITool and IToolProvider Interfaces

The goal of the ITool interface is to remove the burden
of creating a user interface and maintaining tool interop-
erability from the tool developer. Developers designing
tools need only implement the ITool interface when de-

signing their tool, and the ToolManager generates the
graphical user interface automatically for them when
the tool is instantiated. The ITool interface contains
several properties which are read by the ToolManager
when the tool is first detected and instantiated.

The Name, UniqueName, Category and Version
properties on the ITool interface are used by the Tool-
Manager to identify the tool and are require for a tool
to be loaded, if any of these fields are missing the tool
will not be added to the toolbox. HelpText, HelpIm-
age, HelpURL, Author, Icon and ToolTip are used to
populate related parts of the graphical user interface
on behalf on the developer. These are optional and
ignored if they return null.

The InputParameters and OutputParameters prop-
erties return arrays of type IParameter, which are used
by the ToolManager and Modeler to execute tools, and

Page 56 of 63

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

populate user interface dialogs with appropriate graph-
ical components. When a tool is instantiated for excu-
tion, the initialize method is called first, allowing the
tool to populate its InputParameters array with blank
parameters. Then, as the user modifies inputs in the
array, the ParameterChanged method is called allowing
tool developers to create inputs which are dependent
on changes to other inputs. Finally when the tool is
ready to be run the Execute method is called. The re-
sult of this execution is stored in the OutputParameters
array and can be transmitted to the next tool by refer-
ence or saved to disk as needed. Figure 4 displays the
methods and properties of the ITool interface.

Figure 4: The methods and properties of the ITool interface

Figure 5 illustrates the form that is automatically
generated when the Inverse Distance Weighting tool
is created. Note the help text on the right is automati-
cally displayed when the user highlights a particular
input parameter. Status lights on the left side of the
parameter field display the parameters’ validity. The
ITool interface contains all the information necessary
for running and displaying a tool.

The IToolProvider interface allows tools to be gen-
erated in a wide variety of ways. While the default
ToolProvider searches folders for assemblies that con-
tain ITools, there are many other ways that tools could
be generated. For example, a ToolProvider could con-

nect to a Web Processing Service, get a list of available
tools, and then generate a corresponding set of ITools
which would then be in charge of instantiating for the
ToolManager.

Figure 5: The Inverse Distance Weighting tool dialog running
in Window

Tools can also be generated by the Modeler. This is
done by saving the model which includes several tools
to a XML file which are then recognized by ToolMan-
ager as a stand alone Tool. These tools, when called
to be executed by the ToolManager will create a new
instance of the Modeler, load the saved model and exe-
cute it seamlessly as if it were a single tool. This new
tool will run as long as each of the Tools used to create
the model are available to the ToolManager at execution
time.

The IParameter Interfaces

Parameters are the input and output of a tool and need
to be defined so that they can have an appropriate vi-
sual representation. For example, a numerical parame-
ter should allow for a minimum and maximum value to
be specified in order to limit the users’ input to a certain
range. It should also be capable of specifying a default
value and be represented on the tool dialog by a text
box that will only accept numerical values. This can be
accomplished by creating a parameter object that speci-
fies these constraints and contains a control object that
represents how the parameter should be represented in
the tool dialog.

The IParameter interface consists of several proper-
ties which are used by the ToolManager and Modeler
to identify the parameter type. The DefaultSpecified
property is used to determine if a tool developer has
specified a value to be used as default. The HelpImage
and HelpText properties are used to populate the help
area on the right hand side of the automatically gener-
ated tool dialog. ModelName is used by the modeler
to store a unique identifier for a particular instance of
a tool. Name is used to identify the parameter input
in the tooldialog. The ParamType property returns a
string which is used to identify the parameter’s type

Page 57 of 63

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

and determine if it is compatible with another tool’s
input. ParamVisible is used on input parameters to
determine if they will be graphically displayed in the
Modeler. Finally the Value property contains the actual
parameters value.

Figure 6: The properties, methods and events of the IParame-
ter interface

The clone and copy methods are inherited from
the ICloneable class and are used for creating tempo-
rary instances of the Parameter when editing values
so that if the user cancels without saving his changes
they will not affect the underlying objects. GenerateDe-
faultOutput populates a parameter with a basic value
such that the model can be run. InputDialogElement
and OutputDialogElement return an instance of the ap-
propriate graphical representation of the parameter for
inputs and outputs respectively. OnValueChanged is
called when then parameters value have been modified
and fires the ValueChanged event, which is then used
to notify the IParameter’s parent ITool that its value

has been modified by calling the ParameterChanged
method. Figure 6 displays the IParameter Interface
including its properties, methods and events.

Figure 7: The IParameter base element as it appears in the
Microsoft Visual Studio designer. The base component is
never seen in the modeler

Figure 8: The List Parameter input element as it appears in
the Microsoft Visual Studio designer

Figure 7 displays the IParameter base graphical user
interface, which all parameters must return when the In-
putDialogElement or OutputDialogElement are called.
Figure 8 displays the List Parameter component which
implements the IParameter interface. IParameters are
responsible for generating two graphical components,
one for input and one for output parameter configura-
tions. This ensures that parameters act differently for
inputs and outputs.

Tool and Model Execution

There are two different ways that a tool can be exe-
cuted, either from the ToolManager or from the Mod-
eler. To execute tools from the ToolManager, a user
double clicks the tool’s name to create a tool dialog
populated with the tool’s inputs and outputs. Next
they populate these fields and then press the ok button.
The ToolManager, then calls the Execute method on the
tool and displays a progress dialog box.

The modeler executes tools in a similar way. The
user drags and drops tools from the ToolManager into
the Modeler and links them together by dragging link
lines. Internally the Modeler creates association be-
tween the relevant input and output parameters. The
user can then modify a tool’s parameters by double
clicking on the tool’s graphical representation to access
the corresponding tool dialog. Once the model is con-
figured the user clicks the Modeler’s execute button
which begins the model’s execution.

Once a tool is called to be executed, either from the
ToolManager or integrated into a model, a background
thread is started to carry out the tool’s execution. In the
modeler, tools that are not ready to be executed because
they depend on other tools are queued while tools that
are ready to be executed are assigned to a thread and
executed. Queued tools are then reviewed as executing
tools complete. A separated thread is used to ensure
that the tool progress dialog remains responsive to user
activity. Messages from the background thread are re-
layed to the foreground progress dialog thread to allow
progress indicators to be updated by the tool. Figure 9

Page 58 of 63

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

displays the progress indicator form running a tool. In
the event of user cancellation, tools are responsible for
cleanly exiting.

Figure 9: Progress indicator dialog

Modeler Architecture Overview
The Modeler and ToolManager are intentionaly mod-
ular, and any single component can be replaced with
another, which satisfies the interface requirements of
that component. Not all components are necessary for
the entire environment to work. If, for example, the
Modeler was not included in a project because it was
not needed, the ToolManager could be included by it-
self as a visual component or as a instantiated object
invisible to the end user. This high level of interchanga-
bility ensures that the components of the modeling
environment can be used to meet the widest ranges of
developer needs.

Figure 10: MapWindow Modeler Architecture

Figure 10 displays the overall architechture of the
entire MapWindow Modeling project. At the highest
level is the Modeler which can be used graphically
and programmatically to load, link and execute tools.
The Modeler requests instances of tools from the Tool-
Manager which is capable of creating instances of tools

and passing them to the Modeler or executing them
directly. The ToolManager can load tools using the
IToolProvider interface from the Default ToolProvider
or from Third Party ToolProviders. The Default Tool-
Provider can load tools from assemblies which imple-
ment the ITool interface directly. Finally third party
applications can use any of the MapWindow Modeler
components in their own code or they can link directly
to Tool or ToolProviders assemblies.

Modeling Environment Comparison
and Case Study
The MapWindow Modeler user interface works much
like the user interface of the ArcGIS ModelBuilder
and gvSIG Sextante Modeler. All three environments
present a graphical user interface that allows the user
to use the mouse to drag model components from a
list into the modeling area where it is represented by
a square or circle. In all three environments double
clicking on a model element such as a tool or data item,
opens a dialog box with options relating to the element.
The forms have slightly different appearance but the
same functionality. All three environments have help
text available to guide the user when configuring a
model’s elements.

A common task that is often performed when deal-
ing with flood data sets is the delineation of watersheds
from raster elevation data. One of the first steps of this
process is the generation of raster stream data (8). The
initial digital elevation model (DEM) data often con-
tains artifacts referred to as pits; these pits can interfere
with the stream delineation process and are usually
eliminated by using a pit filling algorithm.

Next the flow direction of the elevation data is calcu-
lated. Flow direction calculates the direction in which
a drop of water entering a cell would flow. A flow
accumulation layer is created next, that calculates the
total number of cells which flow into every cell of a
raster. Finally the flow accumulation data is reclassified
into a Boolean mask where 1 represents cells that have
sufficient flow accumulation to be considered a stream
and 0 for cells that do not.

This model was created in the ESRI ArcGIS Model-
Builder, the gvSIG Sextante Modeler and in the Map-
Window Modeler. Figure 11 illustrates the model as it
appears in the ArcGIS ModelBuilder modeling environ-
ment (top), in the Sextante Modeler (middle) and in the
MapWindow GIS Modeler (bottom). Note that because
of differences in the way the processes work internally,
they may produce different outputs. Also note that in
some cases different tools had to be used because the
exact same tools do not exist in all of the environments.
For example the Reclassify tool was used in the ArcGIS
model and Sextante model while the raster threshold
tool was used in the MapWindow model. In some cases

Page 59 of 63

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

a single tool in one environment is capable of produc-
ing the same result as two or more tools in another,
such as the Flow Accumulation tool in the Sextante tool
which produces the same result as the D8 and Flow
path tools in the MapWindow model. Also note that
the Sextante model does not show the intermediate or
output data in its model only the input data and model
processes.

Figure 12 shows the final delineated stream data as
created by the ArcGIS ModelBuilder and displayed in
the ArcMap (top), as created by the Sextante Modeler
and displayed in gvSIG (middle) and as created by the
MapWindow Modeler and displayed in MapWindow
GIS (bottom). Note that the DEM appears differently
in MapWindow GIS as its default elevation symbolizer
uses a hill-shading technique.

Figure 11: The stream delineation model as it appears in: (top)
the ArcGIS ModelBuilder, (middle) the Sextante Modeler, and
(bottom) the MapWindow Modeler

Figure 13 shows the results of the three models
when overlaid together above the original DEM, note
that only small differences exist between the three mod-
els, while the general trend of the stream is preserved
between them. These slight discrepancies in the vari-
ous models’ results are to be expected given that they
each implement slightly different algorithms to achieve
their result. The run time of the ArcGIS Modeler was 14
minutes 35 seconds, the run time of the Sextante Mod-
eler was 24 minutes 9 seconds while the run time of the
MapWindow Modeler was 22 minutes 33 seconds. The
process which took the longest time in all three cases
was the pit fill algorithm. It is also responsible for the
large discrepancies in times between the three models.

Figure 12: Final stream delineation and original DEM as
display in: (top) ArcMAP and produced with ArcGIS Model-
Builder, (middle) gvSIG and produced with Sextante Modeler,
(bottom) MapWindow GIS and produced with MapWindow
Modeler

Page 60 of 63

OSGeo Journal Volume 8 FOSS4G 2009 Conference Proceedings

Figure 13: The results of the three models overlaid above the original. Green is the top layer and is the result of the ArcGIS
ModelBuilder, Purple the result of the Sextante Modeler and blue the result of the MapWindow Modeler.

Discussion and Conclusions

The MapWindow GIS Modeler is a versatile model-
ing environment, which can handle many different
data types. It executes models in similar time to other
GIS modeling environments and faster than other open
source ones. Due to its modular and extensible archi-
tecture it can use tools of many different designs. The
design flexibility not only allows tools to function in a
wide variety of different ways, but it allows tools and
their associated parameters to be generated from any
number of sources. Its ease of use for end users and
developers, as well as its integration with MapWindow
GIS 6 and MapWindow GIS 4, ensures that the widest
range of users will have access to the program. By
building on the successful design of previous genera-
tions of MapWindow GIS, the MapWindow Modeler
benefits from all of the development expertise, keeping
the designs that were the most effective while eliminat-
ing some of the more constrictive problems. It is one
more tool available to both developers looking to create
new modeling tools and end users wishing to create
models with such tools.

Brian Marchionni & Daniel Ames,
Idaho State University
marcbria@isu.edu

dan.ames@isu.edu

Bibliography
[1] D. Ames. MapWinGIS Reference Manual: A function guide for the free

MapWindow GIS ActiveX map component. Lulu.com, Morrisville,
North Carolina, 2007.

[2] D. Ames, C. Michaelis, and T. Dunsford. Introducing the map-
window gis project. The Journal of the Open Source Geospatial
Foundation, 2:13–16, 2007.

[3] S. Greenberg. Toolkits and interface creativity. Multimedia Tools
and Applications, 32(2):139–159, 2007.

[4] J. B. Gregersen, P. J. A. Gijsbers, and S. J. P. Westen. Openmi:
Open modelling interface. Journal of Hydroinformatics, 9(3):175–
191, 2007.

[5] L. Liquori and A. Spiwack. Extending feathertrait java with
interfaces. Theoretical Computer Science, 398(1-3):243–260, 2008.

[6] T. Maxwell. A paris-model approach to modular simulation.
Environmental Modelling & Software, 14(6):511–517, 1999.

[7] V. Olaya and J. C. Gimenez. SEXTANTE: a gvSIG-based platform for
geographical analysis. Free and Open Source Software for Geospa-
tial, Victoria, Canada, 2007.

[8] K. L. Verdin and J. P. Verdin. A topological system for delineation
and codification of the earth’s river basins. Journal of Hydrology,
218(1-2):1–12, 1999.

[9] Y. Xie and D. G. Brown. Simulation in spatial analysis and mod-
eling. Computers, Environment and Urban Systems, 31(3):229–231,
2007.

Page 61 of 63

mailto:marcbria@isu.edu
mailto:dan.ames@isu.edu

This PDF article file is a sub-set from the larger

OSGeo Journal. For a complete set of articles

please the Journal web-site at:

http://osgeo.org/journal

http://osgeo.org/journal

Imprint
Editor in Chief:
Tyler Mitchell - tmitchell AT osgeo.org

Assistant Editor:
Landon Blake

Section Editors & Review Team:
Eli Adam
Daniel Ames
Dr. Franz-Josef Behr
Jason Fournier
Dimitris Kotzinos
Scott Mitchell
Barry Rowlingson
Jorge Sanz
Micha Silver
Dr. Rafal Wawer
Zachary Woolard

Acknowledgements
Daniel Holt, LATEX magic & layout support
Various reviewers & writers

The OSGeo Journal is a publication of the OSGeo Foundation. The base
of this journal, the LATEX 2εstyle source has been kindly provided by
the GRASS and R News editorial boards.

This work is licensed under the Creative Commons Attribution-No
Derivative Works 3.0 License. To view a copy of this licence, visit:
http://creativecommons.org/licenses/by-nd/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California 94105, USA.

All articles are copyrighted by the respective authors. Please use the
OSGeo Journal url for submitting articles, more details concerning
submission instructions can be found on the OSGeo homepage.

Journal online: http://www.osgeo.org/journal

OSGeo Homepage: http://www.osgeo.org

Mail contact through OSGeo, PO Box 4844, Williams Lake,
British Columbia, Canada, V2G 2V8

ISSN 1994-1897

mailto:tmitchell AT osgeo.org
http://creativecommons.org/licenses/by-nd/3.0/
http://www.osgeo.org/journal
http://www.osgeo.org

!"#$!%!&#

