

OSGeo Journal Volume 8

Volume 8 Contents

Editorial 2
From the Editor 2

News & Announcements 3
Brief News and Event Announcements from the

OSGeo Community 3
r.in.swisstopo . 5

Case Studies 8
An Image Request Application Using FOSS4G Tools 8

Integration Examples 10
Exporting Geospatial Data to Web Tiled Map Ser-

vices using GRASS GIS 10

FOSS4G 2009 Conference Proceedings 15
From the Academic Track Chair 15
Geoprocessing in the Clouds 17
Media Mapping 23
MapWindow 6.0 31
A Data System for Visualizing 4-D Atmospheric

CO2 Models and Data 37
Collaborative Web-Based Mapping of Real-Time

Flight Simulator and Sensor Data 48
A Modular Spatial Modeling Environment for GIS 54

From the Editor
OSGeo has just past its 5th
birthday, along with this 8th
volume of the OSGeo Journal!
With this edition we bring a
few news headlines from the
past couple months, a few
general articles and, most sig-
nificantly, several top papers
from the FOSS4G 2009 con-
ference event held in Sydney, Australia.

The Journal has become a diverse platform for sev-
eral groups and growth in each area is expected to con-
tinue. The key groups that read and contribute to the
Journal include software developers sharing informa-
tion about their projects or communities, power users
showing off their solutions, academia seeking to pub-
lish their research and observations in a peer-reviewed,
open source friendly medium. OSGeo also uses the
Journal to share community updates and the annual
reports of the organisation.

Welcome to those of you who are new to the OSGeo
Journal. Our Journal team and volunteer reviewers and
editors hope you enjoy this volume. We also invite you
to submit your own articles to any of our various sec-

tions. To submit an article, register as an "author" and
sign in at http://osgeo.org/ojs. Then when you log
in you will see an option to submit an article.1

We look forward to working with, and for, you in
the upcoming year. It’s sure to be an interesting year as
we see OSGeo, Open Source in general and all our relate
communities continue to grow. Nowhere else is this
growth more apparent than at our annual conference:
FOSS4G 2011 Denver, September, 2011.2 Keep an eye
on your OSGeo mailing lists, blogs and other feeds to
follow the latest FOSS4G announcements, including
the invitation to submit presentation proposals.3 It will
be as competitive as ever to get a speaking slot, so be
sure to make your title and abstract really stand out.

Wishing you the best for 2011 and hoping to see you
in Denver!

Tyler Mitchell
tmitchell@osgeo.org

Editor in chief, OSGeo Journal
Executive Director, OSGeo

1The direct URL for article submission is: https://www.osgeo.org/ojs/index.php/journal/author/submit
2FOSS4G 2011 Denver: http://2011.foss4g.org
3FOSS4G 2011 Abstract Submission: http://2011.foss4g.org/program

Page 2 of 64

http://osgeo.org/ojs
mailto:tmitchell@osgeo.org
https://www.osgeo.org/ojs/index.php/journal/author/submit
http://2011.foss4g.org
http://2011.foss4g.org/program

OSGeo Journal Volume 8 Brief News and Event Announcements from the OSGeo Community

News & Announcements

Brief News and Event Announcements
from the OSGeo Community
Compiled by Scott Mitchell

To keep abreast of OSGeo news, watch
http://www.osgeo.org/news, or subscribe to its RSS
feed. This report includes highlights from recent
months, plus items specifically sent to the News Editor.

OSGeo Governance
Charter member elections
On 12 December 2010, Chief Returning Officer Paul
Ramsey announced the election of 10 new OSGeo
charter members. This membership votes for and is
drawn from for the OSGeo board of directors. The new
members are Maria Brovelli, Jo Cook, Astrid Emde,
Gavin Fleming, Danilo Furtado, Anne Ghisla, Hirofumi
Hayashi, Andreas Hocevar, Alex Mandel, and Milena
Nowotarska. Congratulations and thanks to all of the
new members.

Conferences and Meetings
FOSS4G Denver 2011 Call For Papers
Paper submissions have been solicited for regular and
academic tracks at the upcoming FOSS4G conference
(September 12-16). The submission deadline is April 15
for both the academic and regular tracks. Full details
are available at the conference web site.4

FOSSGIS 2011 - Heidelberg
FOSSGIS, hosted by the German Local Chapter of
OSGeo, is “the German language sibling of FOSS4G” -

this year it will be held in Heidelberg from 5-7 April.
Most talks will be in German, and there will be an exhi-
bition and trade fair of service providers. More details
can be found at the chapter’s wiki page on the topic.5

Bolsena Hacking Event 2011

Those monastic coders are at it again! The fourth
OSGeo hacking event in a monastery in Bolsena, Italy
will occur from 19 to 25 June, 2011. The venue is beauti-
ful and has great facilities, with all meals for the week
provided. There is limited space, however (25 beds), so
if you are interested in joining, you are encouraged to
sign up soon at the event’s wiki page.6

Montreal Code Sprint

An OSGeo code sprint is about to occur in Mon-
treal, Canada, from March 15-18 at the Communauté
Métropolitaine de Montréal. Many participants and
sponsors have signed up, but there is still room for
more. All OSGeo projects and tribes are welcome and
encouraged to join in. More details, links to a mailing
list, and a signup page are available from the event’s
wiki page.7

Local OSGeo groups
The OSGeo Japan chapter has received the “Japanese
OSS Encouragement Award” prize from the IT Pro-
motion Agency, a Japanese government agency. This
award is granted to developers that establish and man-
age influential projects, superior developers that take

4FOSS4G Denver Call for Papers: http://2011.foss4g.org/blog/2011/2/3/call-for-presentations-under-way.html
5FOSSGIS 2011 - Heidelberg: http://www.fossgis.de/konferenz/wiki/Main_Page
6Bolsena Hacking Event 2011: http://wiki.osgeo.org/wiki/Bolsena_Code_Sprint_2011
7Montreal Code Sprint: http://wiki.osgeo.org/wiki/Montreal_Code_Sprint_2011

Page 3 of 64

http://www.osgeo.org/news
http://2011.foss4g.org/blog/2011/2/3/call-for-presentations-under-way.html
http://www.fossgis.de/konferenz/wiki/Main_Page
http://wiki.osgeo.org/wiki/Bolsena_Code_Sprint_2011
http://wiki.osgeo.org/wiki/Montreal_Code_Sprint_2011

OSGeo Journal Volume 8 News & Announcements

active roles in global projects, and remarkable contribu-
tors to the spread of open source software. The Japan
chapter has been active since its formation in late 2006.8

OSGeo Collaboration

Centre for Geospatial Science and OSGeo
sign MoU

On the 22nd of September, OSGeo and the Centre for
Geospatial Science (CGS) at University of Nottingham
announced the signing of a memorandum of under-
standing to create an Open Source Geospatial Lab, and
to further develop collaborations between academics,
industry, and governmental organisations involved in
open source GIS and spatial data in the United King-
dom. Arnulf Christl, President of OSGeo, and Tyler
Mitchell, Executive Director, have both made it clear
that they hope this is the first of many formalized de-
velopments in OSGeo’s support of educational partner-
ships. The agreement establishes a laboratory to sup-
port OS geospatial technology and training, and will
provide internships for promising students. The first
phase of the internship program has been announced.9

Project News

deegree

The deegree project10 announced a new major release
(3.0 - “Celsius”) to correspond with the project’s tenth
anniversary. Deegree is a Java-based library for spatial
data infrastructures and other web-based geographic
services, with full implementation of the OGC WMS,
WFS, WPS, and CS-W protocols. High performance
moving large amounts of data was a focus of this re-
lease, as well as complex applications, support for all
relevant GML versions, and advanced integrated de-
velopment tools. A preconfigured application called
inspireNode offers the capability to rapidly deploy a
fully transactional WFS and WMS server rendering IN-
SPIRE styling rules on-the-fly.

Geomajas

In November, OSGeo announced that the Geoma-
jas project has graduated from incubation, making it
a full-fledged OSGeo project. This enterprise-ready

GIS framework for client-server display and edit-
ing of geographic data is implemented in Java, sup-
ports OGC standards, and can be downloaded from
http://www.geomajas.org.

GDAL
On January 23rd, the GDAL community announced the
release of GDAL/OGR 1.8.0, the library and command
line tools for accessing a wide range of geospatial raster
and vector file formats, databases and web services.
This is a major new feature release, with highlights
including 26 new format drivers, significant improve-
ments to the DXF and GML drivers, implementation of
6 RFCs developed by the community, and a new com-
mand line utility, gdallocationinfo. Details about the
release can be read online.11

GeoNetwork
The GeoNetwork team has released GeoNetwork Open
Source version 2.6.0 (since updated to 2.6.212). GeoNet-
work is a standards based catalog application to assist
the web publication of geospatial data, and is used in a
number of Spatial Data infrastructure projects around
the world. Highlights of new or improved functionality
include performance improvements on search and in-
dexing, an INSPIRE search panel and metadata viewer,
an OpenLayers embedded web map viewer, multilin-
gual support, keyword and coordinate reference system
selection panels, advanced data and metadata export-
ing, metadata relations management, advanced schema
and schematron validation of metadata, and visual
warnings in the metadata editor.

Ingres Geospatial
The Ingres Geospatial community project has released
binaries for Ingres 10.1 with built-in new OGC Simple
Features-based geospatial support. The software has
been released under the GPL version 2 license, making
it free to download, develop against, modify and redis-
tribute. Installers are available13, as well as a project
wiki.14 Ingres Geospatial incorporates many OSGeo
projects including PROJ.4 and GEOS, and Ingres is
supported by (or work on this support is in progress
for) GDAL/OGR, GeoTools, MapServer, Drupal and
other common tools in the OS geospatial world. Ingres
has also been a sponsor of OSGeo, GDAL/OGR, and
FOSS4G2010.

8Japan Local Chapter: http://www.osgeo.jp/
9CGS Internship Program: http://www.nottingham.ac.uk/cgs/news/internships.aspx

10The deegree project: http://wiki.deegree.org/
11GDAL/OGR Release 1.8.0: http://trac.osgeo.org/gdal/wiki/Release/1.8.0-News
12GeoNetwork 2.6.2: https://sourceforge.net/projects/geonetwork/
13Ingres Geospatial Installers: http://www.fosslc.org/drupal/content/ingres-101-geospatial-support-available
14Ingres Geospatial Pproject wiki: http://community.ingres.com/wiki/IngresGeospatial

Page 4 of 64

file:geomajas.org
http://www.osgeo.jp/
http://www.nottingham.ac.uk/cgs/news/internships.aspx
http://wiki.deegree.org/
http://trac.osgeo.org/gdal/wiki/Release/1.8.0-News
https://sourceforge.net/projects/geonetwork/
http://www.fosslc.org/drupal/content/ingres-101-geospatial-support-available
http://community.ingres.com/wiki/IngresGeospatial

OSGeo Journal Volume 8 r.in.swisstopo

r.in.swisstopo
A new module for the GRASS GIS application for
importing digital elevation model data of Switzer-
land in swisstopo format

Juergen Hansmann

Abstract
The Swiss federal office of topography, swisstopo15, of-
fers digital elevation models of Switzerland in several
different formats. When working with the open source
geographic information system software GRASS (Ge-
ographic Resources Analysis Support System), these
data need to be imported into a GRASS raster layer. For
this task a new GRASS module r.in.swisstopo has been
developed, which detects the format of the swisstopo
input elevation data and imports it into a GRASS raster
map. Users can run r.in.swisstopo from the command
line, which provides the means to do automated script
runs over a large number of input files. Alternatively,
a graphical user interface is provided as well, which
provides a more comfortable way of working with the
module.

The new module has been tested on an example
dataset of digital elevation data of the Matterhorn area
in Switzerland, provided by swisstopo free of charge.
All three file formats supported by r.in.swisstopo, could
be imported without any problems.

Introduction
According to Sonnentag (3), the Geographic Resources
Analysis Support System (GRASS16 is probably the most
well-known free, open source geographical informa-
tion system (GIS). GRASS was originally developed
in 1985-1995 by the US Army Construction Engineer-
ing Research Laboratory (CERL), which is part of the
US Army Corps of Engineers. When CERL ceased
the GRASS development, further GRASS development
was done at Baylor University (2, 1). Today it is re-
leased under the General Public License (GNU GPL;
http://www.gnu.org/) and is a part of the Open Source
Geospatial Foundation.

GRASS is a software assemblage for processing
geospatial raster and vector data. It provides tools
for processing, analysis and management of spatial
data, spatial modelling (e.g. hydrological modelling),
processing of (multi spectral) images and advanced
data visualisation. According to the GRASS homepage,
GRASS is applied in academic and commercial settings
and also in governmental agencies, such as for example
NASA, NOAA and the USGS.

Swisstopo digital elevation data
The Swiss ‘Bundesamt fuer Landestopographie’ (Swiss
federal office of topography), swisstopo, offers digital
elevation data of Switzerland in several formats, all
based on the reference system ‘Schweizerisches geo-
daetisches Datum CH-1903’ (swiss geodetic datum CH-
1903), with the Bessel (1841) reference ellipsoid and the
fundamental point at the coordinates 600000 / 200000
(old observatory in Bern). The provided datasets have
a grid spacing of 25 m. Data with a grid spacing of 50m,
100m and 200m are available as well. Elevation data
have an error of< 2 m in the northern region of Switzer-
land, whereas in rare cases in the mountainous parts of
southern Switzerland, elevation data might have errors
of up to 3 m. Three of the offered data formats are con-
sidered for import into a GRASS raster map by the new
module r.in.swisstopo. This three format types are:

• MMBLT (*.mlt): elevation data saved sequentially
• MMBL (*.mbl): elevation data saved in a matrix
• xyz (*.xyz): elevation data saved in xyz coordinate

triples

MMBLT and MMBL formats are matrix models with
quite a similar file structure. Both file formats consist
of a header (see Figure 1), followed by data records of
integer elevation values (i.e. elevation values in decime-
tres). The header section starts and ends with the key-
words NEWHEADER and ENDHEADER respectively, where
all important model parameters, such as the coordi-
nates of the northwestern and the southeastern edge,
the matrix model dimensions and the grid spacing are
defined.

In the case of the MMBLT format, elevation data is
stored sequentially in records, which by default contain
2040 digits, yielding 340 elevation values with 6 digits
each. The first line of a digital elevation model of a
region, that consists of m rows with n elevation values,
always consists of 340 elevation values. If n was 9 for
example, the first line would look like:

e1,1 e1,2 e1,3 e1,4 e1,5 e1,6 e1,7 e1,8 e1,9 e2,1 e2,2 e2,3
e2,4 e2,5 · · ·
until the row contains 340 values, then the next row is
written.

The indices in ei,j represent the row (i) and column
(j) of the matrix. For a MMBL type matrix model, the
number of values per row exactly matches the matrix
model dimensions. If the digital elevation model ma-
trix has the format m x n, and n was 9 for example, then
the data of the above example would be stored in the
following way:

15Swisstopo: http://www.swisstopo.admin.ch/
16GRASS GIS: http://grass.itc.it/

Page 5 of 64

http://www.swisstopo.admin.ch/
http://grass.itc.it/

OSGeo Journal Volume 8 r.in.swisstopo

Figure 1: Sample header section of the example dataset provided by swisstopo.

NEWHEADER
--
DHM25-MATRIXMODELL LEVEL 2 (c)BUNDESAMT F. LANDESTOPOGRAPHIE
--
NORD-WEST ECKE [M] 616000.0 92700.0 ERSTER HOEHENWERT
SUED-OST ECKE [M] 618000.0 90700.0 LETZTER HOEHENWERT
MASCHENWEITE WE/NS [M] 25.0 25.0
MATRIXDIMENSIONEN WE/NS 81 81 TOTAL 6561 MATRIXPUNKTE
HOEHENBEREICH [DM] 30368 44780 (6 CHARACTER PRO HOEHENWERT)
--
FORMAT ASCII L+T-FORMAT DHM25-MATRIXMODELL
RECORDLAENGE(CHAR.) 2040 340 HOEHENWERTE PRO RECORD
--
ENDHEADER

e1,1 e1,2 e1,3 e1,4 e1,5 e1,6 e1,7 e1,8 e1,9
e2,1 e2,2 e2,3 e2,4 e2,5 e2,6 e2,7 e2,8 e2,9

and so on. Elevation models, that are provided in the
xyz format simply consist of one x-, y- and z-coordinate
triple per row.

The module r.in.swisstopo
The module r.in.swisstopo imports digital elevation mod-
els provided by swisstopo in the three previously men-
tioned formats. It can be run from the command line,
which provides a means to script the command in order
to import large number of files automatically. Option-
ally, the module provides a graphical user interface
(GUI) as well, which is shown in figure 2 and is based
on the GRASS module g.parser.

Figure 2: The graphical user interface of the module
r.in.swisstopo.

r.in.swisstopo extracts information about the DEM
matrix model from the header section, by searching
for the according keywords, rather than assuming a
certain, fixed position of the values inside the header

section. Therefore, even if the layout of the header sec-
tion should change in future, the module should still be
able to find the required information in the new header
format.

In the first step of the automatic import process by
r.in.swisstopo, the input data is processed with an awk-
script and converted to a format, that can be read with
r.in.xyz. After the import of the elevation data, two
raster maps will be generated by the module.

A first raster map, which has the suffix ‘origres’,
contains the elevation data in its original resolution
(which will be 25m in most cases). Whereas a second
raster map is generated, that contains the imported ele-
vation data, interpolated to the current GRASS region’s
resolution, using r.resamp.interp. Elevation data in both
raster maps will be stored in meters.

The first parameter, which has to be set by the user
(either at the command line or in the GUI) is the name of
the swisstopo input file. Next, the name of the resultant
output raster map has to be defined. Since r.in.swisstopo
invokes the GRASS module r.in.xyz, which uses univari-
ate statistics to create a raster map from an assemblage
of large amounts of coordinates, a statistical method
for this has to be chosen (see the GRASS help page of
r.in.xyz for details). The default method is ‘mean’. Next,
the storage type of the resultant raster map has to be de-
fined, as it will be passed to the r.in.xyz module. Default
type is FCELL, yielding floating point values (again, see
GRASS help page of r.in.xyz for details). Optionally,
the range of elevation data, that is imported by r.in.xyz,
can be restricted by defining the parameter zrange. For
large datasets, the percentage of the map, that is kept
in memory, can be chosen as well.

The region settings of GRASS GIS are temporarily
adjusted in order to cover the input dataset extent com-
pletely. When the data import is finished, the region
settings will be restored to their original state.

As the module r.resamp.interp is invoked for the in-
terpolation of the input data into the current GRASS
region’s resolution, an interpolation method has to
be chosen by the user (see the GRASS help page for

Page 6 of 64

OSGeo Journal Volume 8 r.in.swisstopo

r.resamp.interp for details). If the flag ‘allow overwrite’
is set, existing raster maps will be overwritten without
further warnings. The ‘run quietly’ flag reduces the
output messages to a minimum.

The module r.in.swisstopo conducts some error
checks on the imported data. When the number of
imported elevation values is less than expected, the
process will be cancelled and an error message will
appear. If the number of elevation values in the in-
put file exceeds the number that was defined in the
header, a warning message will be shown and no fur-
ther data points will be imported. This could be caused
by padding (zero) values in the input file for example.

Test runs of r.in.swisstopo
Test runs of the module r.in.swisstopo were done
for all three digital elevation model formats on the
test datasets, that are provided by swisstopo free of
charge.17

All three formats could be imported without any
problems. Figure 3 shows the imported digital eleva-
tion model of the Matterhorn.

Figure 3: 3D view of the Matterhorn in Valais, Switzerland,
created from imported digital elevation data of the swisstopo
sample dataset, using the new GRASS module r.in.swisstopo.

Download and Installation of the
module r.in.swisstopo
The source code of the current version of r.in.swisstopo
is available at GRASS Addons repository.18 Installation
can be done via SVN or manually. For a manual instal-
lation, the following steps need to be done (users might
need to have root/administrative privileges for this):

• Download the files ‘r.in.swisstopo’ and ‘descrip-
tion.html’ to a temporary directory

• Copy the file ‘r.in.swisstopo’ into the
$GISBASE/scripts/ directory
(To find out your $GISBASE directory, call the follow-
ing command from within a GRASS terminal:

env | grep $GISBASE)

Alternatively, directly copy the file from within
a GRASS terminal with something like: cp

r.in.swisstopo $GISBASE/scripts/

• In most cases, the file ‘r.in.swisstopo’ needs to be
made executable with:
chmod +x $GISBASE/scripts/r.in.swisstopo

• Finally, the file ‘description.html’ should be placed
in the $GISBASE/docs/html/ directory and renamed
to ‘r.in.swisstopo.html’

Example shell script for processing
large amounts of data
If a large number of files has to be imported, the user
might want to automate this task, rather than import-
ing every file manually, using the GUI. This can be
achieved by running the script from the command line
of a GRASS terminal. An example shell script, that runs
over all input files of a certain file format in a directory,
could look like the following:

#!/bin/bash
for filename in *.mlt; do

r.in.swisstopo input=$filename output=$filename method=mean \
type=FCELL percent=100 method_resamp=bilinear \
--overwrite --quiet

done

Note that the names of the resultant raster layers in
the above example would be the same, as the names of
the imported input data file.

Acknowledgments
The author would like to thank all those individu-
als who have contributed to the GRASS GIS software
project in the past, and who continue to develop it fur-
ther under the guidance of the Open Source Geospatial
Foundation (http://www.osgeo.org/).

Juergen Hansmann
PhD student at Swiss federal institute of technology (ETH) Zurich,
Switzerland, Dept. Earth Sciences
Juergen.Hansmann@erdw.ethz.ch

http: // www. engineeringgeology. ethz. ch/

Bibliography
[1] Carrera-Hernández, J., Gaskin, S., Apr. 2006. The groundwater

modeling tool for grass (gmtg): Open source groundwater flow
modeling. Computers & Geosciences 32 (3), 339–351.

[2] Neteler, M., Mitasova, H., 2004. Open Source GIS: A GRASS GIS
approach. The Kluwer International Series in Engineering and
Computer Science, 2nd ed. Kluwer Academic Publishers, Boston,
Dordrecht.

[3] Sonnentag, O., Nov. 2009. Neteler, M., Mitasova, H., 2008. Open
Source GIS A GRASS GIS Approach, 3rd ed. Springer, NY, USA,
ISBN 978-0-387-35767-6, 406pp., USD 99.00, CDN 128.95, EUR
81.95, hardbound. Computers & Geosciences 35 (11), 2282–2282.

17Swisstopo test datasets: http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/height/dhm25.html
18GRASS Add-on directory: http://grass.osgeo.org/wiki/GRASS_AddOns#r.in.swisstopo

Page 7 of 64

http://www.osgeo.org/
mailto:Juergen.Hansmann@erdw.ethz.ch
http://www.engineeringgeology.ethz.ch/
http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/height/dhm25.html
http://grass.osgeo.org/wiki/GRASS_AddOns#r.in.swisstopo

OSGeo Journal Volume 8 An Image Request Application Using FOSS4G Tools

Case Studies

An Image Request Application Using
FOSS4G Tools
Peter Wilkins

Abstract
Bohannan Huston Inc., New Mexico’s “premier civil
engineering and spatial data company”, currently man-
ages over eight terabytes of aerial orthophotography of
New Mexico and surrounding states. As the amount
of data has increased, so has the overhead required for
effectively managing and accessing the data, as well as
the demand in the workplace for this imagery. To meet
this challenge, a custom software system was created
that allows users to search the aerial data graphically
and request subsets of these images. This software
application, BHImage Request, is written using 100%
FOSS4G tools.

Streamlined Workflow, Reduced
Overhead
BHImage Request is intended to give users quick ac-
cess to imagery with minimal overhead. Previous to
the development of the tool, the desired images were
requested from the Bohannan Huston CADD Center
via completion of various forms and help tickets. After
the CADD Center receives these forms, someone would
manually locate the data, zoom to the requested extent,
extract the imagery using various tools such as Arc,
and then send the requested files to the user. The new
system vastly reduces the workload required to obtain
imagery for both the requestor and the CADD Center,
as well as making the large and often disparate collec-
tion of data (differing projections, false color/RGB, etc)

accessible through a single interface.

The initial web page of the application displays an
ESRI shapefile map of New Mexico. The system dis-
plays color-coded shapefiles indicating pixel resolution
of available imagery by area, allowing users to see at
a glance the imagery that exists for different regions.
A shapefile of GPS roads is also available for overlay.
By zooming, drawing a bounding box, or manually
entering the coordinates of an extent, the user is able
to locate the region of interest. When the user zooms
or pans, the system uses the center of the new extent
as a point to compare against bounding extents of all
currently-indexed imagery. These bounding extents are
stored in a PostGIS database, which provides conve-
nient spatial functionality, easing spatial queries. Any
imagery that overlaps the new extent is displayed in
a box (Figure 1(a) (top)). When the user selects one of
these images, it is rendered onto the map (Figure 1(b)
(middle)).

After the user has found the region of interest, click-
ing the Request Image button brings up the image re-
quest page (Figure 1(c) (bottom)). Using this page, the
user can specify options including the file format (jpg,
ecw, tiff), pixel size, and datum/projection. Once the
user has filled in the requirements of the request, the
request is submitted to the system which is processed
in the background. When the system has extracted the
selected imagery, it is placed in a directory on the web
server and a link is emailed to the user. The user clicks
on the email link, and saves their requested imagery to
their working directory.

Page 8 of 64

OSGeo Journal Volume 8 An Image Request Application Using FOSS4G Tools

Figure 1: BHImage Request application in action

Household FOSS4G Names
Progress is built on the shoulders of giants and BHIm-
age Request is no exception.

• As the user visually searches the database, the
map and accompanying overlaid raster files are ren-
dered courtesy of MapServer, which runs inside the
MapServer 4 Windows package.

• Processing of requested imagery is done via
the GDAL Utilities (http://www.gdal.org/gdal_
utilities.html).

• gdalwarp is used for rendering of the image from the
original file and is capable of handling most of the
user selected images options such as pixel size.

• gdal_translate is used to translate the image to other
formats if necessary once the image has been origi-
nally rendered (as a tiff).

• PHP is used to perform the searching and to gather
the data

• PostGIS is used to perform a spatial query against
the database

• MapScript is used to dynamically activate any result
layers.

Performance
So far the system has fulfilled over 800 requests. Some
of these requests are for images as large as 1 GB in size
which have a processing time of up to an hour. Thirty
eight gigabytes have been served by the system so far,
and we anticipate many more to come. The system
has been live for the entire company which consists of
approximately 240 users for well over three months.
Usage statistics are already being tracked, including
file size and render time. With each request running
in its own process, there exists potential for concurrent
processing of multiple jobs. The only crashes that have
happened have been due to the form validation of user
input: incorrect usernames, project names with special
characters, and related problems that have been quickly
solved with the addition of a quick javascript here or
regular expression there.

Many Uses Now and Into the Future
BHImage Request serves many needs for the Bohannan
Huston community. Low resolution imagery is used for
artwork and proposals. Higher resolution imagery can
be generated for basic planning. The highest resolution
images are used for engineering and design.

Even though the beta test cycle is almost complete
and the application will soon be released company-
wide, planning for future versions of the application
is already in progress. Currently we are exploring the
possibility of using the WorldWind API, which will al-
low Bohannan Huston imagery and surface/elevation
data to be visualized concurrently. This will allow the
user to make image and surface data requests together
or separately. Project data, models, images, surfaces,
and contours can all be viewed and downloaded in real
time in 3D, providing a platform for the next generation
in civil engineering, CADD, and GIS frameworks.

Peter Wilkins
Bohannan Huston Inc.
pwilkins AT bhinc.com

Page 9 of 64

http://www.gdal.org/gdal_utilities.html
http://www.gdal.org/gdal_utilities.html
mailto:pwilkins AT bhinc.com

OSGeo Journal Volume 8 Exporting Geospatial Data to Web Tiled Map Services using GRASS GIS

Integration Examples

Exporting Geospatial Data to Web Tiled
Map Services using GRASS GIS
Tomáš Cebecauer and Marcel Šúri

Abstract
We present a method for exporting raster-based geospa-
tial data to the web environment of the Tiled Map
Services with a focus on Google Maps and Microsoft
Virtual Earth. The method has been implemented in
the open source GRASS GIS software, and it includes
the exact re-projection of raster data, their tiling, and
export to the hierarchical structure of PNG graphi-
cal files. The approach is based on the adaptation of
projection parameters of the standard PROJ4 library,
and implementation of the technical specifications and
tiling scheme of the services. The whole procedure was
wrapped into the GRASS GIS command r.out.gmap.

Keywords: Geographic Information Systems, Internet,
Raster data, Web Tiled Map Services, Google Maps

Introduction
Until a few years ago, the only way to share dynamic
maps over the Internet was using dedicated Web Map
Services (WMS), such as the open source MapServer
or ArcIMS by ESRI. These WMS provide high levels of
interactivity with users and the possibility to generate
maps on-demand from the underlying geographical
information. While WMS provide relatively complex
functionality, the concept of on-the-fly map generation
demands a lot of data processing and image manipula-
tion, thus resulting in a slow response to user requests.
Due to high load on the server resources, the WMS

applications have remained the domain of a limited
number of internet map service providers.

In the last years, web portals such as Google Maps
(GM), Microsoft Virtual Earth (MVE), Yahoo! Maps,
and OpenLayers have pioneered an era of interactive
map handling and sharing over the Internet, provid-
ing tools for geographical search and browsing global
datasets such as topographic maps, satellite imagery
and terrain. These portals have gained high popularity
thanks to simple use, fast response and an easy way to
build customised applications. The high performance
is achieved by a change of the underlying concept from
dynamic generation of complete maps to the use of
static pre-rendered raster images, and reduction of dy-
namically generated content to simple vector or raster
overlays. As the pre-rendered images are usually stored
in a hierarchical system of image tiles these services are
called Tiled Map Services (TMS)19.

Customized client applications with tailored func-
tionality for TMS can be built using Application Pro-
gramming Interfaces (API) that provide tools also for
integration of user-prepared maps. Although having
reduced functionality compared to WMS, the TMS APIs
have opened an opportunity to share maps over the
Internet without a need of specific server based WMS
technology. A simple TMS may be established only
by storing the pre-rendered tiles in PNG or JPEG for-
mat on the web server without employing additional
applications. Using API from GM or MVE provides
benefits of the direct access to the global coverage of
geographical data, maps, and to the powerful search
engines.

Although it is relatively simple to set up a cus-
19Tile Map Service Specification., v1.0, OSGeo, 2007. http://wiki.osgeo.org/index.php/Tile_Map_Service_Specification

Page 10 of 64

http://wiki.osgeo.org/index.php/Tile_Map_Service_Specification

OSGeo Journal Volume 8 Exporting Geospatial Data to Web Tiled Map Services using GRASS GIS

tomised TMS, the generation of image tiles is not
straightforward. Spatial reference of the user’s the-
matic maps most often differs from the projection and
tiling schema required by TMS, and the data have to
be re-projected and segmented accordingly. Most solu-
tions for custom data tiling available on the Internet are
based on the use of simple web tools or graphical edi-
tors, where map projection is overlooked or simplified
to raster rubber-sheeting. These approaches may result
in significant positional distortions, especially when
dealing with global or continental databases (Figure 1).

Figure 1

We present an approach, developed for the open
source GRASS GIS software, for exact (pixel-by-pixel)
map re-projection, segmentation and conversion of
raster data to image tiles for TMS with focus on GM
and MVE environment.

Data Tiling in Google Maps and Mi-
crosoft Virtual Earth

To allow fast display of maps at any zoom detail, a
hierarchical and positional relation between the TMS
image tiles is established. Both GM and MVE use the
recursive division of square tiles (Figure 2). The tiles
are divided by a factor of two in each direction, thus
while zooming to a more detailed view the original tile
is at the successive zoom level replaced by four tiles
at higher resolution. The global view in GM is repre-
sented by the zoom level 0 that is composed by one tile
of 256 x 256 pixels size. The zoom in MVE starts with
four tiles at the zoom level 1.

The area represented by 1 pixel is determined by
the number of divisions of the Earth globe in the given
zoom level. For a pixel at the equator, the resolution for
each zoom level, reszoom can be calculated as follows:

reszoom =
2πRsph

tile_size.2zoom
(1)

where tile_size is the size of a tile in pixels in x di-
rection, zoom is the zoom level and Rsph is the Earth
radius at the equator. The recursive division increases
the resolution quite rapidly: raster spatial resolution of
approx. 100 m is reached between the zoom levels 10
and 11, and resolution of 1 m is close to the zoom level
17.

Although tiling in GM and MVE is the same, the
tile numbering differs. GM tiles use three numbers for
the identification of a tile: zoom level, row and column
of the tile. The tiles are ordered left to right and top to
down with index starting from 0 for upper left tile. The
MVE tile system uses the quadtree approach20, where
each quadrant is labelled by a number from 0 to 3. At
the subsequent zoom level the quadrant number is ap-
pended at the end of the “ancestor” quadrant number
(see Figure 2). A similar system is used by GM for the
IDs of satellite image tiles, but numbers are replaced by
letters “q, r, s, t”21.

Map Projection
The spatial reference of GM and MVE is set to the Mer-
cator map projection22. Mercator belongs to the group
of cylindrical map projections, which means that in a
normal position all meridians are parallel with y-axis of
the coordinate system, and at the same time meridians
are perpendicular to the parallels. The projection is
conformal, thus preserving angles and shapes of small
objects. The main drawback is the area distortion that
increases with distance from equator towards the poles,
where it goes to infinity. This results in exaggeration of
objects close to poles, so Greenland seems to be slightly
larger than South America (actually it is eight times
smaller).

The implementation of the Mercator map projection
in GM and MVE introduces several modifications. The
most important is a use of the spherical form of the
projection, which is defined by the general equations
(Snyder, 1987):

x = Rsph(λsph − λ0)

y = Rsph
1

2
ln

(
1 + sinϕsph

1− sinϕsph

)
(2)

20MSDN. Virtual Earth Tile System http://msdn2.microsoft.com/en-us/library/bb259689.aspx
21MAPKI. Satellite Tile Layout. http://mapki.com/wiki/Satellite_Tile_Layout
22Google Maps API Reference. http://code.google.com/apis/maps/documentation/reference.html

Page 11 of 64

http://msdn2.microsoft.com/en-us/library/bb259689.aspx
http://mapki.com/wiki/Satellite_Tile_Layout
http://code.google.com/apis/maps/documentation/reference.html

OSGeo Journal Volume 8 Exporting Geospatial Data to Web Tiled Map Services using GRASS GIS

Figure 2

where λsph and ϕsph represent respectively longitude
and latitude, λ0 is the central meridian and Rsph is
a radius of the Earth in spherical datum. The use of
spherical form simplifies the underlying calculations
and accordingly it results in about 0.33% scale distor-
tion in the y-axis direction which is not noticeable for
visual applications.

Using the notation of the PROJ4 library, the spheri-
cal Mercator projection is defined by the following set
of parameters:

+proj=merc +lat_ts=0 +lon_0=0 +k=1.0 +x_0=0
+y_0=0 +a=6378137.0 +b=6378137.0 +units=m

Data re-projection using PROJ4 with this set of pa-
rameters does not align results to the GM or MVE maps
(see Fig. 3), because it uses standard datum transforma-
tion of coordinates between the WGS84 ellipsoid and
the sphere with the radius 6378137 m.

Figure 3

The projection implementation in GM and MVE

bypasses this transformation and assumes that the co-
ordinates on the sphere equal those on the ellipsoid.
This even more simplifies the calculations as there is no
need of any datum transformation and the WGS84 ellip-
soidal latitude/longitude coordinates are used for the
spherical Mercator projection. Then, the general form
of the projection in eq. 2 can be rewritten as follows:

x = Rsph(λwgs84 − λ0)

y = Rsph
1

2
ln

(
1 + sinϕwgs84

1− sinϕwgs84

)
(3)

where λwgs84 and ϕwgs84 are longitude and latitude in
the WGS84 datum, whereas Rsph is the radius of the
Earth in the spherical datum (set to 6378137.0 m). As-
suming λ0 equal to 0, the equation for x might be even
more simplified. However, such projection is not easy
to implement in the coordinate transformation pack-
ages, as they were created with the intention of pre-
cise cartographic transformations. Luckily the PROJ4
library provides a solution by tricking the transforma-
tion using the @null grid shift file:

+proj=merc +lat_ts=0 +lon_0=0 +k=1.0 +x_0=0
+y_0=0 +a=6378137.0 +b=6378137.0 +units=m +nad-
grids=@null

The implementation of the Mercator projection for
displaying data in the square tiles limits the parts of
the Earth that can be shown to between approximately
+/-85.05 degrees of latitude. This overcomes the prob-
lem of the y coordinates approaching the infinity at the
poles.

Another specific feature of the GM map projection
is the use of pixels as output units. As the pixels are
not fixed and their number increases with zooming in,
the projected x and y coordinates should be rescaled to
fit the pixel units of individual zoom level. This can be
done by dividing the coordinates with pixel resolution
for a specified zoom level derived in eq. (1).

Page 12 of 64

OSGeo Journal Volume 8 Exporting Geospatial Data to Web Tiled Map Services using GRASS GIS

xpx,zoom = xreszoom

ypx,zoom = yreszoom (4)

and after simplification:

xpx,zoom =
tile_size.2zoom

2π
(λwgs84 − λ0) (5)

ypx,zoom =
tile_size.2zoom

2π

1

2
ln

(
1 + sinϕwgs84

1− sinϕwgs84

)
Eq. (5) actually defines the projection for each level

individually, which may be useful for implementation
in a customized processing. However, in GIS a change
of the projection for each zoom level is not practical. A
more straightforward solution is the use of a projection
definition based on the Earth spherical datum in eq. (3),
and to do the rescaling to the pixel units using eq. (4)
afterwards. It is worth noting that the pixel coordinates
derived using eq. (4) and (5) have the center of the
coordinate system placed at the equator and longitude
λ0, usually at 0°. To make the calculations and tiling
in the pixel space simpler, it is suggested to move the
centre of the coordinate system to the upper left pixel
and flip the y axis towards south.

Besides the Mercator projection, GM allows the use
of other reference systems. By specifying transforma-
tion functions between pixels and geographical coor-
dinates in the GProjection interface of the GM API, a
user can define the projection that best fits his/her re-
quirements. However, this approach does not enable
integration of maps from different projections into one
application.

Custom data tiling in the GRASS
GIS
The GRASS GIS is an open source system with a pow-
erful set of analytical and modelling tools (Neteler, Mi-
tasova, 2008), and it provides all the basic functionality
required for creation of GM or MVE tiles. However, the
custom data tiling is not straightforward and to provide
a one-command solution, the existing tools have to be
integrated following the logic of the GM tiling.

The GRASS GIS follows the approach of using one
reference system including a map projection and a co-
ordinate system for the whole project (called LOCA-
TION). All operations are restricted to the use of this
reference system. Data that are in a different coordi-
nate system have to be stored separately in a different
LOCATION and can be accessed by re-projection. This
may be achieved using the r.proj or v.proj commands
– a GRASS GIS implementation of the PROJ4 library.
As user data are very unlikely to be stored in the GM
projection, the thematic raster map tiling should encom-
pass the following steps:

1. Creation of the GM LOCATION with a projection
defined by the following parameters:
+proj=merc +lat_ts=0 +lon_0=0 +k=1.0 +x_0=0

+y_0=0 +a=6378137.0 +b=6378137.0 +units=m

+nadgrids=@null;
2. Calculation of tiles required to cover the thematic

map at specified zoom level;
3. For each tile re-projection of the raster map from

source LOCATION to the GM LOCATION;
4. Tile export using predefined naming convention.

We have integrated steps 2 to 4 into a new GRASS
command r.out.gmap that hides the tiling, re-projection
and coordinate rescaling processes from the user, the
example:

r.out.gmap input=dem location=wgs84

mapset=mydata zoom=5 outdir=gmdem

The user only sets a name of the input map, mapset
and location, zoom level and name of the directory to
export the tiles to. On the output he gets the PNG tiles
which can be directly placed on the web server. In such
a way it is relatively easy to automate the map pub-
lishing for the GM or MVE from whatever GRASS GIS
project.

Application – PVGIS web portal
PVGIS (Photovoltaic Geographical Information Sys-
tem, see Šúri, et al. (2005)) is an interactive map-based
web system offering free access to geographic data and
tools used for performance assessment of solar pho-
tovoltaics (Fig. 4) for Europe, Africa, and South-West
Asia. In PVGIS we integrated Google Maps API (coded
in JavaScript) with our geospatial database and inter-
active server applications (controlled by PHP). When
upgrading the older interface to use Google Maps, of
key benefits for the users were the search tool, and the
intuitive navigation from the continental to regional
levels.

Figure 4

Page 13 of 64

OSGeo Journal Volume 8 Integration Examples

Using the r.out.gmap, we have converted a set of
GRASS raster data into Google Maps, thematically en-
compassing solar radiation, temperature, land cover
and shaded terrain. The pixel-by-pixel re-projecting
makes it possible to keep positional consistency be-
tween the Google standard maps, and the PVGIS cus-
tom maps. To give an example of the accuracy, the
user-selected position in Europe should match with
SRTM-3 digital elevation model (van Zyl, 2001), and
derived local terrain horizon, both used in a simulation
of solar radiation.

Conclusion
We have presented a GRASS GIS approach integrated
to a single command for exact re-projection of raster
data, and their tiling, and export, according to the re-
quirements of Google Maps and Microsoft Virtual Earth.
This approach includes necessary modification of the
projection parameters in the PROJ4 library to match the
requirements of Tiled Map Services, and implementa-
tion of the data segmentation and tiling scheme. The
output PNG or JPEG tiles can be directly integrated
within the user customised map application on the In-
ternet. The Application Programming Interfaces, avail-
able for both systems and the presented tool provide an
opportunity to effectively communicate any geospatial
information via Internet.

Acknowledgment
The authors would like to thank Thomas Huld for
linking the Google Maps Application Programming
Interface with the PVGIS data and tools, and to He-

lena Mitasova, and Jaro Hofierka for valuable com-
ments. This work was partially supported by the VEGA
Grant Agency (project 1/3049/27), and by the JRC’s
FP7 framework program (project 13106, SOLAREC).

References
1. Snyder, J.P., 1987. Map Projections - A Working Man-

ual. United States Government Printing Office, Wash-
ington DC, USGS Professional Paper 1395, 383 pp.

2. Neteler, M., Mitasova, H., 2008. Open Source GIS:
A GRASS GIS Approach. Third Edition. Springer
Science + Business Media, New York, 406 pp.

3. Šúri, M., Huld, T., Dunlop, E.D., 2005. PVGIS: A
web-based solar radiation database for the calcula-
tion of PV potential in Europe. International Journal
of Sustainable Energy, 24, 55-67.

4. van Zyl, J.J., 2001. The shuttle radar topography mis-
sion (SRTM): A breakthrough in remote sensing of
topography. Acta Astronautica, 48, 559-565.

Tomáš Cebecauer
European Commission, Joint Research Centre
Institute for Environment and Sustainability
Renewable Energies Unit, TP 450, via E. Fermi 1
I-21020 Ispra (VA), Italy
Institute of Geography, Slovak Academy of Sciences
Štefánikova 49, 814 73 Bratislava, Slovakia
tomas.cebecauer AT jrc.it

Marcel Šúri
European Commission, Joint Research Centre
Institute for Environment and Sustainability
Renewable Energies Unit, TP 450, via E. Fermi 1 I-21020 Ispra
(VA), Italy
marcel.suri@jrc.it

Page 14 of 64

mailto:tomas.cebecauer AT jrc.it
mailto:marcel.suri@jrc.it

OSGeo Journal Volume 8 From the Academic Track Chair

FOSS4G 2009 Conference Proceedings

From the Academic Track Chair
Prof. Thierry Badard

The FOSS4G 2009 academic
track aimed to bring together
researchers, developers, users
and practitioners – all who
were carrying out research
and development in the free
and open source geospatial
fields and who were willing
to share original, recent devel-
opments and experiences.

The primary goal was to promote cooperative re-
search between OSGeo developers and academia, but
the academic track has also acted as an inventory of cur-
rent research topics. This track was the right forum to
highlight the most important research challenges and
trends in the domain and let them become the basis
for an informal OSGeo research agenda. It has fostered
interdisciplinary discussions in all aspects of the free
and open source geospatial domains. It was organized
to promote networking between the participants, to
initiate and favour discussions regarding cutting-edge
technologies in the field, to exchange research ideas
and to promote international collaboration.

In addition to the OSGeo Foundation23, the ICA (In-
ternational Cartographic Association) working group
on open source geospatial technologies24) was proud
to support the organisation of the track.

The coordinators sought to gather paper submis-
sions globally that addressed theoretical, technical, and
practical topics related to the free and open source
geospatial domain. Suggested topics included, but
were not limited to, the following:

• State of the art developments in Open Source GIS
• Open Source GIS in Education
• Interoperability and standards - OGC, ISO/TC 211,

Metadata
• Spatial Data Infrastructures and Service Oriented Ar-

chitectures
• Free and open source Web Mapping, Web GIS and

Web processing services
• Cartography and advanced styling
• Earth Observation and remote sensing
• Spatial and Spatio-temporal data, analysis and inte-

gration
• Free and Open Source GIS application use cases in

Government, Participatory GIS, Location based ser-
vices, Health, Energy, Water, Urban and Environmen-
tal Planning, Climate change, etc.

In response to the call for papers, 25 articles were
submitted to the academic track. The submissions were
highly diversified, and came from USA, Canada, Thai-
land, Japan, South Korea, Sri Lanka, Australia, New
Zealand, Italy, Denmark, France, Germany, Switzer-
land, Romania and Turkey. Selection of submissions
were based on the full papers received. All submis-
sions were thoroughly peer reviewed by two to three
members of the international scientific committee and
refereed for their quality, originality and relevance. The
scientific committee selected 12 papers (48% acceptance
rate) for presentation at the FOSS4G 2009 conference.
From those, 6 papers were accepted for presentation
in the proceedings of the academic track, which are
published in this volume of the OSGeo Journal. They
correspond to the 6 best papers assessed by the interna-
tional scientific committee.

The accepted and published papers covered a wide
23OSGeo: Open Source Geospatial Foundation: http://osgeo.org
24ICA open source working group: http://ica-opensource.scg.ulaval.ca/

Page 15 of 64

http://osgeo.org
http://ica-opensource.scg.ulaval.ca/

OSGeo Journal Volume 8 FOSS4G 2009 Conference Proceedings

range of cutting-edge research topics and novel applica-
tions on Free and Open Source Geospatial technologies.
I am particularly proud and happy to see some very
high quality scientific contributions published in the
OSGeo Journal. This will undoubtedly encourage more
interesting research to be published in this volume, as
our OSGeo journal is an open access journal. In addi-
tion, it helps draw attention to this important project of
the OSGeo Foundation. I hope the publication of these
proceedings in the OSGeo journal will encourage fu-
ture scientists, researchers and members of academia to
consider the OSGeo Journal as an increasingly valuable
place to publish their research works and case studies.

As a concluding note, I would like to take the op-
portunity to thank the individuals and institutions that
made the FOSS4G 2009 academic track possible. First,

I would like to thank the international scientific com-
mittee members and external reviewers for evaluating
the assigned papers in a timely and professional man-
ner. Next, I would like to recognize the tremendous
efforts put forward by members of the local organis-
ing committee of FOSS4G 2009 for accommodating and
supporting the academic track. Finally, I want to thank
the authors for their contributions, efforts, patience and
support that made this academic track a huge success.

January, 2011
Prof. Thierry Badard
Laval University, Canada
Chair, FOSS4G 2009 Academic Track
Co-chair, ICA Working Group on Open Source Geospatial Tech-
nologies

Page 16 of 64

OSGeo Journal Volume 8 Geoprocessing in the Clouds

Geoprocessing in the Clouds
Bastian Baranski, Bastian Schaeffer, Richard Redweik

Abstract
Cloud Computing is one of the latest hypes in the main-
stream IT world. Spatial Data Infrastructures (SDIs)
with its classical publish-find-bind paradigm have not
been affected yet by this emerging trend. This paper
reviews this novel technology and tries to identify the
paradigm behind it. In particular, the scalability aspect
for a cloud enabled 52◦North Open Source Web Process-
ing Service is challenged and proven in the exemplary
Google Cloud. On this basis, future direction for SDIs
and the Cloud Computing paradigm are identified.

Introduction
Cloud Computing is one of the latest trends in the main-
stream IT world (5). The term Cloud Computing uses a
cloud metaphor to represent the internet or other large
networking infrastructures. From a provider perspec-
tive, the key aspect of the cloud is the ability to dynam-
ically scale and provide computational power, storage,
and other applications, even complete infrastructures in
a cost efficient and secure way over the internet. From
a client perspective, the key aspect of a cloud is the
ability to access the cloud facilities on-demand without
managing the underlying infrastructure and dealing
with the related investments and maintenance costs.

However, existing Spatial Data Infrastructures (SDI)
are mostly focused on data retrieval and data visual-
ization (8). Migrating the data processing part from
classical desktop application to a distributed environ-
ment could be regarded as the next step. The step after
migrating to a distributed environment would be the
adoption of Cloud Computing principles. While the
processing part in SDIs has already been tackled (12)
(3) (13), Cloud Computing has not been regarded in the
context of SDIs yet. This was the starting for this paper
to explore the capabilities of Cloud Computing with a
special focus on the processing part in SDIs.

In general, there are two options for realizing Cloud
Computing in SDIs. First, adopting Cloud Computing
principles and standards to SDIs. Second, migrating
SDI elements amongst other services on top of a Cloud
Computing infrastructure. Following the first option,
the geodomain would once again create their own sep-
arate standards and markets and therefore establishing
new barriers for utilizing SDIs. From our perspective
the second option would be more effective and would
allow the Geoinformation (GI) domain to be open to the
mainstream IT world and thereby broaden the limited

GI market. By leveraging these core propositions, we
believe that the paradigm behind the Cloud Comput-
ing buzzword is promising for geospatial applications
in order to enable new and promising business models
for building up, operating and utilizing SDIs. In order
to get hands-on experience, the 52◦North WPS imple-
mentation 25 was migrated as a proof-of-concept study
into the Google Cloud (namely the Google App Engine
platform).

The remainder of this paper is structured as follows.
First, a review of the basic concepts and related tech-
nologies is provided. This is followed by a description
of the technical concept of the WPS migration into the
Google Cloud. In the next section, our technical con-
cept is evaluated in terms of scalability as one of the
key aspects of Cloud Computing. Finally, the paper
ends with a conclusion about the described framework
and a discussion about interesting topics for a further
research agenda.

Background
This section provides a review of related work in the
context of Cloud Computing and SDI concepts.

Cloud Computing

Cloud Computing is one of the latest trends in the main-
stream IT world (4) (5) and several companies such as
Amazon, Google, Microsoft and Salesforce have already
build up significant effort in this direction. The term
Cloud Computing uses a cloud metaphor to represent
the internet or other large networking infrastructures
and the paradigm behind the buzzword hints at a fu-
ture in which the storage of data and computations are
no longer performed on local computers, but on dis-
tributed facilities operated by third-party storage and
computational utilities (2). The term Cloud Computing
overlaps with some concepts of Distributed Comput-
ing and Grid Computing (6). Grid Computing and
Cloud Computing are both scalable infrastructures and
provide sufficient computational resources like stor-
age or computational power. But the target audience
of Grid Computing is typically the scientific commu-
nity running large-scale simulations and resource- and
time-consuming applications (for example a global cli-
mate change model or the aerodynamic design of en-
gine components), whereas with Cloud Computing
small and medium-sized companies can scale their
web-based applications in an instant fashion without
having to invest in infrastructure for storing or process-
ing large amounts of data (10). Furthermore, national

25http://www.52north.org/wps
26http://lcg.web.cern.ch/LCG/

Page 17 of 64

http://www.52north.org/wps
http://lcg.web.cern.ch/LCG/

OSGeo Journal Volume 8 Geoprocessing in the Clouds

and international Grid infrastructures (for example the
Worldwide LHC Computing Grid 26) are typically gov-
ernmentally funded and driven by international joint
research projects (for the example the Large Hadron
Collider, LHC project at CERN 27), whereas cloud in-
frastructures are operated by large enterprises under
economic aspects.

Characteristics

The key characteristics of the cloud are the ability of dat-
acenter providers to scale and provision computational
resources, storage, and other applications even com-
plete infrastructures dynamically in a cost efficient and
secure way over the internet. Besides the consumer is
given the ability to use these resources without having
to manage the underlying complexity of the technol-
ogy. These characteristics open up new perspectives for
tackling different problems and lead to the following
set of core value propositions.

Efficiency Cloud Computing enables IT organizations
to increase hardware utilization rates enormously and
to scale up to massive capacities in an instant without
heavily investing in infrastructure in advance. Datacen-
ter providers are now able to utilize their infrastructure
more efficiently by dynamically distributing their ap-
plications and processes to free available resources.

Outtasking By outtasking software and data to scal-
able facilities operated by third parties, users and cus-
tomers don’t have to operate their own datacenters
anymore. Therefore, enterprises of all types - from Web
2.0 startups to global enterprises - can decrease their
infrastructure costs enormously. They can take advan-
tage of transforming their fixed IT costs into variable
costs as a business advantage by focusing on their core
business (rather spending time on developing mature
software and innovative business models than man-
aging their physical hardware and purchasing costly
licenses for rarely used software).

Scalability The allocation of cloud resources (for ex-
ample high capacity storage or computing power) is
done in real-time and most cloud infrastructures scale
the deployed applications automatically on demand
(for example in case of high request rates). This gives
cloud users and cloud application providers the op-
tion for handling peak load very efficiently without
operating their own datacenter and without managing
their own infrastructure. For example, load-balancing
or the development of high availability solutions for
their software does not need to be regarded because it
is provided by the cloud implicitly. By deploying their
software and data in the cloud, they are automatically
able to scale up their business capacities (for example
from a few to hundreds of servers) in an instant and on

demand fashion.

On-demand Allocating cloud resources on a real-time
and on-demand basis helps enterprises to scale up their
business capacities in an instant and efficient way. The
absence of long-term contracts in combination with
pay-per-use revenue models allows the low-cost start-
up of new ideas for business models. The total cost of
ownership (including hardware, software licenses, en-
ergy, fail-safety and technical engineers) of self-hosted
datacenters minimizes start-up costs and helps enter-
prises to put new promising business models into the
market.

Additional features of Cloud Computing infrastruc-
tures are the application of Service Level Agreements
(SLA) defining service quality guarantees and contrac-
tual penalty clauses if the providers fail to meet the
guaranteed service quality goals. Such contracts are
important for cost-performance ratio transparency and
therefore an essential skill for all kinds of IT and in this
sense also IT based geospatial business models.

In essence, Cloud Computing is not a completely
new concept. It moreover collects a family of well
known and established methods and technologies (for
example SaaS as a model for software packaging and
deployment and Virtualization as an efficient hosting
platform (7)) under the umbrella of the term Cloud
Computing. Besides, it describes a paradigm of out-
sourcing applications and specific tasks to a scalable
infrastructure and therefore consequently enabling new
business models with less up-front investments. Keep-
ing in mind that these technologies and general con-
cepts existed in the IT industry for years, the emer-
gence of high network bandwidth and mature virtu-
alization technologies has now enabled this paradigm
for a broader audience and leads to new application
development models.

There are still a number of open issues for Cloud
Computing. One deals with the general barriers of
adopting Cloud Computing and is examined for exam-
ple in the so-called “Open Cloud Manifesto”. Beside
data backup and recovery responsibilities the outsourc-
ing of confidential and economically relevant data from
data owners facilities to third party infrastructures is
problematic in context of trust. Using public clouds as
a deployment platform for applications and services in
a risk management scenario is already a security issue
in situations when the underlying cloud suffers an out-
age. But the problems regarding outsourcing of data
and reliability of infrastructures are not specific only
for cloud infrastructures. They must be addressed for
all kinds of distributed architectures.

Projects and Initiatives

A lot of enterprise corporations are trying to get into the
Cloud Computing business by offering services to ac-

27http://lhc.web.cern.ch/lhc/

Page 18 of 64

http://lhc.web.cern.ch/lhc/

OSGeo Journal Volume 8 Geoprocessing in the Clouds

cess their huge and over years grown infrastructures to
the public. Microsoft with the Azure Services Platform
28 and its upcoming operating system Windows Azure
29 for operating cloud infrastructures, IBM introduced
their “Blue Cloud” platform 30 and SUN for example
offers Cloud Computing solutions as well 31. In this
chapter we describe the two cloud solutions from Ama-
zon and Google more detailed, showing clearly that
cloud providers could realize the different layers and
characteristics of a cloud infrastructure at a different
level of detail.

The Amazon Web Services (AWS) product is a col-
lection of services that are offering Infrastructure as
a Service (IaaS), Datastorage as a Service (dSaaS) and
some aspects of Platform as a Service (PaaS). The Ama-
zon Elastic Compute Cloud (Amazon EC2) provides a
web service interface to manage virtual machines (IaaS)
that are used to host customer specific applications and
can be scaled on-demand to handle peak load. The
Amazon Simple Storage Service (Amazon S3) provides
a web services interface that can be used to store and
retrieve large amounts of data (dSaaS). The Amazon
Elastic MapReduce is a web service that offers compu-
tational power to process efficiently vast amounts of
data. It utilizes the Hadoop 32 framework and dynam-
ically distributes data and processing tasks across an
automatically scaled cluster of computation nodes.

In contrast of AWS, the Google App Engine is an ad-
equate example for pure PaaS. The Google App Engine
provides a sandbox for running Java- and Python-based
web applications. The web applications are deployed
on the Google infrastructure and so they can take ad-
vantage of the same scalable and load balancing tech-
nologies that Google applications are built on. On the
one hand, the key advantage of Google App Engine
over AWS is that Google App Engine offers an easy way
of deploying web applications in the cloud. In particu-
lar, the overhead of dealing with virtual machines and
entire (virtual) server systems could be neglected. The
Google App Engine offers also a data storage service
(dSaaS) and different bindings to existing Google ap-
plications for authentication and accounting. Besides,
the free default quota for testing purposes (for example
data transfer and CPU time) lowers also the barrier for
a first trial experiment. On the other hand, applications
deployed in the Google App Engine are restricted to a
specific (Java- or Python-based) application framework
that runs in a restricted sandbox. This sandbox forbids
the creation of threads and the web service request du-

ration is limited to 30 seconds. Furthermore, the Google
App Engine platform does not support the MapRe-
duce programming model (1) or related methods for
distributed processing and generating efficiently large
data sets. Therefore, the Google App Engine platform
is currently not suitable for performing large-scale and
time-consuming geospatial processes.

Beside these and other commercial cloud providers,
different projects and initiatives drive the general de-
velopment of Cloud Computing technologies and espe-
cially the development of open standards for interoper-
ability in clouds. The Open Cloud Consortium (OCC)
33 for example is an initiative dedicated to Cloud in-
teroperability and initiated the Open Cloud testbed 34.
The Open Cirrus Project 35 is cloud computing research
testbed between research and industry partners. In the
Eucalyptus 36 initiative, an open source based imple-
mentation of the Amazon API is under development.

Web Processing Service

The Open Geospatial Consortium (OGC) Web Process-
ing Service interface specification (11) describes a stan-
dardized method to publish and execute web-based
processes for any type of geoprocesses. According to
the WPS interface specification, a process is defined
as any calculation operating on spatially referenced
data. In detail, the WPS interface specification describes
three operations, which are all handled in a stateless
manner: GetCapabilities, DescribeProcess and Execute.
GetCapabilities is common to any type of OGC Web
Service and returns service metadata. In case of WPS it
also returns a brief description of the processes offered
by the specific service instance. To get more informa-
tion about the hosted processes, the WPS provides pro-
cess metadata through the DescribeProcess operation.
This operation describes all parameters, which are re-
quired to run the process. Based on this information the
client can perform the Execute operation upon the des-
ignated process. As every OGC Web Service, the WPS
communicates through HTTP-GET and HTTP-POST
based on an OGC-specific XML-message encoding. Be-
sides this basic communication pattern, the WPS inter-
face provides functionality for scalable processing such
as asynchronous processing (implemented using the
pull model), storing of process results and processing
of data references encoded as URLs. The application
of URL references as input for specific processes is a
promising feature, as it limits the volume of data sent

28http://www.microsoft.com/azure/default.mspx
29http://www.microsoft.com/azure/windowsazurefordevelopers/default.aspx
30http://www.ibm.com/ibm/cloud/
31http://www.sun.com/solutions/cloudcomputing/index.jsp
32http://hadoop.apache.org/core/
33http://www.opencloudconsortium.org/
34http://www.opencloudconsortium.org/
35https://opencirrus.org/
36http://www.eucalyptus.com/

Page 19 of 64

http://www.microsoft.com/azure/default.mspx
http://www.microsoft.com/azure/windowsazurefordevelopers/default.aspx
http://www.ibm.com/ibm/cloud/
http://www.sun.com/solutions/cloudcomputing/index.jsp
http://hadoop.apache.org/core/
http://www.opencloudconsortium.org/
http://www.opencloudconsortium.org/
https://opencirrus.org/
http://www.eucalyptus.com/

OSGeo Journal Volume 8 Geoprocessing in the Clouds

between client and service and allows the service to
apply specific caching strategies. The service retrieves
the data once and reuses it multiple times, by using the
reference as an identifier for data.

Concept
On a technical level, the classical 52◦North WPS is im-
plemented as a Java Servlet. Due to platform indepen-
dence gained by Java programming language and the
Google App Engine Java support, the WPS components
could be easily compiled with a standard Java compiler
on a local machine and the resulting package could be
deployed on the Google App Engine platform which
runs with its own java virtual machine.

As our first test case, we implemented a simple
buffer process, which takes two inputs. First, geo-
graphic features to be buffered encoded as GML (for ex-
ample provided by an OGC Web Feature Service, WFS)
and second, a distance for the buffer calculation. As
a result, geographic features representing the buffers
around the input geographic features are computed.
The resulting dataset could be fetched either encoded
as GML (as exercised with uDig 37) or KML (as exer-
cised with Google Earth 38). According to the number of
requests, the deployed application is able to scale up by
means of the Google cloud mechanisms. Furthermore,
native Google cloud services such as authentication
could be used directly in the cloud from the deployed
application.

In general, the deployed WPS provides geopro-
cesses to customer, which is the classical SaaS aspect.
This is built on the PaaS aspect, which fosters the auto-
matic scalability.

By deploying the WPS in the Google Cloud, the
enduser still is able to find and bind a single URL rep-
resenting the WPS, even though multiple instance exist
on the sever side to maintain a scalable service. There-
fore the classical publish-find-bind SDI paradigm (9)
is not modified by using cloud technologies. How-
ever, the use of standardized interfaces such as a WPS
ensures interoperability from the client perspective,
cloud interoperability from a provider perspective is
not given, since every cloud infrastructures has its own
APIs and requirements.

Scalability Evaluation
Scalability is one of the key aspects of Cloud Comput-
ing. Therefore, we tested our approach and the Google
cloud in this direction. We used a stress test to simulate
a high demand of simultaneous requests and expected
a constant response time by the WPS deployed in the
cloud in contrast to a linear rising response time by a

non-cloud setting.

Methodology
The WPS was stress tested with the simple buffer algo-
rithm, deployed on the Google App Engine as well as
on a local and non cloud enabled Tomcat installation.
The geometric data for that process were also delivered
via a web service (deployed at the Google App Engine
platform in the first case and deployed on the local and
non cloud enabled machine in the second case). A cu-
mulative approach was used, starting with 1 and up
to 200 requests that were sent simultaneously to the
deployed services. The elapsed time from sending the
request to receiving the response on its own, as well as
for the cumulative sum of the requests/response times
was measured. In order to compare the local setting
with the remote cloud setting, the results are normal-
ized by only regarding the response time relatively to
the maximum/minimum interval of all requests to the
specific machine.

Results
Figure 1 shows the normalized response time of the
online as well as of the local deployed WPS over the
number of simultaneously sent requests. The response
time of the remote WPS (blue) stays nearly constant up
to 200 simultaneous requests whereas the local WPS
response time (red) grows linearly.

Evaluation
The performance evaluation shows to some degree that
Google App Engine’s scale at high request rates, as the
response time for many simultaneous requests stays
nearly constant in contrast to the non-cloud deploy-
ment.

The slight increase of the response time of the WPS
deployed at the Google App Engine platform could
be explained by some bottlenecks concerning the data
allocation from an external server, laborious internal
processing steps in the performance testing tool and
high traffic at the local machine and in the local sub-
network when running the performance testing tool. A
slight overhead for replicating new service instances
on the server side could also be assumed.

Conclusion and Outlook
This paper presented and tested an approach of bring-
ing the OGC Web Processing Service to the cloud. On
a conceptual level, we showed that Cloud Computing
is not a completely new concept and applied to SDI,
the classical publish-find-bind pattern does not have
to be modified. Therefore, we see a paradigm shift

37http://udig.refractions.net/
38http://earth.google.de/

Page 20 of 64

http://udig.refractions.net/
http://earth.google.de/

OSGeo Journal Volume 8 Geoprocessing in the Clouds

Figure 1: Comparison of normalized response time of remote (blue) and local (red) deployed WPS over number of simultane-
ously requests.

from technological to economical aspects in contrast to
a complete paradigm change. On a technical level, our
tests showed that by using the Google Cloud, response
times could be held almost constant in contrast to a
non-cloud approach. However, our tests also showed,
that for the cloud approach, bottlenecks outside the
cloud have to be taken into account and could elimi-
nate the positive cloud effects if not carefully evaluated.
Nevertheless, the tests showed that Cloud Computing
keeps its promises and should be regarded further in
sophisticated setups.

Thus, we plan in the next evolution phase to extend
the described scenario, which mainly incorporates SaaS
aspects, towards a more complex scenario, which takes
near real-time air quality sensor data, stored already in
the cloud (IaaS or dSaaS) and provided through stan-
dardized OGC interfaces (for example OGC Sensor Ob-
servation Service, SOS), and interpolate these data in
the cloud (for example via WPS). Thereby, we aim at
keeping the response time constant using efficient (de-
spite possible high request rates). Besides, another goal
for the next iteration phase will be the integration of
existing Google App Engine services (for example Mail
for alerting and Google Accounts for authentication)
and efficient methods for distributed processing as well
as storing large dataset (for example MapReduce and
the Hadoop platform) into the framework.

Nevertheless, the presented approach is to our
knowledge the first OGC compliant cloud service ever

and could pave the way for a paradigm shift in SDIs.
On the basis of our past experience we still believe that
Cloud Computing is promising for building up, operat-
ing and utilizing SDI in an effortless way and promising
for geospatial applications to enable new business mod-
els with less up-front investments. Furthermore, Cloud
Computing could be potentially the missing element
to popularize SDIs to a broader non-expert commu-
nity (for example in an effortless way by means of Web
2.0 applications, such as mashups, open collaboration,
social networking and mobile e-commerce). In partic-
ular, we could think of using OGC interfaces as the
standardized way for obtaining geospatial resources
(data/processing) similar to added-value services al-
ready provided in clouds such as Google Mail. How-
ever, by using OGC interfaces, cloud interoperability
even from a provider perspective in regard to geospa-
tial resources could be gained.

To further advance the adoption and combination
of Cloud Computing and SDI, the 52◦North Geopro-
cessing Community members will continue their basic
research by addressing the following questions and
topics:

• How can Cloud Computing lower the barriers for
building, operating and utilizing SDIs?

• How can Cloud Computing promote innovative and
promising geospatial e-commerce models?

• How can Cloud Computing popularize geospatial
applications to a broader and collaborating commu-

Page 21 of 64

OSGeo Journal Volume 8 FOSS4G 2009 Conference Proceedings

nity?
• How can SDI elements be mapped to the Cloud Com-

puting paradigm?
• Development and implementation of a fully Cloud

Computing enabled SDIs by extending our approach
with other Cloud Computing aspects.

• Security aspects such as Authentication, Authoriza-
tion, Accounting and Delegation.

Bastian Baranski
Research Associate, Institute for Geoinformatics at University of
Muenster, Germany
baranski AT uni-muenster.de

http: // ifgi. uni-muenster. de/

Bastian Schaeffer
Research Associate, Institute for Geoinformatics at University of
Muenster, Germany
schaeffer AT uni-muenster.de

http: // ifgi. uni-muenster. de/

Richard Redweik
Bachelor Student, Institute for Geoinformatics at University of
Muenster, Germany
richard.redweik AT uni-muenster.de

http: // ifgi. uni-muenster. de/

Bibliography
[1] J. Dean and S. Ghemawat. Mapreduce: Simplified data process-

ing on large clusters., 2008.
[2] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid

computing 360-degree compared, 2008.
[3] A. Friis-Christensen, N. Ostlnder, M. Lutz, and L. Bernard.

Transactions in GIS, chapter Designing service architectures for
distributed geoprocessing: Challenges and future directions.,
pages 799–818. 2007.

[4] Gartner. Gartner says cloud computing will be as influential as
e-business. Gartner press release, Gartner, 2008.

[5] Gartner. Gartner says cloud application infrastructure technolo-
gies need seven years to mature. Gartner press release, Gartner,
2009.

[6] K. Hartig. What is cloud computing? the cloud is a virtual-
ization of resources that maintains and manages itself. .NET
Developers Journal, 2008.

[7] Sun Microsystems Inc. Cloud computing at a higher level. Tech-
nical report, Sun Microsystems Inc., 2009.

[8] C. Kiehle, K. Greve, and C. Heier. Transactions in GIS, chapter
Requirements for Next Generation Spatial Data Infrastructures-
Standardized Web Based Geoprocessing and Web Service Or-
chestration, pages 819–834. 2007.

[9] I. Masser. GIS worlds: Creating spatial data infrastructures. ESRI
Press, Redlands, California, USA, 2005.

[10] J. Myerson. Cloud computing versus grid computing - ser-
vice types, similarities and differences, and things to consider.
Technical report, IBM Corporation, 2008.

[11] OGC. Opengis web processing service, version 1.0.0. Technical
report, Open Geospatial Consortium (OGC), 2007.

[12] B. Schaeffer, B. Baranski, T. Foerster, and J. Brauner. A service-
oriented framework for realtime and distributed geoprocessing.
In International Opensource Geospatial Research Symposium, 2009.

[13] A. Weiser and A. Zipf. Lecture Notes in Geoinformation and Car-
tography, chapter Web Service Orchestration (WSO) of OGC
Web Services (OWS) for Disaster Management, pages 239–254.
Springer, New York, 2007.

Page 22 of 64

mailto:baranski AT uni-muenster.de
http://ifgi.uni-muenster.de/
mailto:schaeffer AT uni-muenster.de
http://ifgi.uni-muenster.de/
mailto:richard.redweik AT uni-muenster.de
http://ifgi.uni-muenster.de/

OSGeo Journal Volume 8 Media Mapping

Media Mapping
Using Georeferenced Images and Audio to provide
supporting information for the Analysis of Environ-
mental SensorDatasets

Phil Bartie, Simon Kingham

Abstract
Field based environmental monitoring projects often
fail to gather supporting temporal information on the
surroundings, yet these external factors may play a
significant part in understanding variations in the col-
lected datasets. For example when sampling air quality
the values may change as a result of a bus passing the
sampling point, yet this temporal local information is
difficult to capture at a consistently high resolution
over extended time periods. Here we develop an appli-
cation which runs on a mobile phone able to capture
visual and audio data with corresponding time and
location details. We also develop a desktop analysis
tool which synchronises the display of this dataset with
those captured from environmental sensors. The re-
sult is a tool able to assist researchers in understanding
local changes in environmental datasets as a result of
changes in the nearby surrounding environment.

Introduction
The analysis of temporal datasets in Geographic Infor-
mation Systems (GIS) is often hampered by a lack of
supporting relevant information on local conditions at
the time of data capture. Being able to explain unpre-
dictable variations in temporal datasets may depend on
being able to understand the nature of the local environ-
ment at a very local scale. For example a passing vehicle
may be the cause of a noted spike in airborne partic-
ulate matter, but unless this situational information is
recorded the spike may never be explicitly explained.
Sensor networks are able to supply background infor-
mation revealing the wider situation, but a co-located
synchronized set of sensors are required to understand
the local situation during mobile data capture. Here we
develop an application able to assist researchers in stor-
ing information on the local environment at the time of
data capture.

The solution uses a mobile phone to store audio, vi-
sual, and location details against time such that during
analysis the researchers are able to view the local envi-
ronment at the time of data capture. A custom playback
and analysis tool was also developed to combine this
situational data with other time stamped data captured
from the same location, allowing researchers fast ac-
cess to the relevant contextual information during the
analysis of the environmental data. In this paper we

describe the function of the mobile and desktop applica-
tions, their design, and report on their usefulness in an
air pollution monitoring study conducted in an urban
area. The tools proved useful in explaining local spikes
in air pollution data due to local events documented
in the supporting images and audio data. The audio
stream was also useful for allowing the researcher to
take spatially and temporally attributed verbal notes in
the field.

Background
Many studies have examined the relationship between
air pollution and modes of urban commuting (Fruin et
al. 2008, Briggs et al. 2008, O’Donoghue et al. 2007, Gul-
liver and Briggs 2007, Van Roosbroeck et al. 2006, King-
ham et al. 1998). Air pollution data is highly temporal,
changing across time and space, affected by global and
local events. Local events, such as a bus passing the
recording equipment, are hard to document and tradi-
tionally paper based records are kept. However manual
references to such events are hard to integrate into any
analysis, and sampling frequency is often inconsistent.
Yet these factors are important as has been strongly
argued by Briggs et al (2008) who state that local fac-
tors could be the cause of differences reported between
studies including such things as “building configura-
tion, road layout, monitoring methods, averaging peri-
ods, season, meteorological conditions, vehicle, driving
and walking behaviours, and the strength of in-vehicle
sources” (Briggs et al. 2008, 20).

To provide a better understanding of the surround-
ing environment at the time of data capture a second set
of sensors can be used to automatically capture contex-
tual information. This contextual information is not the
primary data for research purposes, but a supporting
dataset for the analysis phase. Technological advance-
ments have made it possible to sense the environment
more accurately, at higher sampling densities than ever
before. Sensor networks may consist of electronic de-
vices (Culler and Mulder 2004, Microsoft Corporation
2006), or citizens volunteering local environmental in-
formation via the internet (Goodchild 2007). En mass
citizens may provide data without realizing it, such as
the monitoring of mobile phones to estimate popula-
tion movement (Ratti et al. 2006), or to estimate travel
delays on motorway sections (Astarita et al. 2006).

The majority of electronic wireless sensor networks
are static, distributed across a region at fixed sites, feed-
ing information to a central facility which combines the
data to build a picture of the surrounding conditions.
For the purpose of mapping a commuter’s exposure to
air pollution the local level changes are also important,
therefore a set of sensors should remain co-located with

Page 23 of 64

OSGeo Journal Volume 8 Media Mapping

the air pollution sampling equipment. The data sam-
ples must also be at a high enough temporal resolution
to record significant local events, and the data streams
need to remain synchronized during data capture.

Mobile computing devices and smartphones have
been proven useful in environmental monitoring en-
abling participants to collect and share data in real-
time (Rudman et al. 2005). The MESSAGE consortium
(Polak and Hoose 2008) have undertaken a number
of projects using mobile phones as personal environ-
mental sensors and data loggers. The mobile phones
were equipped with a payload of environmental sen-
sors able to record carbon monoxide, carbon dioxide,
traffic volume, and nitrogen dioxide levels. Researchers
exploring the city could feed data in real time to a data
centre for processing, revealing current city wide air
pollution trends. The individual trip data could also be
replayed and mapped so that air pollution trails could
be reviewed to visualize areas of poor air quality in the
city. However a key aspect missing from this research
was the facility to store video or image data from the
user’s surroundings. Therefore any analysis carried
out at a later date would lack documented contextual
detail. Although audio was used, it only provided an
estimate of traffic volume and could not differentiate
between vehicle types, or allow field researchers to take
temporally and spatially attributed verbal notes.

Another research group developed a prototype sys-
tem known as GeoMobSense (Kanjo et al. 2007). This
toolkit allows private users to equip their own phones
with the necessary facilities to log data from connected
sensors. The phones themselves are used to display
information, as well as log sound levels, while separate
data loggers are used to record the environmental data.
The resulting datasets can be exported and displayed
on Google Earth, and other GIS applications. Again
this toolkit fails to store continuous image sequences,
or to save a spatially attributed audio file. Therefore
any post-capture analysis is hampered by a lack of doc-
umentation on the surrounding situation during the
field study.

Multimedia files provide a useful companion
dataset for prompt recall of events which occurred dur-
ing data capture. They provide an extra channel of
information useful when linked to GISs (Cartwright et
al. 2007), however the video, image, or sound files are
normally linked to a point, as in Media Mapper (Red
Hen Systems 2009). This creates a one way relationship,
only allowing the corresponding multimedia clip to be
found when the user clicks on a map location, essen-
tially using the map as document retrieval interface.
The content of the multimedia file itself is not spatially
attributed, and the ability to jump to the corresponding
position in the video file for a given map location has
to be performed manually.

There have been a number of attempts to more
closely link the multimedia content to space through

dynamically geo-referencing multimedia files. Spatial
information is encoded into the file through an appro-
priate technique such that at any point in the video or
audio the corresponding location may be referenced.
For example specialist equipment can turn GPS loca-
tion information into audio data, in a similar way that a
modem is able to turn computer data into audio to send
it across a telephone line, which can then be recorded to
the audio track alongside the video data. An example
of this technology is CamNav Mapper (Blueglen Ltd
2009). This allows a user to search through a video file,
and at all times be able to display the corresponding
recording location in a GIS. However the connection is
uni-directional, meaning the video is able to provide
location information to the GIS, but it is not possible to
initiate a search for the corresponding part in the video
from the GIS.

Jaejun (2002) developed an application which sup-
ports bi-directional searching, permitting the user to
find relevant video information from selecting a GIS
location, or for finding the filming location by search-
ing the video file. Similarly Zeiner (2005) developed an
application able to fuse GPS location and video using
timestamp information collected from synchronized
clocks. For still images a set of points are created in the
GIS, however for video recorded while moving a track
denotes which parts of the video correspond to which
geographic location. They also explore the use of data
standards in providing geo-multimedia tools via the
World Wide Web, with particular focus on the overlap
between web mapping standards, metadata standards,
and video streaming standards. These tools are not
however designed with the ability to integrate other
temporal datasets such as required for environmental
research.

Other studies have used or developed analysis tools
to visualize environmental datasets with local situa-
tional data (Kaur et al. 2006, Terwoert 2009, Arnold
et al. 2004). However while these often include the
ability to link photographic images with environmental
data, they appear to lack a tightly integrated mapping
facility.

For our research the requirement was for an appli-
cation which could provide a high level of integration
between temporal multimedia and location datasets,
with the ability to support additional datasets collected
from synchronized sensors. The capture device needed
to be small, lightweight, and mobile such that it could
be carried by a pedestrian or cyclist easily for extended
periods of time. The datasets for location, audio and
image needed to be tightly coupled such that no syn-
chronisation issues could occur during long field tri-
als. The analysis tools needed to be easily operated
by an untrained GIS user, such that they could search
through the datasets to interact with any of the cap-
tured data streams while maintaining sync with the
other linked data sources. We therefore looked at devel-

Page 24 of 64

OSGeo Journal Volume 8 Media Mapping

oping the data logging tool on a GPS equipped smart-
phone, which is a highly portable programmable device
available at low cost. As a result of using a single pro-
grammable device the GPS, audio, and image datasets
are tightly coupled, removing the need to synchronize
clocks, and guaranteeing data streams remain in sync
indefinitely. Additionally the multimedia files are geo-
referenced at the time of data capture removing the
need for any post-capture data processing. In contrast
to other applications which use laptops to capture and
process media, the smartphone approach offers a ro-
bust, small, and very portable platform which may
be easily carried by pedestrians. Finally our analysis
tool supports a tri-directional search mechanism, such
that users may drive the search by moving through the
audio media, mapping interface, or by interrogating
charts of the additional sensor data. This means the
user is able to easily capture and analyze data using any
of three mediums (location, time, graph value). In the
next section we look in more detail at the applications
developed during this research.

Application Development
In this study we developed two applications to assist
in the process of recording the surrounding situational
conditions. The first application runs at the time of
data capture in the field on a smartphone equipped
with Assisted GPS (A-GPS), and stores both an audio
and visual record of the surroundings. A-GPS is partic-
ularly useful for urban based research as it provides a
faster start-up location solution throughout a greater
range of urban environments, such that a position could
be found more quickly and maintained more consis-
tently. Furthermore the phone selected for this research
had a high sensitivity GPS chipset, enabling locations
to be calculated across a high proportion of the city,
including inside some single storey buildings. The sec-
ond application developed for this research runs on
a desktop computer and assembles independent data
streams against a common timeline, such that the user
may easily browse through multiple datasets whilst
maintaining sync between them, at all times being able
to refer to the corresponding situational image and au-
dio data. We discuss each application in more detail in
Sections 3.1 (Mobile Data Capture Application) and 3.2
(Data Analysis and Playback), starting with the mobile
data capture tools.

Mobile Data Capture Application
The main design criterion for the data capture device
was that it would be used in urban studies everyday
over an extended period of a few months. It therefore
had to be small, robust, light weight, offer a large data
storage capacity, be able to capture audio, imagery, and
run on battery for at least 90 minutes to ensure an entire

urban commute could be captured in a single session.
We decided to use a Nokia N82 smartphone to carry
out these tasks as they can be programmed easily us-
ing the Python language, incorporate a high sensitivity
A-GPS able to function adequately in urban canyons,
and have a high quality camera. Furthermore they are
able to use micro-SD cards for data storage, are smaller
than any laptop or netbook computer, and have good
battery life.

Nokia Series 60 smartphones can be programmed
in three main languages, which are C, Java, and Python.
Python is very suitable for rapid development and
allows the developer to access core phone hardware
through supported Application Program Interfaces
(APIs). The hardware access required for this project
included GPS hardware, audio, and screen display. Our
initial application was designed to record a continuous
video and audio feed to the micro-SD card at 15 frames
per second, while logging GPS locations every second.
The phone supports the ability for Python applications
to request the position of the current playhead in the
video file during recording, enabling the application to
log the GPS position information along with the current
video position to ensure a tight coupling of the location
and video datastreams. The data capture application
performed well, and as it used MP4 compression a full
one hour video with GPS log files occupied only around
70MB. However the continuous video capture depleted
a fully charged battery in 60 minutes, and made the
mobile phone run fairly hot. After discussions with the
air pollution research team we looked at an alternative
solution to record still images at regular intervals.

The next iteration of our application, and the one
used in field trials, records an audio file continuously
but captures still images at the rate of 1 image every
3 seconds. The audio file is recorded to a WAV file at
8kHz, again the playhead position is stored with each
GPS update such that for every image the location and
position in the audio file is known explicitly.

To link the audio and image files with GPS a com-
mon timeline primary key is required. GPS time was
considered unsuitable for the base timeline as the user
may lose the GPS signals when moving inside build-
ings. Therefore the Python time from the phone clock
was considered more reliable, and forms the baseline to
which all other datasets are synced. GPS time is how-
ever stored as an additional attribute in the log file in
case it is required later.

Specialist sensors were used to sample the air qual-
ity, recording the concentration of particulate matter
at various sizes (PM10, PM2.5 and PM1), ultrafine par-
ticles (UFP), temperature and carbon monoxide lev-
els. These devices all have internal clocks which were
synced to the nearest second to the clock on the mobile
phone before each journey. During transit the mobile
phone was mounted facing forwards on either the car
dashboard, bike handlebars, or the strap of a rucksack

Page 25 of 64

OSGeo Journal Volume 8 Media Mapping7

Figure 1: An Overview of the Data Captured

3.2. Data Analysis and Playback

To be able to efficiently analyse the large volume of time series data collected
it was necessary to build a custom application which allowed non-GIS users the
ability to review the data easily from a single interface. To do this we wrote a cus-
tom application using C# .NET which made use of a number of open source li-
braries for charting, map display, and coordinate projection (Figure 2). One of the
key criteria in our application design was that all the datasets should be synced
and remain in sync across all dataset viewers while the user explored the data. For
example selecting a map point should display the relevant air pollution data, the
corresponding street image, and move the sound file playback to the correct loca-
tion so any relevant audio notes and background noises could be heard. In the fol-
lowing section we discuss each of these data visualisation elements, and describe
the methods through which the datasets are kept in sync.

Figure 1: An Overview of the Data Captured

to ensure the camera could capture a clear view of the
oncoming route.

Figure 1 shows the data collected with each journey.
The smartphone tags each image with a unique identi-
fication number based on the Python time in seconds,
ensuring that images correspond to a single log entry.
Log entries record the position of the playhead in the
sound file, Python time, GPS time, and the GPS latitude
and longitude. Additionally we stored the cell tower
identification value so that approximate locations can
be determined if GPS positioning is lost. As well as
recording GPS position we also record speed, GPS ac-
curacy, heading, the number of satellites visible, and
number used for the position solution. This enables us
to carry out analysis on the location accuracy if required
at a later date.

Data Analysis and Playback

To be able to efficiently analyse the large volume of time
series data collected it was necessary to build a custom
application which allowed non-GIS users the ability to
review the data easily from a single interface. To do this
we wrote a custom application using C# .NET which
made use of a number of open source libraries for chart-
ing, map display, and coordinate projection (Figure 2).
One of the key criteria in our application design was
that all the datasets should be synced and remain in
sync across all dataset viewers while the user explored
the data. For example selecting a map point should dis-
play the relevant air pollution data, the corresponding
street image, and move the sound file playback to the
correct location so any relevant audio notes and back-
ground noises could be heard. In the following section
we discuss each of these data visualisation elements,
and describe the methods through which the datasets
are kept in sync.

8

Figure 2: Data Analysis and Playback Tool

3.2.1. Mapping

The mapping element makes use of the Piccolo Zoomable User Interface (ZUI)
graphics framework. This open source library is not specifically designed for map
display but offers powerful functions enabling rapid development of ZUIs. Piccolo
is able to create scene graphs consisting of both vector and raster nodes, which
may be easily animated to change location, shape or colour. It also provides the
functionality to smoothly zoom and pan around the data, capturing mouse and
keyboard input. Events can be assigned to graphical objects such that a user may
interact with map items and trigger a custom action. In our application we use this
functionality to link map objects to custom search functions, so for example click-
ing on a GPS track point moves the charting tool along to display the air quality
values at that location, and moves the audio playhead forwards or backwards to
the corresponding audio sample.

The mobile phone logs GPS data using the WGS84 coordinate system, how-
ever as Piccolo is unaware of geographic coordinate systems it requires projected
datasets. We used New Zealand Map Grid (NZMG) as our projected coordinate
system for all datasets. The background mapping layers included Quickbird satel-
lite imagery, and Land Information New Zealand road centrelines transformed us-
ing GRASS to NZMG. The vector datasets, typically ESRI Shapefiles, were con-
verted to a BNA text format using OGR libraries before being loaded and
displayed by Piccolo, while the raster datasets (JPEG) were natively supported.

Figure 2: Data Analysis and Playback Tool

Mapping

The mapping element makes use of the Piccolo
Zoomable User Interface (ZUI) graphics framework.
This open source library is not specifically designed
for map display but offers powerful functions enabling
rapid development of ZUIs. Piccolo is able to create
scene graphs consisting of both vector and raster nodes,
which may be easily animated to change location, shape
or colour. It also provides the functionality to smoothly
zoom and pan around the data, capturing mouse and
keyboard input. Events can be assigned to graphical
objects such that a user may interact with map items
and trigger a custom action. In our application we
use this functionality to link map objects to custom
search functions, so for example clicking on a GPS track
point moves the charting tool along to display the air
quality values at that location, and moves the audio
playhead forwards or backwards to the corresponding
audio sample.

The mobile phone logs GPS data using the WGS84
coordinate system, however as Piccolo is unaware of

Page 26 of 64

OSGeo Journal Volume 8 Media Mapping

geographic coordinate systems it requires projected
datasets. We used New Zealand Map Grid (NZMG) as
our projected coordinate system for all datasets. The
background mapping layers included Quickbird satel-
lite imagery, and Land Information New Zealand road
centrelines transformed using GRASS to NZMG. The
vector datasets, typically ESRI Shapefiles, were con-
verted to a BNA text format using OGR libraries before
being loaded and displayed by Piccolo, while the raster
datasets (JPEG) were natively supported. ESRI World
files were required with each raster image to provide
pixel resolution and location coordinates values, so that
raster datasets could be loaded into the correct position.

The GPS data, once downloaded from the mobile
application to the desktop application, is transformed
into the NZMG coordinate system using the most ac-
curate NTv2 projection transformations provided by
the Proj4 libraries. These points were then displayed as
Piccolo vector nodes over the base mapping, each node
with a hidden tag holding the corresponding capture
time primary key. This tag corresponds to the phone
capture time in seconds, and is also recorded in the log
file against the playhead position and location details.
These tag data enable the software to instantly locate
corresponding relevant information in other datasets
when a user clicks on a map object ensuring the system
is very responsive.

Audio

The audio playback is handled using Microsoft Direct-
Sound libraries, which enable the rapid development
of software able to control audio datasets. Here we
use basic playback control features (i.e. play, pause,
forward, rewind), and the functionality to read the cur-
rent playhead position during playback. From this we
can calculate the current play time in seconds from
the start of the sampling period, and therefore find the
corresponding log entries which hold the geographic
location and relevant image filenames. As the audio
file is captured at 8000 samples per second it has the
highest resolution of any of the datasets. Therefore any
searches performed from the user cueing or review-
ing this dataset require an additional step to find the
most relevant (i.e. closest) timestamp in the log files.
This was performed by simply ranking the difference in
time from the audio position to all log entries, the first
item being selected as the nearest. This functionality
allows the user to review the audio file and also see
corresponding imagery, location and chart data.

Due to memory issues when loading a 90 minute
long audio file, a buffered playback method was re-
quired. Only a small section of the file is loaded into
a memory buffer, and this buffer is constantly filled
from the disk file as audio playback progresses. The
performance impacts of this technique were minimal,
and rapid audio reviewing and cueing are still possible.

Street Images

The smartphone captures an image every 3 seconds in
JPEG format, and labels it with the appropriate times-
tamp. The log file holds a list of these timestamp file-
names along with their corresponding location and
other GPS details. When the user selects a location on
the map the tag (with each Piccolo node object) holds
the timestamp details, and therefore the correspond-
ing image can instantly be loaded without performing
any search other than for the filename in the file sys-
tem. When the user controls the audio playback the
nearest timestamp information is found in the log file,
and from this the corresponding picture name can be
generated. Similarly when the user moves through the
chart information the nearest timestamp in the log file
is found and used to determine the appropriate image
to display.

The image display is supported using native .NET li-
braries, with functionality to rotate the image sequence
which is useful if the phone has been placed on its side
during image capture.

Charting

The environmental sensor datasets are charted using
the open source ZedGraph libraries. These provide
sophisticated charting capabilities, and allow the pro-
grammer to link into many key events such as when the
user pans across the chart, clicks in the charting area,
or changes the scale on a chart axis. In our case the
x-axis was allocated to time in seconds since the start
of sampling. Ideally the smartphone would be turned
on first to ensure the audio file timeline starts before
the environmental data, but negative time values are
also supported. The y-axis displays the values from the
relevant sensor. The display automatically scales the y-
axis according to the values in the entire loaded dataset,
although manual scaling is also possible to zoom into
values for smaller sample periods.

The ZedGraph library was used to create line
graphs for each of the environmental sensor types.
These can remain static to allow the researcher to view
the entire datasets while replaying map, image and
audio datasets. Alternatively the graphs can be dy-
namically linked to the playback such that they pan
along the x-axis (time) automatically as the data log
is replayed. In this case the current playback time is
shown on the far left of the chart.

If the user clicks within the chart area the applica-
tion retrieves the corresponding time (x-axis value) and
moves the playback position to that value. This allows
the researcher to instantly find the current geographi-
cal location for any spikes noted in the environmental
datasets. Also as the audio and image files remain in
sync the researcher is also able to look and listen to
information from the surroundings at that point.

For reporting purposes the system supports high

Page 27 of 64

OSGeo Journal Volume 8 Media Mapping

quality output of the graphs, by simply double clicking
on them. There is also functionality to allow the user to
export snapshots of any interesting results, effectively
using this tool to produce a filtered dataset. To do this
they simply click a button during playback and the
GPS, picture link reference, time and date, and graph
data are exported to a text file. As each environmen-
tal sensor operates at a different sampling frequency
the application interpolates values between readings
(i.e. straight line between known values). When the
data is output the interpolated value is used if an actual
reading value is not present for the current playback
position.

User Interaction

One of the key differences in the analysis application
developed for this research to those reviewed earlier, is
the ability to initiate a search from any of three linked
interfaces. Figure 3 summarises the processes required
to provide this functionality.

11

4. User Interaction

One of the key differences in the analysis application developed for this re-
search to those reviewed earlier, is the ability to initiate a search from any of three
linked interfaces. Figure 3 summaries the processes required to provide this facil-
ity.

!"#$% &'()*'+,

-.,+.$/.0!"#$%012'3*.'#0
4'5(2.06$5.

4.'+7*08%+09.'+.:,0
-.7%+#0$;0<%=0>':.#0%;0

6$5.:,'5(

?(#',.0&'(0)"+:%+0
1%:$,$%;0';#01';0&'(
1';0)*'+,:0'2%;=0@A'@$:
-.AB"88.+0!"#$%
?(#',.0C5'=.0D$.E.+

-.,+$./.06'=0D'2".0*.2#0
E$,*0F140;%#.
G:.7%;#:H

?:.+08':,08%+E'+#:0
%+0+.E$;#:0'"#$%0

8$2.

?:.+072$7I:0%;0'0
F140(%$;,

?:.+072$7I:0%;0%;.0
%80,*.0'$+0(%22",$%;0

7*'+,:

)%;/.+,0,%04.7%;#:0
:$;7.02%==$;=0>.=';

4.,0!"#$%0(2'3*.'#0
(%:$,$%;0';#0+.A>"88.+
1';0)*'+,:0'2%;=0@A'@$:
?(#',.0C5'=.0D$.E.+

-.,+.$/.0JA!@$:0/'2".0
G:.7%;#:H

4.'+7*08%+09.'+.:,0
-.7%+#0$;0<%=0>':.#0%;0

6$5.:,'5(

4.,0!"#$%0(2'3*.'#0
(%:$,$%;0';#0+.A>"88.+
?(#',.0&'(0)"+:%+0
1%:$,$%;0';#01';0&'(
1';0)*'+,:0'2%;=0@A'@$:
?(#',.0C5'=.0D$.E.+

?:.+0C;,.+'7,$%;

Figure 3: User Interaction via Audio, Map, or Chart Interfaces

Figure 3: User Interaction via Audio, Map, or Chart Interfaces

During normal playback the system carries out an
audio update event every 4000 samples (500ms). This
ensures that the displays of each dataset remain in sync,
without impacting the performance on slower comput-
ers.

In the next section we look at a number of examples
which demonstrate the usefulness of this application.

Examples

Figure 4: Analysis of Peak Resulting from Bus Pulling Away.

In the following section we look at data collected in
air pollution studies from Christchurch, New Zealand.
The figures illustrate how useful the contextual infor-
mation was in explicitly explaining peaks in the air
quality datasets. In Figure 4 we can see that the air
quality spikes in the top left graph occur just after the
bus (pictured) pulls away from the field observer. In
addition the location information and map allow the
researchers to easily and quickly identify where in the
city these interesting results occurred.

Figure 5: Analysis of Air Data while Walking in Pedestrian
Precinct.

In the next example the air quality levels are much
better while exploring a pedestrian precinct, with low
particulate matter concentrations (Figure 5). However
following this a sharp rise in particulate matter can be
noted. By clicking on the spike in the graph display
area the researcher is able to see, from the map loca-
tion and supporting images, that this spike correlates
to when the field observer entered a multi-storey car
park.

In the final example data were collected while trav-
elling on a bus around the city. A series of spikes can be
noted in the carbon monoxide levels at fairly regularly
spaced intervals, as shown in Figure 6. By reviewing
the audio data, just before each spike, it was possible
to hear the sounds of the door opening, ticket machine
being operated and so on, and therefore conclude that
these spikes may be related to door opening events. It is

Page 28 of 64

OSGeo Journal Volume 8 Media Mapping

also worth noting that a camera facing forwards would
not have picked up this information, thus demonstrat-
ing the value of collecting audio data.14

6. Conclusion

In this research we have demonstrated that a smartphone may be used as a suitable
data capture tool, able to accurately and consistently capture location attributed
audio and visual data while operating in an urban space. The onboard Assisted-
GPS (A-GPS) was able to rapidly locate the user when the device was first turned
on, and maintain position throughout exploration of outdoor urban areas. The au-
dio and image quality was suitable for later analysis to identify key events which
may be associated with changes in the local environment as a result of short tem-
poral events (such as a bus pulling out) or changes in the nature of the physical
environment (such as entering a car park). Python provided an excellent pro-
gramming language for rapid application development on mobile phone, with the
necessary functionality to use the phone’s hardware such that explicit geo-
referenced image and audio could be processed on board the phone, rather than
during later post-processing in the desktop environment. This ensures that data
sync between audio, location, and imagery datasets may be maintained indefi-
nitely. The smartphone platform also proved to be rugged enough for daily trials
over a period of several months, and had battery and storage facility to cater for
long urban commutes (tested up to 120 minutes).

We also demonstrated that a simple desktop application able to maintain sync be-

Figure 6: Bus Trials of Air Pollution Monitoring Equipment

Conclusion

In this research we have demonstrated that a smart-
phone may be used as a suitable data capture tool,
able to accurately and consistently capture location at-
tributed audio and visual data while operating in an
urban space. The onboard Assisted-GPS (A-GPS) was
able to rapidly locate the user when the device was
first turned on, and maintain position throughout ex-
ploration of outdoor urban areas. The audio and image
quality was suitable for later analysis to identify key
events which may be associated with changes in the
local environment as a result of short temporal events
(such as a bus pulling out) or changes in the nature of
the physical environment (such as entering a car park).
Python provided an excellent programming language
for rapid application development on mobile phone,
with the necessary functionality to use the phone’s hard-
ware such that explicit geo-referenced image and audio
could be processed on board the phone, rather than dur-
ing later post-processing in the desktop environment.
This ensures that data sync between audio, location,
and imagery datasets may be maintained indefinitely.
The smartphone platform also proved to be rugged
enough for daily trials over a period of several months,
and had battery and storage facility to cater for long
urban commutes (tested up to 120 minutes).

We also demonstrated that a simple desktop appli-
cation able to maintain sync between mapping, envi-
ronmental, audio, and visual datasets proved useful
in the analysis phase of the research. The tool allowed
non-GIS researchers the functionality to easily explore
environmental datasets while maintaining links to the
corresponding contextual information.

The project was completed using a number of open
source tools and libraries, without which the devel-
opment would not have been possible in the allotted

time or within budget. Future versions of the appli-
cation should include the ability to store bookmarks
against time, allowing the user to add keywords or
notes, which would be particularly useful when revisit-
ing previous datasets, or to store comments for other
project collaborators to view. More powerful query
tools would be useful too, such that map points may
be highlighted or hidden based on the closest environ-
mental data. Finally the ability to search audio files for
speech would be useful in longer sampling runs such
that the system could automatically identify where au-
dio notes have been taken.

Acknowledgements
The authors would like to acknowledge the contribu-
tions made by Kreepa Shrestha, and Woodrow Pattin-
son who carried out the extensive field trials. Also
Justin Harrison for setting up and supporting the en-
vironmental sensor equipment. This research would
not have been possible without funding support from
the Geospatial Research Centre (NZ) and New Zealand
Transport Agency.

Phil Bartie
Phd Student
University of Canterbury, New Zealand
philbartie@gmail.com

Simon Kingham
Associate Professor of Geography
University of Canterbury, New Zealand
simon.kingham@canterbury.ac.nz

Bibliography
Arnold SJ, ApSimon H, Barlow J, Belcher S, Bell M, Boddy JW, Britter
R, Cheng H, Clark R, Colvile RN (2004) Introduction to the DAPPLE
Air Pollution Project. Science of the Total Environment 332: 139-153

Astarita V, Bertini RL, d[92?]Elia S, Guido G (2006) Motorway
traffic parameter estimation from mobile phone counts. European
Journal of Operational Research 175: 1435-1446

Blueglen Ltd (2009) CamNavMapper. Retrieved 20 May 2009
from http://www.blueglen.com/prod_camnav_single.htm

Briggs DJ, de Hoogh K, Morris C, Gulliver J (2008) Effects of
travel mode on exposures to particulate air pollution. Environment
International 34: 12-22

Cartwright W, Peterson MP, Gartner GF (2007) Multimedia car-
tography, Springer Verlag,

Culler DE, Mulder H (2004) Smart sensors to network the world.
Scientific American 290: 84-91

Fruin S, Westerdahl D, Sax T, Sioutas C, Fine PM (2008) Measure-
ments and predictors of on-road ultrafine particle concentrations and
associated pollutants in Los Angeles. Atmospheric Environment 42:
207-219

Goodchild MF (2007) Citizens as voluntary sensors: Spatial data
infrastructure in the world of Web 2.0. International Journal of Spatial
Data Infrastructures Research 2: 24-32

Gulliver J, Briggs D (2007) Journey-time exposure to particulate
air pollution. Atmospheric Environment 41: 7195-7207

Jaejun YOO, Joo T, Park JH, Lee J (2002) A video geographic infor-
mation system for supporting bi-directional search for video data and

Page 29 of 64

mailto:philbartie@gmail.com
mailto:simon.kingham@canterbury.ac.nz
http://www.blueglen.com/prod_camnav_single.htm

OSGeo Journal Volume 8 FOSS4G 2009 Conference Proceedings

geographic information. Proceedings of International Symposium
2002

Kanjo E, Benford S, Paxton M, Chamberlain A, Fraser DS,
Woodgate D, Crellin D, Woolard A (2007) MobGeoSen: facilitating
personal geosensor data collection and visualization using mobile
phones Personal and Ubiquitous Computing

Kaur S, Clark RDR, Walsh PT, Arnold SJ, Colvile RN, Nieuwen-
huijsen M (2006) Exposure visualisation of ultrafine particle counts
in a transport microenvironment. Atmospheric Environment 40: 386-
398

Kingham S, Meaton J, Sheard A, Lawrenson O (1998) Assess-
ment of exposure to traffic-related fumes during the journey to work.
Transportation Research Part D-Transport and Environment 3: 271-
274

Microsoft Corporation (2006) Sensors and Devices - SenseCam.
Retrieved 22 May 2006 from http://research.microsoft.com/

sendev/project_sensecam.aspx

O’Donoghue RT, Gill LW, McKevitt RJ, Broderick B (2007) Expo-
sure to hydro-carbon concentrations while commuting or exercising
in Dublin. Environment International 33: 1-8

Polak J, Hoose N (2008) Mobile Environmental Sensing System
Across Grid En-vironments.

Ratti C, Pulselli RM, Williams S, Frenchman D (2006) Mobile
Landscapes: using location data from cell phones for urban analysis.
Environment and Planning B: Planning and Design 33: 727[96?]748

Red Hen Systems (2009) MediaMapper. Retrieved 20 May 2009
from http://www.afds.net/mediamapper.html

Rudman P, North S, Chalmers M (2005) Mobile Pollution Map-
ping in the City. Proceedings UK-UbiNet Workshop on eScience and
Ubicomp. Edinburgh,

Terwoert J (2009) EU-project VECTOR: Visualising cyclists[92?]
exposure to fine particles. Velo-City 2009. Brussels,

Van Roosbroeck S, Wichmann J, Janssen NAH, Hoek G, van Wij-
nen JH, Lebret E, Brunekreef B (2006) Long-term personal exposure
to traffic-related air pollution among school children, a validation
study. Science of the Total Environment 368: 565-573

Zeiner H, Kienast G, Derler C, Haas W (2005) Video documenta-
tion of urban areas. Computers, Environment and Urban Systems 29:
653-668

Page 30 of 64

http://research.microsoft.com/sendev/project_sensecam.aspx
http://research.microsoft.com/sendev/project_sensecam.aspx
http://www.afds.net/mediamapper.html

OSGeo Journal Volume 8 MapWindow 6.0

MapWindow 6.0
An Extensible Architecture for Cartographic Symbol-
ogy

Harold A. Dunsford Jr., Daniel P. Ames

Abstract
A robust, extensible architecture is critical to open
source projects that have a distributed developer and
user base. The MapWindow 6.0 project is using a new
architectural paradigm where extensibility is handled
from several different plug-in points, rather than a sin-
gle, application wide design. This allows new kinds
of extensibility to be explored such as tools and data
providers in addition to the more conventional appli-
cation wide extensibility. This presentation outlines
some of the improvements in the built in cartography,
but primarily addresses the .Net architectural decisions
that permit run-time discovery of new kinds of custom
symbology. Improvements include layering of differ-
ent kinds of symbols to make a compound symbol as
well as establishing cartographic sub-categories based
on vector attributes or raster values. The open ended
framework allows for an extremely flexible system of
run-time discovery so that the core libraries do not have
to be recompiled each time an external cartographic im-
provement is developed.

Introduction
The problem addressed in this paper is the inability
for an open source core application to anticipate all
of the symbolic requirements for new sorts of data.
Changes in the design model for the 6.0 version of the
open source MapWindow GIS project allow for new
kinds of plug-ins. One new kind of plug-in actually al-
lows for external libraries to control the business logic
of data management for a specific data format. The
software that controls the business logic that runs the
interface based run-time recognition of these new data
providers has also been encapsulated in the form of a
non-graphical component that can be easily added to a
new project as easily as dragging the Map control or the
legend onto that project. The inevitable consequence for
this is that eventually there maybe new styles of data
which need to be symbolized in an unconventional way.
This paper seeks to address the problem of how we can
design an architecture that is at once extremely flexible
and versatile, supplying a built in symbol set that is
as rich as professional software, but that is also mal-
leable, so that future developers can easily extend the
symbolic capabilities without having to recompile the
architectural core.

The techniques outlined in this paper are important

because architectures that support extensibility form a
robust framework for successful open source GIS plat-
forms to build on. While this quality is important for
both proprietary and open source systems, it is essential
when a spatially distributed developer base must co-
ordinate their efforts. Multi-tiered, modular and trans-
parent design standards allow for greater security and
design control of the low-level, shared libraries, and
also act as a contract to unify a wide range of extensi-
bility and customization that is added on top of that
core. This provides future and co-developers with a
common platform that can be extended without fear of
breaking other parts of the code – hence saving time
and development costs.

We propose that it is non-obvious as to how to use a
common interface or custom attribute to allow the core
library and other developers to use extension classes
effectively if the most critical content is not described
by the interface itself. The conventional, run-time dis-
covery of extension classes traditionally relies on using
either System.Reflection or the Microsoft Add-In frame-
work in order to specify light weight contract interfaces
that then can be fleshed out with code that implements
those interfaces. For something like a data provider,
where the end result is an in-memory data format that
always matches a given interface, this sort of traditional
extensibility interface is ideal because you know what
to expect from each additional data provider. Symbol-
ogy, however, is something that should support a rich
and versatile collection of properties that can’t be pre-
dicted in advance. For instance, extending a point sym-
bol to be represented by an image requires completely
different attributes and properties than describing the
point using a color, size and shape. What’s wrong with
previous proposed solutions?

Previous GIS architectures fail to address these ver-
satile areas of extensibility. The conventional open
source approach is that tasks like handling data for-
mats and rendering those data formats are handled
internally and modified or developed by only a select
few that are privileged to be working on the core li-
brary. Even the most cutting edge advancements in
Microsoft’s Add-In Framework simply allow contract
interfaces to be updated to newer versions, and don’t
address a way to easily extend the project with effec-
tively unbounded components.

The first key component of our approach is the de-
sign of the base interface. This includes an ISymbol, for
points, an IStroke for lines and an IPattern for polygons.
These basic elements have minimal common attributes,
but they all have methods that allow for those symbols
to render themselves, given the set of coordinates, or
a graphics path, to draw. The important thing from
the standpoint of the rendering is that it won’t matter

Page 31 of 64

OSGeo Journal Volume 8 MapWindow 6.0

what kind of properties control that rendering method,
since all the symbols, for instance, evoke the same basic
drawing method. These base interfaces also allow for
run-time identification of classes that extend symbol-
ogy.

The second topic of discussion by this paper is how
to design a corresponding user interface that can allow
for largely unpredictable symbol elements to be success-
fully modified by the user without knowing them in
advance. The Dot Net Property Dialog component will
be discussed as an option for a default user interface
if one is not specified, but more importantly we will
illustrate how software can allow developers to provide
a custom control, or tab-page where they handle their
own symbology.

Finally, we will address using extension methods
(first made available with the 3.0 version of the .Net
Framework) to allow developers to create new methods
that are programmatically discoverable to intellisense,
but also allow easy configuration of their new symbols
without requiring the core library to be recompiled.

Background

MapWindow
The MapWindow project was first established in 1998
at Utah Water Research Lab in Logan as an alternative
to using MapObjects LT 1.0. (1) The proprietary con-
trols provided by ESRI prevented users from modifying
the underlying data, however, which was of limited
use for research oriented applications. The project re-
quirements included being able to dynamically alter the
shapes of vector data, or access the data values for grids.
They created the core MapWinGIS.ocx component, an
ActiveX control that could provide the low level access
to the data formats that developers could then rapidly
turn into successful projects. This ultimately led to
the development of the MapWindow application be-
cause many of the common features that were shared
between projects ended up being replicated over and
over again. The fully developed project today is called
MapWindow 4.x.

The MapWindow 6.0 project is focused on devel-
oping modular components written in C#. (3) Since
everything written for MapWindow 6.0 is in a man-
aged, Dot-Net language, it will be far more portable
in terms of using the project in web applications or
across platforms using the open source Mono frame-
work. The MapWindow 6.0 version of the project began
in the summer of 2007 as an effort to develop a topology
toolkit for MapWindow 4.x. In 2007, the team added
the Net Topology Suite into the project. This required
such a serious re-thinking of the underlying objects that
it was beneficial to start development of a completely
new version of MapWindow from scratch, which is
now MapWindow version 6.0. (2)

Other GIS Extensibility Architectures
ArcGIS

The ESRI ArcGIS object model consists of a host of
interconnected objects, each with a very precisely de-
fined role. The paradigm is to provide programmatic,
macro-style access to the underlying objects through
interfaces that restrict the functionality. In the Visual
Basic for Applications (VBA) Macro development en-
vironment that is associated with ArcGIS versions 8.0
and larger, directly accessing an object doesn’t expose
the majority of its properties or methods. An example
is the MxDocument object. In order to access more, you
must first dimension a new IMxDocument interface,
and point it at the object. This allows tight control over
what aspects of the software external developers can
control by exposing only a limited subset of members.
Access permissions could be adjusted so that the full
object is only viewable to developers working within
the ArcMap project itself. There is no model in place
to allow other developers to provide the base applica-
tion with support for new data formats, though they
are beginning to rely on the open source community
projects like GDAL for some of their data member sup-
port. They also do not provide direct access to outside
developers to low level functionality like rendering.

Grass

The extensibility model for the GRASS project involves
creating new libraries that can perform new, indepen-
dent operations. As is evident from their book Open
Source GIS A GRASS GIS Approach, GRASS 6 is writ-
ten in the ANSI C programming language and hosts
more than 350 modules for management, processing,
analysis and visualization of GIS data. The strategy that
they have adopted is to require that all data formats
be converted to their standardized raster and vector
formats before any other module can work with the
data. This allows for analysis of data directly from a
file that might be too large to store in memory, while
reducing the complexity of the analysis methods to
working with a single data format. They also recog-
nize that not every user will be an expert coder. In
order to support this intermediate level of program-
mer, the GRASS supports script programming. UNIX
Shell, PERL and Python scripts are supported, allowing
repetitious tasks to be handled through their scripting
language. They are the most mature version of truly
open-source GIS today, and can be thought of as a text-
book example of how to run a successful, long-term
open source venture. GRASS shows us that in order to
be a good, open-source project; you must have a frame-
work that allows for future development and expansion
over a long time. Our extensibility model explores how
to give the .Net libraries a common GIS framework to
use in order to talk to each other through the use of
common interfaces, rather than the use of a common

Page 32 of 64

OSGeo Journal Volume 8 MapWindow 6.0

data format, but ultimately the long term goal is the
same.

Quantum GIS

Given that there are hundreds of open source projects
that feature GIS today, some of which are featured at
http://opensourcegis.org/, it is hard to choose one
to best illustrate the extensibility models that are cur-
rently available from applications that fall in the middle
spectrum. One of the more complete and well known
systems is Quantum GIS. The approach from Quantum
GIS has always been more like a standard windows-
style programming environment, instead of the tra-
ditional, Linux-style command prompt that was the
principal mechanism for working with GRASS until
just recently.

Quantum GIS supports a plug-in architecture that
is more reminiscent of what you would likely find in
a traditional software package. They even support a
special type of Data Provider plug-in that allows de-
velopers to specifically extend the data formats that
can be supported by the project. There are posts about
Data Providers on their bulletin going back as far as
2006, so even though a big part of this presentation is
about introducing plug-ins with distinct capabilities,
this isn’t an entirely unproven concept. The plug-in
architecture for QGIS works by using python script
or C++ files that satisfy certain criteria, i.e. hosting a
particular script file with the name plugin.py and in
essence writing script to match specific method names
or schema. The weakness of this model is that the pow-
erful development environment tools like intellisense
are not generally available when working with a script-
ing language. With an interface, modern development
environments are able to flesh out a skeleton with the
correct signature that is type-checked at compile time.
Further, while the special plug-ins exist to support data
formats, those must first be accepted by the community
and then manually added into the core library.

Programming Methods
Interfaces
An interface acts as a kind of skeleton framework for
classes. In the C# language, dual-inheritance is not
allowed, but it is possible to implement as many in-
terfaces as you want. (5) Therefore, it has become
fairly conventional to devise small interfaces that can
be re-used in many different contexts. Many examples
are built into the .Net Framework, such as the IClone-
able interface which simply specifies that there will
be a Clone() method that returns a new object. There
are many classes that support this method, and those
classes come from very diverse sets of class hierarchies.
An interface can be thought of as a contract that des-
ignates what a particular class will do, regardless of

the actual code that is used to fulfill the contract. As
was illustrated in an earlier paper published in Position
IT (2) the minor performance characteristics of virtual
calls through an interface is insignificant compared to
the performance penalty of using property accessors.
There is a limitation in the sense that public variables
called fields cannot be defined on an interface, and so
using an interface forces the use of property accessors
or methods, and using property accessors can slow
down performance significantly in large loops.

Property-Grid

Figure 1: Property-Grid Control

The Property Grid control shown in Figure 1 is a
.Net control that creates a kind of tabular layout that
itemizes each of the public properties on a class, and
next to that, provides an interactive spot where a value
can be changed. The default behavior of the editing
region is type dependant, so that simple values might
only allow a text-box style editing, while more com-
plex members might have a drop-down control or even
provide a button that launches an entire dialog. These
behaviors can be customized for new class data types
using so called ‘Editor’ classes that control how the
property grid behaves during the editing process. The
editor to use for a new class is controlled by the use of
attributes.

The significance of this control is that it does not
require any pre-existing knowledge of what properties
exist on a variable. While we don’t recommend that
everything relies on property grids, we are using it as
an example of an open ended user interface design.
Without relying on anything more complex than a .Net
property grid, it then becomes possible to provide a
default user interface for any new symbol classes that

Page 33 of 64

http://opensourcegis.org/

OSGeo Journal Volume 8 MapWindow 6.0

do not explicitly define a user interface editor.

Extension Methods
Extension methods have been a part of the of the .Net
framework since version 3.0. These methods appear
to extend the number and type of methods that can
be accessed programmatically from an existing class
or interface, even if the class is a sealed class and can-
not be modified through inheritance. (4) The methods
and properties that appear in intellisense are normally
limited by the type definition of that variable. How-
ever, with extension methods, new methods can be
‘appended’ to the existing class, without ever modify-
ing the source code for the class. In the visual studio
development environment, these extension methods
are designated by a purple down arrow to the left of the
method. The importance of extension methods for this
paper is that they represent the means by which inter-
mediate level developers can design programmatic ac-
cess to control new symbology members, making them
programmatically discoverable through intellisense to
future developers.

Between open ended user interface components like
the property grid dialog and the extension methods,
applications like MapWindow can support a new de-
sign concept which can easily build from or extend core
libraries.

Figure 2: Transpose Extension Method

MapWindow 6.0 Symbology

Symbol Class Hierarchy
As of 6/29/2009, the architecture for the symbology
interfaces follows a standard idea where a random but
simple coloring scheme is applied to an entire layer
as soon as the layer is added to the map. The layer
does not host the descriptive characteristics directly, but
rather stores a reference to a single scheme. The type
of scheme depends on the type of features being repre-

sented. A PointScheme, for instance, works with point
data, while PolygonScheme and LineScheme represent
schemes that are specific to describing polygons and
lines. The classes use a collection concept, so that each
Scheme represents a collection of Categories. The strict
role of a category is that it combines a query string with
a Symbolizer. The string is used to select the members
that the symbology will be applied to. This enables an
easy programmatic access to hosting complex attribute
based symbology. Finally, a PointSymbolizer is made
up of at least one, but potentially several overlapping
Symbols. A LineSymbolizer is made up of Strokes. A
PolygonSymbolizer is made up of Patterns.

Point Symbology

Figure 3: Point Symbol Classes

While each of the members above has a correspond-
ing interface, it should be pointed out that only the
lowest level need be developed in order for the devel-
oper to extend the graphical representations for vector
features. For instance, if you wanted to design a new
class to draw point types, implementing the ISymbol is
sufficient, allowing it to use the pre-existing structure
of symbolizers, categories and schemes. The existing
symbol classes implement this interface and currently
control their own drawing. All of the point symbol
classes provide an offset, size and angle, but even char-
acteristics like color are not universal. A PictureSymbol
uses an image to control the drawing and has no infor-
mation about coloring, though it can have an outline.
A CharacterSymbol provides properties to control the
font family name, the style and the character. The Char-
acters can consist of artistically created symbol sets
which support vector drawing and so will look good
at any scale. A SimpleSymbol provides the most ba-
sic point symbology with an enumeration of default
shapes. This simply uses GDI+ drawing methods to
build the shapes programmatically.

Page 34 of 64

OSGeo Journal Volume 8 MapWindow 6.0

Line Symbology

Figure 4: Line Stroke Classes

The equivalent concept for lines uses the IStroke
interface. Each stroke represents a pass with a pen. At
the moment, there is a SimpleStroke and Cartographic-
Stroke. The simple stroke allows for a color, width and
dash pattern selected from an enumeration. It uses a
default choice of rounded end caps. The Catographic
stroke extends the capabilities of the simple stroke. It
adds a custom dash pattern, custom contour pattern,
line cap styles, and the ability to specify a number of
point symbols as decorations along the line. Since these
strokes are then layered one on top of the other, very
complex line structures are now possible. If, however,
a user wanted to design a new kind of stroke that was
designed entirely by point symbols drawn at fixed dis-
tances, it could be done easily by creating a plug-in
that implements the IStroke interface. Currently, the
drawing is handled by passing the GraphicsPath for
the lines to draw (after they have been translated to
screen coordinates) to each stroke in sequence where it
handles its own drawing using GDI+ graphics calls.

Polygon Symbology

The final set of descriptive symbols is for polygons. The
PolygonSymbolizer is slightly more complex than the
symbolizers for points or lines because in addition to
having a collection of patterns, it also specifies a line
symbolizer to use for drawing the borders. In this way,
we get to re-use the drawing code for the lines when
drawing the borders of the polygon. The individual
patterns include a SimplePattern that only specifies a
fill color. A PicturePattern is created using a collection
of tiled images. Finally a GradientPattern uses linear,
circular or rectangular gradients with various rotations
and colors. The gradient can be controlled programmat-
ically to work with many colors and positions (ranging
from 0 to 1).

These new cartographic capabilities give an extraor-

dinarily rich way to draw, color, or depict vector feature
content, but what is most innovative is that the sym-
bology itself is extensible. Raster symbology also ex-
ists, but is not tremendously different from techniques
dating back to earlier versions of MapWindow, where
several color breaks subdivide a raster.

Figure 5: Polygon Pattern Classes

User Interface Design

Figure 6: Point Symbolizer User Interface

Double clicking on the representation below the
layer automatically launches a complex dialog that al-
lows the customization of that symbol. As is illustrated
in Figure 3, a fairly straight forward collection of prop-
erties exists described on the Simple Properties tab.
A Drop-down currently set to ‘Simple’ controls what
elements appear in the tab control. The extensibility

Page 35 of 64

OSGeo Journal Volume 8 FOSS4G 2009 Conference Proceedings

allows new Symbol types to appear in this drop-down,
and, while still in the planning stages, we plan on sup-
porting a ISymbolUIEditor interface that allows users
to specify the exact layout of a tab control for editing
their custom symbol type chosen from the drop-down.
In such a case, the layering (shown in the graphical list
representations on the left side of the form) and content
in the placement group would be re-used as common
content, while new controls would appear where the
style, color and outline groups currently appear. Simi-
lar interfaces exist for specifying character and picture
symbols as well as all the types of stroke or pattern.

Discoverable Extension
It would be elegant for this paper if we could use ex-
amples of existing discoverable extension methods that
control properties on symbol classes in order to best il-
lustrate its usefulness in connection with an extensible
symbology. Unfortunately, these haven’t been writ-
ten yet. However, we can gain important insights by
drawing an analogy from an extensible data provider
interface instead. At the time of submitting this paper,
we have mostly begun using the extension methods for
adding topology methods to the IFeature. The original
intent of extension methods was to allow an easier way
to work with sealed enumerable classes when working
with System.Linq. The most common use of extension
methods is simply to extend an existing class without
changing it. However, the benefit that we have found
to be the most useful from an extensibility standpoint
is that we can make the interfaces that new developers
have to implement much leaner. For instance, an IFea-
ture currently specifies a coupling between vector in-
formation and attributes. This would be fairly straight
forward to implement. However, adding an apparently
simple new method called Intersects on this interface
would force every individual that only wanted to sup-
port a new data format to also implement their own
intersection code. Since topology methods are quite
advanced and require a sizeable infrastructure to draw
on, we chose to support the intersect behavior using ex-
tension methods. Any IFeature can now intersect with
another IFeature, though it must yield to the definition
provided by the extension method.

The danger of extension methods is that they can
only be replaced with ‘new’ functionality and can’t ever
be overridden. This means that if a feature class im-
plements its own Intersects logic, if an instance of that
class is cast as an IFeature interface, then it will call

the Intersects extension method, and not allow the new
logic to replace the built in logic.

Summary and Conclusions
Symbology is a critical part of feature representation,
but in both proprietary and open source GIS systems,
this fundamental aspect of the representation is seldom
extensible. The usual mechanism for managing exten-
sibility tends to be limited to allowing automation of
repetitive tasks, working well within the existing data
management, analysis and rendering architectures. The
extensible architecture used by this version of MapWin-
dow allows symbolizers to be discovered at run-time,
opening up a vast new domain for customization and
personalization of the open source framework. The
user interface design allows a coupling between cus-
tomizable forms and smart default controls that work
reasonably well even if no custom form is provided.
The difficulty of working with open ended interfaces
programmatically can largely be addressed by the in-
troduction of new extension methods that access or set
values. These extension methods can function at many
different levels.

Harold A. Dunsford Jr.
Department of Geosciences
Idaho State University
Idaho, USA
dunsharo@isu.edu

Daniel P. Ames P.E.
Department of Geosciences
Idaho State University
Idaho, USA
amesdani@isu.edu

Bibliography
[1] D. P. Ames. MapWinGIS Reference Manual: A function guide for the

free MapWindow GIS ActiveX component. Lulu.com, Morrisville,
North Carolina, 2007.

[2] H. Dunsford. Restructuring of the mapwindow gis project. Posi-
tionIT, April/May:54–59, 2009.

[3] H. Dunsford et al. Community code development: A new
paradigm for geospatial software in support of the data for en-
vironmental modeling(d4em) project. In AWRA Spring Specialty
Conference GIS and Water Resources V, San Mateo, California, 2008.

[4] Microsoft. Extension methods (c# programming guide). 2008.
URL http://msdn.microsoft.com/en-us/library/bb383977.

aspx.
[5] MSDN. Explicit interface implementation: C# program-

ming guide. 2008. URL http://msdn.microsoft.com/en-us/

library/ms173157.aspx.

Page 36 of 64

mailto:dunsharo@isu.edu
mailto:amesdani@isu.edu
http://msdn.microsoft.com/en-us/library/bb383977.aspx
http://msdn.microsoft.com/en-us/library/bb383977.aspx
http://msdn.microsoft.com/en-us/library/ms173157.aspx
http://msdn.microsoft.com/en-us/library/ms173157.aspx

OSGeo Journal Volume 8 A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

A Data System for Visualizing 4-D
Atmospheric CO2 Models and Data
Tyler A. Erickson, Anna M. Michalak, John C. Lin

Abstract
This paper describes a geospatial data system that pro-
duces KML representations of complex spatio-temporal
datasets related to modeling the atmospheric carbon cy-
cle. KML is an open standard language for transferring
annotated geospatial data that can be used by many
modern geospatial software packages, particularly vir-
tual globe applications. The server component of the
data system is built using a variety of open source soft-
ware packages, which provide flexibility for creating
custom geospatial representations of the datasets. The
paper shows examples of how KML representations
of atmospheric CO2 datasets and model outputs can
be visualized with virtual globe client applications, al-
lowing a diverse group of users to explore the complex
scientific datasets that are central to the discussion of
climate change and global warming.

Introduction
The general population’s awareness of, and interest
in, climate change has increased dramatically in recent
years. The consensus among climate scientists is that
climate change is occurring, and that there is “very
high confidence (9 out of 10 chance of being correct)
that the global average net effect of human activities
since 1750 has been one of warming” (19). Although
the need for further work on specific scientific aspects
remains, the discussion has largely progressed from
“is climate change occurring?” to “how will climate
change progress in the future?” and “how can human
society mitigate or adapt to climate change?”

Several factors affect the energy balance of the cli-
mate system, including greenhouse gases, aerosols, and
land surface properties. Of all the components, the
increase in the atmospheric concentration of carbon
dioxide (CO2) has been responsible for the largest in-
crease in radiative forcing, or tendency to warm the
Earth’s surface. In 2007, the International Panel on
Climate Change (IPCC) published a summary report
stating that “carbon dioxide is the most important an-
thropogenic greenhouse gas that contributes to climate
change” (19).

CO2 is continuously exchanged between the atmo-
sphere and the Earth’s surface, including land and
oceans. The rate of exchange, or flux, is spatially and
temporally variable, with this variability itself changing
across scales. Overall, approximately half of current an-

thropogenic emissions of CO2 are taken up by land and
oceans, which act as natural carbon “sinks.” However,
there is a lack of understanding of where these sinks
occur, how they vary in time, and how they are affected
by climate variability and other processes. This, in turn,
limits the skill of existing models in predicting future
changes in net carbon balance (12), and, therefore, the
future atmospheric concentrations of CO2. Because
CO2 flux can only be measured directly at relatively
small spatial scales and at a limited number of sites
(e.g. (2)), the estimation of CO2 fluxes on regional to
continental scales relies heavily on models and indirect
measurements.

One approach that carbon cycle scientists use to
characterize the spatial and temporal variability of CO2
fluxes is to relate concentrations of atmospheric CO2
measured in the atmosphere to fluxes occurring in up-
wind regions, through a process called inverse mod-
eling (e.g. (10)). This approach couples atmospheric
CO2 observations with numerical models describing
winds and weather patterns, and any additional in-
formation relevant to estimating carbon exchange, in
order to trace fluctuations in atmospheric concentration
measurements of CO2 backwards in space and time to
the sources and sinks. This process allows scientists
to characterize variability in upwind carbon exchange
between the Earth’s surface and the atmosphere.

Modeling and understanding the sensitivity of avail-
able CO2 observations to upwind fluxes is a key com-
ponent of the inverse modeling framework. One ap-
proach, described in this paper, involves the use of
a Lagrangian model, which simulates large numbers
of particle trajectories backwards in time, starting at
the location and time of the measurement, to iden-
tify the regions (in space and time) that influence the
measured concentration. This modeling approach pro-
duces a diverse set of spatial and temporally varying
datasets, with concentration measurement locations
that are fixed in 3-D space and variable in time, particle
trajectories that are variable in 3-D space and time, and
sensitivity maps of measurements to surface fluxes that
are variable in 2-D space and time.

The focus of this paper is the development of an
approach for sharing these complex spatial and tempo-
ral datasets with a diverse set of users, ranging from
the general public to carbon cycle scientists and deci-
sion makers. These spatial and temporal datasets can
be difficult to explore and visualize, due to the high
dimensionality of the data. An ideal tool for exploring
these datasets would:

• possess capability for displaying 3-D spatially and

Page 37 of 64

OSGeo Journal Volume 8 A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

temporally referenced data;
• have an easy-to-use interactive user interface, that

allows the user to navigate the data in both space
and time, and to query attributes of the data;

• have support for overlaying other georeferenced
datasets; and

• be freely available and be compatible with commonly
used software.

While many past approaches for visualizing complex
geospatial data have some of these characteristics, all
of the characteristics are important for communicating
the data to a diverse set of users.

Fortunately, recent advances in geospatial software
have reduced the barriers for visualizing 3-D and 4-D
datasets. Virtual globes, which are interactive client ap-
plications, can be used to present custom 4-D datasets
over a richly detailed reference model of the Earth (3).
Accessing this type of visualization no longer requires
advanced training in geospatial information systems
or computer science, but rather is accessible by typical
computer users. Google Earth, a popular virtual globe
with a simple user interface, has been downloaded over
350 million times (31).

This paper presents a client-server geospatial infor-
mation system that allows users to visualize several
complex datasets used for understanding terrestrial
carbon fluxes. The geospatial data server is built using
free and open source software (FOSS) components that
store, process, and format spatial and temporal datasets
so that they can be easily visualized, using modern vir-
tual globe software packages. The system described
in this paper incorporates the desired characteristics
listed above, and is built on a flexible platform that can
be easily enhanced in the future.

Background
This section presents an overview of the scientific back-
ground for the models used to generate datasets in-
cluded in the visualization and of open source software
development.

Atmospheric CO2 Data and Modeling
Regular atmospheric measurements of CO2 began in
1958 with observations taken at Mauna Loa, Hawaii
(19). Since that time, global atmospheric CO2 mon-
itoring networks have expanded significantly. The
National Oceanic and Atmospheric Administration
(NOAA) Earth System Research Laboratory (ESRL)
Global Monitoring Division (GMD) maintains the
NOAA-ESRL Cooperative Air Sampling Network,
which currently includes over 150 sites globally (28).
More recently, NOAA-ESRL-GMD has developed a Tall
Tower Network of sites with continuous observations
of CO2 and related gases (29). This network focuses on
the continental United States, and currently includes

eight tall tower sites. Continuous measurements are
particularly useful for inverse modeling studies, be-
cause they allow individual sampling locations to “see”
large regions, as a function of changing wind directions
and weather patterns.

Data from two of the Tall Tower Network sites are
used for illustration purposes in the presented appli-
cation. The first site is the LEF tower in Park Falls,
Wisconsin, a 396m tower that has been operating since
1994. The second site is the 107m AMT tower in Argyle,
Maine, which has been operating since 2003. In the
presented analysis, the concentration measurements
from these towers were averaged to 3-hour intervals
over the time period of June 1 to July 8, 2004. Mete-
orological information derived from the WRF model
and atmospheric trajectories from the STILT model (de-
scribed later in this section) were used to calculate the
influence of atmospheric CO2 arriving from outside the
examined domain on the available observations, and
this impact was pre-subtracted from observations. As a
result, the CO2 concentration variations examined here
are influenced only by carbon sources and sinks within
the examined North American domain (15).

As discussed in Section 1, one method used by car-
bon cycle scientists to quantify the sensitivity of at-
mospheric measurements to surface fluxes involves
simulating collections of particles backwards in time
from the measurement location, while modeling the
turbulent dispersion as a stochastic process (30). The
Stochastic Time-Inverted Lagrangian Transport Model
(STILT) is one such model that estimates subgrid parti-
cle movement by interpolating gridded meteorological
fields to the location of the particle and parameterizing
the turbulent motions as functions of these meteorolog-
ical variables (23). The STILT model is an adaptation of
the HYSPLIT trajectory model (7) but incorporates four
key improvements:

• a modified turbulence scheme that ensures adher-
ence to the “well-mixed criterion”, a manifestation
of the 2nd Law of Thermodynamics (49);

• close coupling to atmospheric models to minimize
deviations from mass conservation (27);

• capability to account for errors in the meteorological
fields using a Monte Carlo method (22);

• a revised method for estimating the height of the
planetary boundary layer (PBL) that generalizes to
unstable, neutral, and stable conditions (50). The
PBL is the lower portion of the atmosphere in which
trace gas concentrations are most sensitive to surface
fluxes (47).

The STILT model runs can utilize gridded meteorologi-
cal datasets from a variety of sources, including high-
resolution limited area models like the Regional Atmo-
spheric Modeling System (RAMS) (5) and the Weather
Research and Forecasting (WRF) model (45). For this
study, WRF v2.2 was used to generate meteorological

Page 38 of 64

OSGeo Journal Volume 8 A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

fields used by STILT (27). A 3-level nested grid domain
was used, with base grid of 40-km spanning 10°N to
70°N, and 170°W to 50°W with higher resolution grids
of 10-km resolution over the Eastern half of the United
States, and 2-km resolution grids surrounding three
tall towers, including the two examined in the current
study. 10 day back-trajectories of 500 particles per hour
from each receptor (tall tower location) were simulated.
From these trajectories, a temporal grid was produced,
representing the sensitivity of atmospheric concentra-
tions to upwind surface fluxes on a 3-hour time interval
and a 1°×1° grid. The sensitivities were derived using
times and locations where the particles were below the
planetary boundary layer, indicating that the air parcel
is sensitive to fluxes occurring at that location. These
sensitivity grids, a.k.a. footprints, provide the linkage
between locations measuring atmospheric concentra-
tions with upwind fluxes.

Biospheric fluxes play a critical role in the carbon
cycle and atmospheric CO2 concentrations, imposing
marked diurnal and seasonal cycles on CO2 variations.
The terrestrial biosphere absorbs CO2 through photo-
synthesis during the daytime of the growing season
and releases CO2 back to the atmosphere through res-
piration during the nighttime and the winter season
(43). To simulate these biospheric processes, a wide
variety of biospheric models have been developed over
the past several decades (44).

In this project, CO2 surface fluxes generated using
the CASA terrestrial carbon cycle model (39) were used,
which simulates ecosystem processes and is driven by
satellite observations and meteorology. The surface
fluxes, which were presented in Olson and Randerson
(32), were mapped every 3 hours and at 1°×1° resolu-
tion, matching the sensitivity datasets.

The biospheric processes controlling carbon diox-
ide fluxes are complex functions of a large number of
variables, including solar radiation, temperature, veg-
etation type, nutrient availability, disturbance history,
and soil moisture, among other factors. The interac-
tions between these variables result in a heterogeneous
distribution of fluxes that vary both in space and time.

Geovisualization

Geovisualization is an emerging field that includes ap-
proaches from a variety of disciplines, including car-
tography, scientific visualization, exploratory data anal-
ysis, and geographic information science, which pro-
vide tools for the visual exploration, analysis, synthesis
and presentation of data that contain geographic infor-
mation (9, 24). Geovisualization systems may include
support for temporal information, which is often lack-
ing in traditional geographic information systems (26)
but may be of critical importance for understanding
temporally-variable environmental datasets.

Many geovisualization systems allow for significant

levels of interaction, which allows users to explore data,
synthesize, confirm and communicate ideas through
guided discovery (8). In recent years the general pub-
lic has become familiar with interactive visualization
in several forms such as online maps used for driving
directions and virtual globes used by television news
programs to give spatial context to remote events.

The scientific community has begun to utilize freely
available virtual globe applications as geovisualization
tools to communicate scientific results (3) such as mete-
orological data (46), disease transmission observations
(18), and vertical profile data obtained from satellite
sensors (4). Many virtual globes can display custom
user content that is spatially (and may also be tempo-
rally) referenced, provided the data is in a standard
format.

The Keyhole Markup Language (KML) is an open
standard XML-based language for exchanging georef-
erenced feature data, styling, and annotation. KML
was originally created by Keyhole, Inc. and further
expanded by Google after it acquired Keyhole, Inc. in
2004. The KML 2.2 specification was submitted to the
Open Geospatial Consortium (OGC) standards orga-
nization, and became an official OGC standard (the
OpenGIS KML Encoding Standard) on April 14, 2008
(34). The adoption of the standard by the OGC should
encourage the development of visualization clients and
server software applications that use KML to exchange
spatial and temporal data.

One import feature of the KML language is the abil-
ity to access additional KML-formatted data at a spec-
ified URL using the Network Link functionality. This
allows KML viewers to hierarchically link to large exter-
nal datasets stored on or generated by remote servers.
This paper describes a data system, built with open
source software components, that produces KML for-
matted data with spatial and temporal attributes. Open
source is a software development method that allows
wide accessibility to the software’s code base for use,
improvement, and redistribution in modified or un-
modified forms.

Open source software has been adopted in many
areas of academic research, such as the R language for
statistical analysis (16). Rey (42) describes past interac-
tions between academic geospatial researcher and the
open source communities, as well potential opportuni-
ties for future cross-collaboration. In many ways, the
open source software development process is similar
to the scientific process of knowledge development (21)
in that it promotes peer review by external developers
(37) and the open source licenses allow for continuous
enhancements and improvements to a body of knowl-
edge.

Page 39 of 64

OSGeo Journal Volume 8 A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

Data System

A flexible three-tier data system architecture was de-
signed to enable visualization of the carbon cycle
datasets (Figure 1). The database and application tiers
store, manipulate, and format the carbon cycle datasets
as requested by client applications via a HTTP con-
nection, enabling access by any client computer that
has access to the application server. The database and
application tier are created using open source geospa-
tial components, and communicate with the client ap-
plications using KML, an open standard language for
transferring geospatial data.

Figure 1: Overview of the open source data system compo-
nents (shaded grey) and their relationship to the Google Earth
virtual globe client application. The core of the application
server, GeoDjango, uses the functionality of several open
source libraries for formatting and manipulating data.

Data Storage

The foundation tier of the data system is PostGIS (41),
a spatial extension to PostgreSQL (38), a client-server
relational database. The PostGIS extension adds geo-
graphic data types and spatial operators to PostgreSQL,
which enables the database to store spatial, temporal
and attribute information as records. PostGIS was se-
lected because it is a widely used, free and open source,
and follows the Simple Feature Access Specification for
SQL (35), which is an open international standard for
storing and accessing geographic features.

Datafile For-
mat

Packages
Used

Dataset Examples

text file SciPy (1) land-water mask
MATLAB
(48) data file

SciPy sensitivity maps, bio-
spheric flux maps

R formatted
data file

RPy (25)
& R (16)

particle locations

Table 1: Summary of the open source packages used to im-
port datafiles.

Application Server

The GeoDjango web framework is the core of the data
system. GeoDjango is an integration of the Django (6)
web framework with several open source geospatial li-
braries (GEOS, proj.4, GDAL) that includes support for
spatial databases and provides spatial processing func-
tionality. GeoDjango exposes the geometric data types
and operators provided by PostGIS at the database
level. GeoDjango is written in Python (40), a general-
purpose object-oriented programming language that
can be used for many kinds of software development
and is known for its code readability and its ability to
integrate with other languages and tools. GeoDjango
is a web server that shares content using the Hypertext
Transfer Protocol (HTTP). While the content is typically
a web page, for this data system we have customized
GeoDjango to serve KML documents.

The functionality of GeoDjango is enhanced by inte-
grating with several open source libraries, as shown in
Figure 1. The libkml C++ library (20) provides a struc-
tured way of authoring valid KML documents. The
pylibkml library (11) is a Python wrapper for libkml,
which simplifies the use of the libkml objects from
within Python code. Key elements of the KML lan-
guage that are used by this data system are: (1) features
that have temporal attributes to denote a specific time
or interval of time, (2) network link elements that allow
for accessing remote datasets, and (3) model elements
that can incorporate 3-D models in the virtual globes to
symbolize attributes.

Measurement and model data used by the data sys-
tem originate from a variety of sources and occur in a
variety of formats. Several open source packages, used
by the data system, are summarized in Table 1.

Client Application

The client application’s role is to present spatially and
temporally referenced data to the user. Although any
application that implements the OGC KML standard
could be used to view the data, the visualizations
shown in this paper were produced using the Google
Earth virtual globe (version 5.0) (14).

Application: Visualizing Atmo-
spheric CO2 Data
This section describes how the data system was config-
ured to manage the atmospheric CO2 datasets.

Model Representation

The atmospheric transport and biospheric models pro-
duce datafiles with numerous attributes. Data models
were created in the GeoDjango framework to describe
data objects, their attributes, and relationships between

Page 40 of 64

OSGeo Journal Volume 8 A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

Conceptual
Object

Description Spatial & Temporal
Attributes

Sensor A tall tower measurement location, which includes the
static 3D location of the sensor.

3D point

Particle A single simulated particle that represents a parcel of air at
a specific time that will later arrive at the sensor location

time instant

Location A simulated 3D point location of a particle at a specified
time that corresponds to a specified concentration

measurement. Also includes the height of the planetary
boundary layer.

3D point; time;
corresponding to a specific

time interval (measurement)

Sensor
Measurement

Average CO2 concentration measured over a time interval time interval (measurement)

Sensitivity The sensitivity of a measurement to a surface flux time interval (measurement)
& time interval (surface flux)

Surface Region A discretized portion of the Earth’s surface 2D polygon
Surface Region

Flux
A modeled surface flux value time interval (surface flux)

Table 2: Summary of the GeoDjango data model objects used to manage the measured and modeled datasets.

objects. Table 2 gives a summary of the conceptual ob-
jects that are used in this visualization and highlights
the spatial and temporal attributes of each object, while
Figure 2 shows how the conceptual data objects are
interrelated.

In conjunction with the imported data, GeoDjango
uses the data model objects to create, populate, and
save instances of the data records to the PostGIS
database. Similarly, in order to access the data for the
visualizations, GeoDjango uses the data model objects
to query data stored in the PostGIS database.

Figure 2: Overview of the GeoDjango data models and their
relationships that are used to model the CO2 measurement
and model output datasets.

Atmospheric Measurements of CO2

The data for the atmospheric CO2 measurements, de-
scribed in the background section, was obtained as
MATLAB data files (one per measurement sensor). A
Python script is used to parse the data files and im-
port records into the PostGIS data tables, using the
SensorMeasurement object of the GeoDjango data mod-
els (Figure 2). KML-formatted representations of the
CO2 concentrations are obtained by submitting a URL
request to the GeoDjango server application. For exam-
ple, a request for a KML representation of a measure-
ment data series for the LEF Tall Tower sensor between
June 1, 2004 and August 8, 2004 would be:

http://localhost/measurement/station=LEF/

start=2004-06-01T00:00:00Z/end=2004-07-08T00:

00:00Z/series.kml

An example rendering of the CO2 concentration rel-
ative to background measured at the LEF Tall Tower
is shown in Figure 3(a), and an example KML repre-
sentation is shown in Table 3. The KML model rep-
resentation uses the <Location> element to set the 3-D
position and the <Link> element to reference an exter-
nal COLLADA model of a unit-sized, colored sphere
(green_sphere.dae). The volume of the sphere is set to
be proportional to the absolute value of the difference
between the measured and background concentrations
using the <Scale> element. CO2 concentrations that are
greater (less) than the background concentration are
symbolized in green (blue). Although KML is itself an
OGC standard, this encoding of the sensor data does
not conform to any of the current OGC Sensor Web
Enablement specifications (33).

When a user navigates time using the time slider
control in Google Earth, the color and size of the sphere
change according to the selected time, conveying the
temporal variability of the concentrations.

Page 41 of 64

http://localhost/measurement/station=LEF/start=2004-06-01T00:00:00Z/end=2004-07-08T00:00:00Z/series.kml
http://localhost/measurement/station=LEF/start=2004-06-01T00:00:00Z/end=2004-07-08T00:00:00Z/series.kml
http://localhost/measurement/station=LEF/start=2004-06-01T00:00:00Z/end=2004-07-08T00:00:00Z/series.kml

OSGeo Journal Volume 8 A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

Table 3: Example excerpt of KML for displaying a CO2 mea-
surement observation.

1 <Placemark>
2 <name>2004−06−0101 : 0 0 </name>
3 . . .
4 <TimeSpan>
5 <begin>2004−05−31T23:30 :00Z</begin>
6 <end>2004−06−01T02:30 :00Z</end>
7 </TimeSpan>
8 <Modelid=" model_1366 ">
9 <altitudeMode>relativeToGround</altitudeMode>

10 <Locat ion>
11 <longitude>−90.273157</longitude>
12 < l a t i t u d e >45 .945048</ l a t i t u d e >
13 < a l t i t u d e >396</ a l t i t u d e >
14 </Locat ion>
15 <S c a l e>
16 <x>28 .1536</x>
17 <y>28 .1536</y>
18 <z>28 .1536</z>
19 </S c a l e>
20 <Link>
21 <href>green_sphere . dae</href>
22 </Link>
23 </Model>
24 </Placemark>

Table 4: Portion of the KML document that defines a parti-
cle location for a specified time and particle paths between
consecutive locations. Although the location is valid for an
instant in time for a moving particle, the KML <TimeSpan>
tag for the particle location specifies a short interval to en-
hance the visualization. Paths between consecutive locations
are extended to the ground surface.

1 <Document>
2 < S t y l e i d =" s t y l e _ p a r t i c l e ">
3 < I c o n S t y l e >
4 <Icon>
5 <href> h t t p : //maps . google . com/mapfi les/kml/shapes/shaded_dot . png</href>
6 </Icon>
7 </ I c o n S t y l e >
8 </ S t y l e >
9 < S t y l e id=" s ty le_par t i c le_path_above_bnd ">

10 <L i n e S t y l e>
11 < c o l o r > f f 0 0 0 0 f f </ c o l o r>
12 <width>4</width>
13 </L i n e S t y l e>
14 <PolySty le>
15 < c o l o r >400000 f f </ c o l o r>
16 </PolySty le>
17 </ S t y l e >
18 < S t y l e id=" s ty le_par t i c le_path_below_bnd ">
19 <L i n e S t y l e>
20 < c o l o r > f f 0 0 f f 0 0 </ c o l o r>
21 <width>4</width>
22 </L i n e S t y l e>
23 <PolySty le>
24 < c o l o r >4000 f f 0 0 </ c o l o r>
25 </PolySty le>
26 </ S t y l e >
27 <Folder>
28 <name> l o c a t i o n s </name>
29 < v i s i b i l i t y >0</ v i s i b i l i t y >
30 <open>1</open>
31 <Placemark>
32 < v i s i b i l i t y >0</ v i s i b i l i t y >
33 <TimeSpan>
34 <begin>2004−06−03T04:30 :00Z</begin>
35 <end>2004−06−03T04:50 :00Z</end>
36 </TimeSpan>
37 < s t y l e U r l ># s t y l e _ p a r t i c l e </ s t y l e U r l >
38 <Point>
39 <extrude>1</extrude>
40 <altitudeMode>relativeToGround</altitudeMode>
41 <coordinates> −83.0984 ,77 .8721 ,4240.77</coordinates>
42 </Point>
43 </Placemark>
44 </Folder>
45 <Folder>
46 <name>path</name>
47 <Placemark>
48 < v i s i b i l i t y >0</ v i s i b i l i t y >
49 <TimeSpan>
50 <begin>2004−06−03T04:40 :00Z</begin>
51 <end>2004−06−10T19:00 :00Z</end>
52 </TimeSpan>
53 < s t y l e U r l ># s ty le_par t i c le_path_above_bnd</ s t y l e U r l >
54 <LineSt r ing>
55 <extrude>1</extrude>
56 < t e s s e l l a t e >1</ t e s s e l l a t e >
57 <altitudeMode>relativeToGround</altitudeMode>
58 <coordinates> −83.0984 ,77 .8721 ,4240.77 −83.1489 ,77 .8293 ,4255.398
59 </coordinates>
60 </LineSt r ing>
61 </Placemark>
62 <Placemark>
63 . . .
64 </Folder>
65 </Document>

Figure 3: Screenshots of Google Earth renderings of the KML
generated by the data system. (a) CO2 concentrations mea-
sured at the LEF Tall Tower. The volume of the sphere is
proportional to the difference between the measured and the
background concentrations. The sphere color (green/blue)
is used to denote whether the measured concentrations are
below/above the background concentration. (b) Simulated
particle locations (grey) representing air parcels that are sam-
pled by the LEF Tall Tower. The paths between simulated
locations are colored green/red to indicate whether the parti-
cle is below/above the atmospheric boundary layer.

Air Parcel Simulation
The source of the particle location data are R-formatted
datafiles produced by the STILT atmospheric transport
model. A Python script is used to parse the data files
and import records into the PostGIS data tables, using
the GeoDjango data models.

KML-formatted representations of the particle data
are obtained by submitting a URL request to the GeoD-
jango server application. For example, a request for
single particle trajectory captured by the LEF Tall Tower
measurements on 2004-06-10 at 19:00 (UTC) is:

Page 42 of 64

OSGeo Journal Volume 8 A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

Figure 4: Screenshots of Google Earth renderings of the KML generated by the data system. The screenshots all represent the
conditions at the same time: 6/20/2004 at 1:00 (UTC). (a) Particle locations (grey) and trajectories (red and green) for air parcels
that are sampled by the LEF Tall Tower, along with the estimated sensitivity (purple) of the LEF tower measurements to surface
fluxes. The height of the column is proportional to the sensitivity. (b) The overlaid sensitivity maps for the LEF and AMT tall
towers. The sensitivity of CO2 measurements taken at the LEF/AMT tall tower to surface flux are symbolized in purple/cyan.
(c) The sensitivity of CO2 measurements to the modeled biospheric flux of CO2 for measurements taken at the LEF and AMT
tall towers. The height of the columns is proportional to the sensitivity multiplied by the model biospheric flux. Fluxes from
the ground surface to atmosphere (respiration) are symbolized blue, while fluxes from the atmosphere to the ground surface
(photosynthesis) are symbolized green.

http://localhost/particle/station=LEF/

capture=2004-06-10T019:00:00Z/index=1/track.

kml

A user may also request a series of particle trajecto-
ries. For example, a request for a series of 100 particle

trajectories is:
http://localhost/particle_tracks/station=

LEF/capture=2004-06-10T19:00:00Z/index_start=

1/index_end=100/track.kml

Sample KML representations of the particle loca-

Page 43 of 64

http://localhost/particle/station=LEF/capture=2004-06-10T019:00:00Z/index=1/track.kml
http://localhost/particle/station=LEF/capture=2004-06-10T019:00:00Z/index=1/track.kml
http://localhost/particle/station=LEF/capture=2004-06-10T019:00:00Z/index=1/track.kml
http://localhost/particle_tracks/station=LEF/capture=2004-06-10T19:00:00Z/index_start=1/index_end=100/track.kml
http://localhost/particle_tracks/station=LEF/capture=2004-06-10T19:00:00Z/index_start=1/index_end=100/track.kml
http://localhost/particle_tracks/station=LEF/capture=2004-06-10T19:00:00Z/index_start=1/index_end=100/track.kml

OSGeo Journal Volume 8 A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

tions and paths between consecutive locations are
shown in Table 4. An example Google Earth rendering
of the particle tracks KML corresponding to measure-
ments collected at the LEF Tall Tower is shown in Figure
3(b) and a screenshot of several paths is shown in Fig-
ure 4(a). The particle paths are symbolized, using the
<StyleUrl> and <Style> elements, according to whether
the particle location is above (red) or below (green) the
atmospheric boundary layer. Particle locations that are
below the atmospheric boundary layer contribute to
the sensitivity of the sensor measurements to surface
flux. Similarly, the path between consecutive particle
locations is constructed with posts extending from each
measurement location to the ground surface.

Sensitivity Maps
Spatially discretized sensitivity maps are produced by
aggregating particle locations that are below the atmo-
spheric boundary layer for a specified time interval
(flux time), and that correspond to a specified measure-
ment time interval (measurement time).
Table 5: Portion of the KML document that symbolizes the
sensitivity of CO2 measurements made at the LEF Tall Tower
to a surface flux for a 1°×1° ground region and 3-hour time
interval.

1 <Document>
2 < S t y l e id=" s t y l e _ p o s i t i v e ">
3 <PolySty le>
4 < c o l o r > b f f f 0 0 f f </ c o l o r >
5 < o u t l i n e >0</ o u t l i n e >
6 </PolySty le>
7 </ S t y l e >
8 <Folder>
9 <name>LEF s e n s i t i v i t y </name>

10 <Placemark>
11 <TimeSpan>
12 <begin>2004−06</begin>
13 <end>2004−06−01T03:00 :00Z</end>
14 </TimeSpan>
15 < s t y l e U r l ># s t y l e _ p o s i t i v e </ s t y l e U r l >
16 <MultiGeometry>
17 <Polygon>
18 <extrude>1</extrude>
19 < t e s s e l l a t e >1</ t e s s e l l a t e >
20 <altitudeMode>relativeToGround</altitudeMode>
21 <outerBoundaryIs>
22 <LinearRing>
23 <coordinates> −96 ,44 ,15036.9 −95 ,44 ,15036.9 −95 ,45 ,15036.9 −96 ,45 ,15036.9
24 −96 ,44 ,15036.9 </coordinates>
25 </LinearRing>
26 </outerBoundaryIs>
27 </Polygon>
28 </MultiGeometry>
29 </Placemark>
30 <Placemark>
31 . . .
32 </Document>

A sample KML representation of a sensitivity map
element is shown in Table 5. The TimeSpan element
refers to the time interval of the surface flux, and the
symbolized map elements correspond to aggregate sen-
sitivity of the all measurements taken 0-10 days after
the surface flux time interval.

Examples of Google Earth screenshots rendering
the sensitivity map KML files are shown in Figure 4(a)
and 4(b). The extruded height of the sensitivity map
elements is proportional to the sensitivity of the CO2
measurements to the surface flux, and the elements are
uniquely colored to correspond to the measurement
sensor (magenta – LEF Tall Tower; cyan – AMT Tall

Tower). As can be seen by the overlapping regions
shown on the center section of Figure 4(b), more than
one measurement sensor may be sensitive to surface
fluxes occurring for a particular region.

While the sensitivity maps describe regions that
may have affected the concentration measurements, a
more informative variable to visualize is the sensitivity
value multiplied by a modeled CO2 flux. The bottom
section of Figure 4(c) shows a Google Earth rendering of
this variable using biospheric fluxes of CO2 estimated
by the CASA biospheric model. The extruded height of
the map elements is proportional to the absolute value
of the sensitivity multiplied by the biospheric flux. The
elements are colored according to the direction of the
flux, with green indicating transfer of CO2 from the
atmosphere to the land surface (photosynthesis), and
blue indicating release from the land surface to the at-
mosphere (respiration).

Discussion
CO2 Visualizations
The use of a user-friendly virtual globe application,
such as Google Earth, makes the datasets accessible to
a wide group of users. One use of the data system has
been to create data layers that can introduce carbon cy-
cle science to non-specialists such as educators. A KML
document that included many of the datasets discussed
in the paper was selected as a winner of Google For
Educators 2009 KML in Research competition because
“it represented a novel and compelling representation
of science using Google Earth and the KML language.”
39 The ease of use of virtual globe applications enables
other non-specialist groups, such as the general public
and decision makers whom are neither familiar with
carbon cycle science or geospatial information tools, to
access and explore the datasets.

Although carbon cycle scientists have long had
other tools such as mapping applications for under-
standing the datasets, this group of advanced users can
also benefit from having access to visualization tools
for viewing their data. Virtual globe applications can
be used for exploratory data analysis, helping scientists
to identify issues with their data that are difficult to
detect using traditional tools. For example, the virtual
globe interface allows users to easily change perspec-
tive to view both the ‘forest’ (carbon sensitivity vari-
ations across North America) and the ‘trees’ (particle
tracks that the sensitivity values are based on). This has
been used to identify potential issues with the simula-
tion of individual particle tracks which are not apparent
when viewing the sensitivity footprints at the continen-
tal scale. Also, due to the three-dimensional nature of
trajectories and the spatially and temporally varying
footprints, the visualization software described in this

39Ryan Falor (Google), personal communication, 2 March 2009

Page 44 of 64

OSGeo Journal Volume 8 A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

paper provides a valuable tool to probe changes due
to dynamic changes in the wind patterns. The tool en-
ables the user to investigate the dispersion pattern of
trajectories and quickly reveals the land areas whose
emissions are sampled by the trajectories, whenever
they dip within the PBL.

A key advantage of using a virtual globe to visual-
ize spatio-temporal data is the ability to interactively
navigate the temporal aspect of the datasets. The abil-
ity to select a specific time and to play forward and
backward in time allows users to explore the tempo-
ral variability in the ‘footprints’ of each concentration
measurement location. This conveys to users the effect
that constantly changing meteorological fields have on
the potential information can be extracted from the con-
centration measurements, a concept that is difficult to
fully convey with a non-temporal representation that
can only contain data for a single pre-specified time
interval. While past work has used geovisualization
tools to create movies to present changes over time (13),
the non-interactive nature of movies does not facilitate
exploration of the data. The sensitivity dataset actu-
ally has two temporal dimensions, which cannot be
directly represented in KML because KML objects can
only contain a single primitive element for time.

The sensitivity dataset relates a concentration mea-
sured over a time interval (time 1) to a surface flux that
occurred over a previous time interval (time 2). The
approach taken in this paper is to generate a KML rep-
resentation of sensitivity integrated over the entire time
that concentrations were measured (time 1), so that the
temporal primitive element in the KML refers to the
time of the surface flux (time 2). This allows the user
to use the Google Earth time slider to see variations in
surface flux sensitivity. A complementary and equally
useful approach would be to create a second KML rep-
resentation that integrates the sensitivity data over the
surface flux time (time 2), so that users could use the
time slider to see variations in regions that a particular
concentration measurement is sensitive to, regardless
of when the surface flux occurred.

Using Open Source Software for Research

The data system described in this paper was designed
to manage a variety of spatially and temporally refer-
enced datasets, which is a typical need for scientists
that monitor the Earth’s environment. The data system
was constructed using a variety of open source software
components because of the numerous advantages that
open source software has over proprietary components
in terms of flexibility, maintainability, simplicity, and
the developer community.

Because the source code is available, modifications
can be made to extend the functionality provided by
the component. If these modifications are contributed
back to the open source project, they may be incorpo-

rated into the core product. This can be advantageous
to the author of the modification, because future en-
hancements to the core product will be compatible with
the modifications. This is particularly important for
code developed as part of academic research projects,
which generally have a finite project length and do not
support long-term maintenance of software.

In the lead author’s experience, the process of de-
signing prototype geospatial applications for research
with open source software is quite different than with
closed source proprietary systems. When an issue is
encountered with closed source software, a user is re-
stricted in their options for resolving the issue because
they are prevented from inspecting and modifying the
source code. When developing with open source soft-
ware, there is always a way forward. If the user has
sufficient technical skills they can debug and fix the
issue themselves, or if not they can hire someone to fix
the issue. Online forums and chat groups for both types
of systems provide support to programmers, but for
open source projects there is less separation between
the developers and the users of the software, resulting
in quicker and more relevant answers to questions.

Google Earth, a freely available proprietary closed
source application, was primarily chosen as the visu-
alization client because of its support of the full KML
specification and its availability on multiple operating
systems (Linux, Mac, Windows). Other beneficial fea-
tures are the easy-to-use interface, the direct access to
detailed vector data layers and high-resolution imagery
that provide spatial reference, and the availability of
rendering effects such as atmosphere and sun options
that enhance the user’s perception of spatial and tem-
poral change, However the KML documents created by
this data system can be rendered by any virtual globe
application that supports the full OGC-KML specifica-
tion (36).

Conclusions
This paper has described a prototype data system for
producing visualizations of datasets related to atmo-
spheric CO2 modeling. The intent has been to present
an example of using open source geospatial software to
manage complex spatial and temporal data, and to pro-
duce datasets in an open standard format that can be
viewed in virtual globe applications as well as used by
other geospatial software. While this paper focused on
datasets related to modeling the atmospheric CO2 cycle,
the data management and visualization techniques are
appropriate for other regional to global-scale spatial-
temporal datasets.

Providing a means of visualizing spatial-temporal
datasets is important step toward increasing the non-
specialists’ knowledge of the complex processes that
cause climate change. Geovisualizations, such as those
presented in this paper, can be used to familiarize the

Page 45 of 64

OSGeo Journal Volume 8 A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

general public, decision makers, and future researchers
with an understanding the current state of knowledge
and challenges in modeling Earth’s systems and pre-
dicting future responses.

The data system presented in this paper is a work
in progress, with numerous enhancements envisioned.
Additional KML representations of the sensitivity
datasets could be added to allow users to visualize
according to the time of concentration measurement (in
addition to the currently implemented time of surface
flux). The current approach of storing discretized spa-
tial variables (i.e. sensitivity maps or biospheric flux
maps) as polygons could be improved by implement-
ing raster data storage. Additional complex datasets
used for inverse modeling, such as best estimate maps
and covariance matrices, could be included in the visu-
alization.

Acknowledgements

The authors gratefully acknowledges Adam Hirsch for
discussions related to particle tracking as well as Sharon
Gourdji, Kimberly Mueller, Vineet Yadav, and Debo-
rah Huntzinger who provided the modeling datasets
used in this visualization. The modeling datasets were
created with support from the National Aeronautics
and Space Administration under grant NNX06AE84G
Constraining North American Fluxes of Carbon Dioxide
and Inferring Their Spatiotemporal Covariances through As-
similation of Remote Sensing and Atmospheric data in a
Geostatistical Framework issued through the ROSES A.6
North American Carbon Program to the University of
Michigan.

Tyler A. Erickson
Michigan Tech Research Institute
Michigan Technological University
3600 Green Court, Suite 100
Ann Arbor, MI 48105
tylerickson@gmail.com

Anna M. Michalak
Department of Civil and Environmental Engineering, and
Department of Atmospheric, Oceanic and Space Sciences
The University of Michigan
183 EWRE Building
Ann Arbor, MI 48109-2125
anna.michalak@umich.edu

John C. Lin
Department of Earth and Environmental Sciences
University of Waterloo
200 University Avenue West
Waterloo, ON, Canada N2L 3G1
jcl@uwaterloo.ca

Bibliography
[1] Anonymous (2009) SciPy - Scientific Tools for Python.

http://www.scipy.org/ Accessed 29 June 2009
[2] Baldocchi D, Finnigan J, Wilson K, Paw U KT, Falge E (2000)

On Measuring Net Ecosystem Carbon Exchange Over Tall
Vegetation on Complex Terrain. Boundary-Layer Meteorology.
96(1):257-291

[3] Butler D (2006) Virtual globes: The web-wide world. Nature.
439(7078):776-778

[4] Chen A, Leptoukh G, Kempler S, et al. (2009) Visualization
of A-Train vertical profiles using Google Earth. Computers &
Geosciences. 35(2):419-427

[5] Cotton WR, Pielke Sr. RA, Walko RL, et al. (2003) RAMS 2001:
Current status and future directions. Meteorology and Atmo-
spheric Physics. 82(1-4):5-29

[6] Django Software Foundation (2009) Django | The
Web framework for perfectionists with deadlines.
http://www.djangoproject.com/ Accessed 28 June 2009

[7] Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4
modelling system for trajectories, dispersion and deposition.
Aust. Meteor. Mag. 47(4):295-308

[8] Dykes J (2005) Facilitiating Interaction for Geovisualization. In:
Exploring geovisualization. Kidlington, Oxford, UK: Elsevier.

[9] Dykes J, MacEachren AM, Kraak MJ (2005) Exploring geovisual-
ization. In: Exploring geovisualization. Kidlington, Oxford, UK:
Elsevier.

[10] Enting IG (2002) Inverse problems in atmospheric constituent
transport. Cambridge University Press

[11] Erickson TA, Kemker R (2009) pylibkml - a python wrapper
for the libkml library. http://code.google.com/p/pylibkml/
Accessed 29 June 2009

[12] Friedlingstein P, Cox P, Betts R, et al. (2006) Climate Carbon
Cycle Feedback Analysis: Results from the C4MIP Model Inter-
comparison. Journal of Climate. 19:3337

[13] Gardiner N (2006) High Definition Geovisualization: Earth and
Biodiversity Sciences for Informal Audiences. In: Geographic
Hypermedia. http://dx.doi.org/10.1007/978-3-540-34238-0_24
Accessed 26 June 2009

[14] Google Earth. http://earth.google.com/ Accessed 29 June 2009
[15] Gourdji S, Hirsch A, Mueller K, et al. (2009) Regional-scale geo-

statistical inverse modeling of North American CO2 fluxes - A
synthetic data study. Atmospheric Chemistry and Physics, 9,
22407-22458.

[16] Ihaka R, Gentleman R (1996) R: A Language for Data Analysis
and Graphics. Journal of Computational and Graphical Statis-
tics. 5(3):299-314

[17] IPCC (2007) Summary for Policymakers. In: Climate Change
2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change. Cambridge, United Kingdom
and New York, NY, USA: Cambridge University Press.

[18] Janies D, Hill AW, Guralnick R, et al. (2007) Genomic Analysis
and Geographic Visualization of the Spread of Avian Influenza
(H5N1). Syst Biol. 56(2):321-329

[19] Keeling CD, Bacastow RB, Bain-Bridge AE, et al. (1976) Atmo-
spheric carbon dioxide variations at Mauna Loa Observatory,
Hawaii. Tellus. 28:538-551

[20] kml.mashbridge, kml.bent (2009) libkml - a KML li-
brary written in C++ with bindings to other languages.
http://code.google.com/p/libkml/ Accessed 29 June 2009

[21] von Krogh G, Spaeth S (2007) The open source software phe-
nomenon: Characteristics that promote research. Journal of
Strategic Information Systems. 16(3):236-253

[22] Lin JC, Gerbig C (2005) Accounting for the effect of transport
errors on tracer inversions. Geophys. Res. Lett. 32(1)

[23] Lin JC, Gerbig C, Wofsy SC, et al. (2003) A near-field tool
for simulating the upstream influence of atmospheric obser-
vations: The Stochastic Time-Inverted Lagrangian Transport
(STILT) model. Journal of Geophysical Research (Atmospheres).
108(D16):ACH 2-1

[24] MacEachren AM, Kraak MJ (1997) Exploratory cartographic vi-

Page 46 of 64

mailto:tylerickson@gmail.com
mailto:anna.michalak@umich.edu
mailto:jcl@uwaterloo.ca
http://www.scipy.org/
http://www.djangoproject.com/
http://code.google.com/p/pylibkml/
http://dx.doi.org/10.1007/978-3-540-34238-0_24
http://earth.google.com/
http://code.google.com/p/libkml/

OSGeo Journal Volume 8 FOSS4G 2009 Conference Proceedings

sualization: advancing the agenda. Computers and Geosciences.
23(4):335-343

[25] Moreira W, Warnes GR (2009) RPy - A simple and efficient ac-
cess to R from Python. http://rpy.sourceforge.net/ Accessed 29
June 2009

[26] Mountain D (2005) Visualizing, Querying and Summarizing
Individual Spatio-Temporal Behavior. In: Exploring geovisual-
ization. Kidlington, Oxford, UK: Elsevier.

[27] Nehrkorn T, Eluszkiewicz J, Wofsy S, et al. (2010) Coupled
Weather Research and Forecast-Stochastic Time-Inverted La-
grangian Transport (WRF-STILT) Model. Meteorology and At-
mospheric Physics, 107, 51-64.

[28] NOAA ESRL GMD (2009) Observation Sites >> List-
ing by Project. ESRL Global Monitoring Division.
http://www.esrl.noaa.gov/gmd/dv/site/site_table.html
Accessed 28 June 2009

[29] NOAA ESRL GMD (2009) NOAA ESRL GMD Tall Tower Net-
work. ESRL Global Monitoring Division - Carbon Cycle Group.
http://www.esrl.noaa.gov/gmd/ccgg/towers/ Accessed 26
June 2009

[30] Obukhov AM (1959) Description of Turbulence in Terms of
Lagrangian Variables. Advances in Geophysics. 6:113

[31] Ohazama C (2008) Truly global. Google Lat Long Blog.
http://google-latlong.blogspot.com/2008/02/truly-
global.html Accessed 26 June 2009

[32] Olsen SC, Randerson JT (2004) Differences between surface and
column atmospheric CO2 and implications for carbon cycle
research. J. Geophys. Res. 109:D02301

[33] Open Geospatial Consortium, Inc. (2009)
Sensor Web Enablement WG | OGC®.
http://www.opengeospatial.org/projects/groups/sensorweb
Accessed 29 July 2009

[34] Open Geospatial Consortium, Inc. (2008) OGC® Ap-
proves KML as Open Standard | OGC®. OGC Website.
http://www.opengeospatial.org/pressroom/pressreleases/857
Accessed 26 June 2009

[35] Open Geospatial Consortium, Inc. (2006) Simple
Feature Access - Part 2: SQL Option | OGC®.
http://www.opengeospatial.org/standards/sfs Accessed
28 June 2009

[36] Open Geospatial Consortium, Inc. KML | OGC®.
http://www.opengeospatial.org/standards/kml Accessed 29
July 2009

[37] Open Source Initiative (2007) Home | Open Source Initiative.

Open Source Initiative website. http://www.opensource.org/
Accessed 26 June 2009

[38] PostgreSQL Global Development Group (2009) Post-
greSQL: The world’s most advanced open source database.
http://www.postgresql.org/ Accessed 28 June 2009

[39] Potter CS, Randerson JT, Field CB, et al. (1993) Terrestrial Ecosys-
tem Production: a Process Model Based on Global Satellite and
Surface Data. Global Biogeochem. Cycles. 7:811-841

[40] Python Software Foundation (2009) Python Programming Lan-
guage – Official Website. http://www.python.org/ Accessed
28 June 2009

[41] Refractions Research (2009) PostGIS : Home.
http://postgis.refractions.net/ Accessed 28 June 2009

[42] Rey S (2009) Show me the code: spatial analysis and open source.
Journal of Geographical Systems. 11(2):191-207

[43] Schlesinger W (1997) Biogeochemistry: An analysis of global
change. San Diego: Academic Press

[44] Sellers PJ, Dickinson RE, Randall DA, et al. (1997) Modeling the
Exchanges of Energy, Water, and Carbon Between Continents
and the Atmosphere. Science. 275(5299):502-509

[45] Skamarock WC, Klemp JB, Dudhia J, et al. (2005) A Description
of the Advanced Research WRF Version 2. Boulder, Colorado:
National Center for Atmospheric Research Boulder, Colorado,
Mesoscale and Microscale Meteorology Division

[46] Smith TM, Lakshmanan V (2005) Utilizing Google Earth
as a GIS platform for weather applications. In: 22nd In-
ternational Conference on Interactive Information Process-
ing Systems for Meteorology, Oceanography, and Hydrol-
ogy. Atlanta, Georgia, USA: American Meteorological Society.
http://ams.confex.com/ams/pdfpapers/104847.pdf

[47] Stull RB (1988) An introduction to boundary layer
meteorology. Dordrecht, The Netherlands: Kluwer
http://adsabs.harvard.edu/abs/1988aitb.book.....S Accessed
28 June 2009

[48] The Mathworks (2009) MATLAB - The Language Of Technical
Computing. http://www.mathworks.com/products/matlab/
Accessed 29 June 2009

[49] Thomson DJ (1987) Criteria for the Selection of Stochastic Mod-
els of Particle Trajectories in Turbulent Flows. Journal of Fluid
Mechanics Digital Archive. 180(-1):529-556

[50] Vogelezang D, Holtslag A (1996) Evaluation and model impacts
of alternative boundary-layer height formulations. Boundary-
Layer Meteorology. 81(3):245-269

Page 47 of 64

http://rpy.sourceforge.net/
http://www.esrl.noaa.gov/gmd/dv/site/site_table.html
http://www.esrl.noaa.gov/gmd/ccgg/towers/
http://google-latlong.blogspot.com/2008/02/truly-global.html
http://google-latlong.blogspot.com/2008/02/truly-global.html
http://www.opengeospatial.org/projects/groups/sensorweb
http://www.opengeospatial.org/pressroom/pressreleases/857
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/kml
http://www.opensource.org/
http://www.postgresql.org/
http://www.python.org/
http://postgis.refractions.net/
http://ams.confex.com/ams/pdfpapers/104847.pdf
http://adsabs.harvard.edu/abs/1988aitb.book.....S
http://www.mathworks.com/products/matlab/

OSGeo Journal Volume 8 Collaborative Web-Based Mapping of Real-Time Flight Simulator and Sensor Data

Collaborative Web-Based Mapping of
Real-Time Flight Simulator and Sensor
Data
Rabih Dagher, Cristian Gadea, Bogdan Ionescu, Dan Ionescu
and Robin Tropper

Abstract
Google Maps is an example of how Web 2.0 technology
such as AJAX can be used to create online map services
that are easy to access, user-friendly and fast. Thanks to
flexible web-based mapping APIs, it is now possible for
non-experts to plot and distribute GIS (Geographic In-
formation System) data to a large audience. Most data
plotted so far, however, has been relatively static. In
addition, the typical webpage layout has limited the in-
teraction possibilities for online maps when compared
with windowed desktop applications. This paper will
present a JEE-based publish/subscribe architecture that
allows real-time sensor data to be displayed collabo-
ratively on the web, requiring users to have nothing
more than a web browser and Internet connectivity to
gain access to that data. The architecture is tested us-
ing live data from Microsoft Flight Simulator and data
conforming to the OGC Sensor Observation Service
(SOS) standard. By using the latest web-based tech-
nology from open source projects like OpenLayers and
52North, this paper shows how maps and GIS data can
be made more accessible, more social and generally
more useful.

Introduction
With the growing adoption of social websites like Twit-
ter, the demand for real-time data on the Internet is now
higher than ever before. New web browser technolo-
gies have made it easy for users to access and publish
dynamic data, such as what they are doing and where
they are currently located. However, while there ex-
ist online services that promise “real-time” geographic
data, a closer look will almost always reveal that the
data is delayed or otherwise not presented in a useful
way. In addition, collaborating with others in real-time
on maps themselves containing real-time data has yet
to be attempted from inside a web browser.

This paper introduces a new framework that allows
displaying real-time sensor data within a collabora-
tive web-based environment. The framework extends
the publish/subscribe messaging model to meet the
reliability and scalability demands of a social and col-
laborative online environment based on real-time data.
While the framework can be adapted to a large variety

of real-time streaming data sources, this paper will fo-
cus on live data provided by Microsoft Flight Simulator
2004 and data that conforms to the Sensor Observation
Service (SOS) standard. SOS is one of the Sensor Web
Enablement (SWE) standards of the Open Geospatial
Consortium (OGC), an international standards orga-
nization with nearly 400 supporting companies and
institutions (14).

The real-time data will be rendered by using the
open source OpenLayers API and will be displayed
inside an in-house platform for real-time web-based
collaboration known as UC-IC (“you see I see”). UC-IC
recreates a familiar desktop environment within the
web browser, allowing maps to be organized within
windows and manipulated in user-friendly ways. Ad-
ditionally, the UC-IC platform was designed from the
ground up to provide a social environment that enables
the real-time transfer of applications and information to
and from collaborators. This paper will show how the
UC-IC platform allows for novel ways of interacting
with maps containing real-time GIS data.

The rest of this paper is organized as follows. Back-
ground introduces the technology involved in display-
ing real-time data on the web and analyzes how the
approach presented in this paper differs from exist-
ing solutions. System Design then discusses the unique
client and server design of the proposed system. Results
offers a look at two different deployments of the archi-
tecture: one with real-time data provided by running
instances of Microsoft Flight Simulator, and the other
using live SOS sensor data. Finally, Conclusion reflects
on the contributions of this paper and proposes topics
for future research.

Background
It was just over a decade ago that the Internet was
limited to static content accessed using archaic web
browsers. Despite these limitations, Geographic Infor-
mation System (GIS) data quickly found its place on the
Internet. Released in 1996 as a free service, MapQuest
(9) made it possible for users to search for a location by
name and to navigate the resulting map by using sev-
eral buttons that surrounded the static map image (in-
cluding buttons to select the zoom level). Users would
see the entire webpage refresh for each navigation op-
eration. Even with these inconveniences, there was
something appealing about the interactivity and acces-
sibility brought forth by the Internet that made it a good

Page 48 of 64

OSGeo Journal Volume 8 Collaborative Web-Based Mapping of Real-Time Flight Simulator and Sensor Data

fit for geographic information.
As the Internet evolved to support more dynamic

webpage content through the introduction of Rich In-
ternet Application (RIA) technologies such as Asyn-
chronous JavaScript and XML (AJAX), it came as no
surprise that one of the first websites to make the most
out of this new technology was a mapping site, namely
Google Maps (6). Launched in 2004, Google Maps com-
bined visually appealing maps with a very accessible
user interface. It used AJAX to dynamically load sec-
tions of the map as the user dragged the map with the
mouse cursor, a defining characteristic of what are now
known as “slippy maps” (2).

While Google Maps offered many benefits (includ-
ing that the service and developer tools were available
at no charge), it also had some shortcomings. Its sim-
plified interface, while pleasant to use, omitted support
for the addition and selection of user-defined layers,
such as layers based on the Web Map Service (WMS)
standard defined by the OGC. The API available to de-
velopers required obtaining a key from Google, which
was only functional on one domain and imposed nu-
merous restrictions on how the map was to be used, in-
cluding the following as described in the Google Maps
Terms and Conditions:

Except where you have been specifically licensed to
do so by Google, you may not use Google Maps with
any products, systems, or applications installed or oth-
erwise connected to or in communication with vehi-
cles, capable of vehicle navigation, positioning, dispatch,
real time route guidance, fleet management or similar
applications.(1)

Another limitation of the Google Maps API was that
the API code itself could not be deployed on servers
not owned by Google, meaning that developers had to
rely on Google’s uptime and availability. If developers
wanted to demo their browser-based map application
in an area without Internet access, they would be out
of luck.

Several open source “slippy maps” emerged to ad-
dress these drawbacks, with OpenLayers currently
being the largest after absorbing many of the devel-
opers from the now-defunct MapBuilder project (8).
OpenLayers has appeared in several academic papers
(19)(17). There are no references to any “slippy map”
being used for real-time data within a flexible collabo-
rative environment, however.

Several papers have looked into the implications
of real-time data delivery to a browser (20). In addi-
tion, online “WebOS” environments have existed for
some time (3), although interaction with other users in
these environments is usually limited to basic sharing
of media, and they do not allow for full real-time col-
laboration of entire web-based applications and their
data.

The publish/subscribe messaging model is a well

known solution for real-time communication and is
used in numerous examples, including as part of the
OGC Sensor Alert Service (SAS) implementation of
52North. In this SAS architecture, both Publisher and
Subscriber register themselves on the SAS server and
communicate with each other using the open Extensi-
ble Messaging and Presence Protocol (XMPP) through
a Multi-User Chat (MUC) channel (11). This paper,
however, will present an approach that uses a registry
service and other techniques to ensure that the architec-
ture is scalable and robust enough for streaming data
to a real-time social networking environment.

System Design

This section presents the client-side and server-side de-
sign that allows real-time GIS data to be delivered to a
collaborative web-based environment.

Client-Side Design

The client-side user interface is a web-based implemen-
tation of the desktop metaphor, consisting of familiar
windows, icons and menus that can be manipulated
by using the mouse. The entire environment, how-
ever, is built on top of a collaborative platform that
allows any window to be “sent” to another user. This
is done simply by dragging a window onto an icon on
the web-based desktop representing the friend who is
to receive the application (and who must acknowledge
a dialog to accept it). This sending process is unique
in that the entire application logic, in addition to the
current data within that application, is sent as part of
the window. This is made possible by an advanced
XML-based syntax and dynamic resource loading tech-
niques (AJAX-Push) that go beyond the scope of this
paper.

What is important to note, however, is that this con-
cept of “sending” does not necessarily mean that the
user doing the sending no longer retains the applica-
tion. Rather, both users can have the same window
open, and the inherent collaboration built into the sys-
tem ensures that any actions performed within that
application are automatically synchronized to the other
user. For example, any text being typed into a text
field will be communicated character-by-character to
the other user’s browser so that, as much as possible,
both users always see the same application state. The
environment was named “UC-IC” to highlight these
collaborative characteristics.

Page 49 of 64

OSGeo Journal Volume 8 Collaborative Web-Based Mapping of Real-Time Flight Simulator and Sensor Data

Figure 1: UC-IC environment with JIP Windows open.

Real-time collaboration on UC-IC is supported for
applications programmed in, or able to communicate
through, DHTML (AJAX). This includes Java Applets
and Adobe Flash components, all of which can com-
municate through the DHTML-based UC-IC platform,
offering a flexible environment for collaborative ap-
plication development. Existing applications built on
the UC-IC platform include a videoconferencing/chat
application, a rich-text editor for live co-authoring, a
collaborative video player, and a drawing application
that can be reused for annotations on top of other ap-
plications.

The real-time nature of the platform makes it ideal
for GIS applications dealing with sensor data. The GIS
application implemented on the UC-IC platform was
named Joint Intelligence Picture (JIP) and is shown in
Figure 1. It consists of four different windows that com-
municate with each other through methods provided
by the platform:

Figure 2: Two users collaborating on a JIP Map Window in-
side UC-IC.

JIP Map Window The Map Window contains an inter-
active “slippy map” generated by the OpenLayers
API (10). It is the main window that appears when
JIP is selected from the UC-IC applications list and
it contains buttons for hiding and showing the other
three windows that make up JIP. Inviting other users
to collaborate on a JIP Map Window allows all of
those users to see actions such as zooming, panning
and drawing on the map. Figure 2 shows how a red

circle drawn by one user appears on the collabora-
tive Map Window of another user. A close-up of each
screen is provided in the top half of the image. Other
JIP Windows can also affect the contents of the Map
Window; for example, using the Search Window can
invoke the Map Window to show a specific location.
In addition, markers may be displayed on the map
based on real-time sensor data (for example, GPS
coordinates of a moving vehicle).

JIP Search Window The Search Window contains a
search box and list area where search results ap-
pear. Clicking on a search result updates the JIP Map
Window. A custom geocoding solution provided by
M3Data (4) is used to generate the results.

JIP Layers Window Part of the OpenLayers API, the
Layers Window allows users to choose from a list of
predefined map base layers. The list contains several
custom map layers conforming to the OGC WMS
standard and hosted on a local GeoServer (12) de-
ployment, as well as free WMS layers from NASA
(18) and OpenSteetMaps (15). In addition, the Open-
Layers API supports loading layers from commercial
services such as Google Maps, although these were
avoided for reasons related to ease of deployment as
mentioned in section Background. The Layers Win-
dow also contains checkboxes for showing and hid-
ing the sensor data markers that are to appear on the
map.

JIP Data Window The Data Window contains infor-
mation based on user clicks in the Map Window.
For example, a user can click on a barometric sensor
marker on the map and see a real-time dial indicat-
ing barometric pressure in the Data Window. Like all
windows in the UC-IC environment, the Data Win-
dow can be shared with other users on its own (for
example, if a receiving user only needs to watch the
live dial move and does not need the corresponding
map).

Server-Side Design

In order to obtain real-time SOS data and display it
within the JIP Map Window or Data Window, the web
browser has to be in constant communication with the
UC-IC server using AJAX. The Java Enterprise Edition
(JEE) technology found in the open source JBoss Ap-
plication Server (5) is used to make this possible. Of
particular importance to the real-time architecture is
JBoss’ built-in Java Message Service (JMS) Server called
JBoss Messaging.

JMS allows for asynchronous messaging based on
the publish/subscribe messaging software pattern. The
purpose of a JMS Server (sometimes also called a JMS
Provider) is to route messages between JMS Clients,
which can be either JMS Publishers or JMS Subscribers.
JMS Publishers publish messages to a certain “topic”
on the JMS Server, and JMS Subscribers subscribe to

Page 50 of 64

OSGeo Journal Volume 8 Collaborative Web-Based Mapping of Real-Time Flight Simulator and Sensor Data

that topic to asynchronously receive the messages. The
JBoss Application Server includes a JMS Server, while
JMS Clients can be Java applications that use the JMS
API.

Real-Time
Data Source

JMS Publisher JMS Server
(JBoss)

JMS Subscriber
(UC-IC Server

in JBoss)

result

Asynchronous
Forwarding

polling

UC-IC Client
in Web Browser

AJAX
Request

AJAX
Response

JMS Server
(with JMS Topic)

JMS Publisher

JMS Publisher

JMS Publisher

JMS Subscriber

JMS Subscriber

JMS
Publisher

JMS Server

JNDI
Registry
Server

UC-IC
Server

(Subscriber)

Multicast discovery

Advertise & Publish Data

Multicast response

JMS Server Location request
Location response

Multicast discovery
Multicast response

JMS Server Location request
Location response

Multicast discovery

Multicast response Topic assignment

Advertise

Subscribe

Asynchronous
Forwarding

Figure 3: Basic real-time architecture using JMS.

A basic real-time architecture is shown in Figure
3. To initiate the transfer of real-time data, the client
(the user in a web browser) must send an AJAX request
that causes the UC-IC server (the JMS Subscriber) to
subscribe to the real-time stream via the JMS Server.
A JMS Publisher component is tasked with polling a
real-time data source and receiving its response. The
JMS Publisher then publishes the response to the JMS
Server using a pre-arranged topic. The JMS Server then
uses asynchronous messaging to forward the results to
any JMS Subscribers who have subscribed to receive
messages on that specific topic. Finally, the subscribed
UC-IC Server sends the message to the client using
AJAX-Push. The browser based client then parses the
data and displays it within JIP.

This sequence of events can be seen in Figure 4.
Note that, as was shown in Figure 3, multiple JMS Pub-
lishers can be sending real-time data to the JMS Server
at the same time. Additionally, standard JMS methods
exist for unsubscribing (based on an AJAX request from
a user) and terminating the publishing process.

<<Client-Side>>
User UC-IC Server JMS Server JMS Publisher Real-Time Source

Announce

AJAX Subscribe Request
Publish

Subscribe

Get Latest Data

Latest Data

Notification with DataAJAX Response
Notification with Data

Get Latest Data

Latest Data
Publish

Notification with DataAJAX Response
Notification with Data

Get Latest Data

Latest Data
Publish

Notification with DataAJAX Response
Notification with Data

Get Latest Data

Latest Data
Publish

Figure 4: Event sequence for basic real-time data delivery to
web browser.

While the above architecture would be sufficient
for basic real-time data transmission, our final architec-
ture features several enhancements that offer additional
scalability and robustness required for real-time deliv-
ery to a social and collaborative platform like UC-IC.
Having one centralized JMS Server, for example, is not
ideal for real-time data delivery since the JMS Server

could suffer an outage or become overloaded. A JNDI
(Java Naming and Directory Interface) Registry Server
is therefore introduced. The JNDI Registry Server stores
a list of topics and the network address of the corre-
sponding JMS Server where the topic is managed. JMS
Publishers and Subscribers, which are pre-configured
with the topics that they are to access, must first re-
quest the location of a JMS Server via the JNDI Registry
Server. Once they obtain the location of the JMS Server,
they can proceed as above.

By using a JNDI Registry Server, new JMS Servers
can be added to the system with ease, allowing for
much better scalability of the system as the number of
topics increases. In addition, the support for redun-
dancy of the system is increased since topics can be
reassigned to different JMS Servers by changing the val-
ues stored by the JNDI Registry Server. By changing the
location of the topics, JMS Clients can be dynamically
assigned to the best JMS Server for optimal real-time
data delivery.

The architecture robustness is further increased by
keeping a list of alternate JNDI Registry Server loca-
tions in the JMS Servers and JMS Clients. The architec-
ture can also support security through the use of SSL
certificates, although security implications are beyond
the scope of this paper.

Results
The design described in section System Design was ap-
plied to two different deployments: one with real-time
data from Microsoft Flight Simulator, and the other us-
ing live sensor data based on the Sensor Observation
Service (SOS) standard.

Flight Simulator

Figure 5: Flight Simulator test setup overview.

To test how the real-time architecture functions
within a collaborative web-based environment, a con-
trollable real-time data source was needed. Microsoft
Flight Simulator 2004 was selected since the real-time
aircraft data from inside the game could be accessed

Page 51 of 64

OSGeo Journal Volume 8 Collaborative Web-Based Mapping of Real-Time Flight Simulator and Sensor Data

through a driver called FSUIPC (16). By setting up the
JMS Publisher with the driver as the data source, XML
data could be obtained for asynchronous sending to the
UC-IC Server and display on the JIP client. A high-level
view of this architecture is summarized in Figure 5.

Figure 6: Real-time data from three different Microsoft Flight
Simulator sessions displayed inside JIP.

The system was tested with three different Flight
Simulator instances running on three different comput-
ers, each with their own JMS Publisher. This is shown
in Figure 6. As the planes moved, a marker on the JIP
client would move to show each plane’s latest location.
In addition, clicking a marker would populate the JIP
Data Window with additional streaming information,
such as the plane’s current altitude, air speed and head-
ing.

Although it was clear that a stream of data from
the game was being received by the browser, the exact
delay in the data was difficult to gauge. An additional
feature was added that would change the plane marker
color to red in the case of a simulated engine failure,
which could be quickly activated from within Flight
Simulator. The delay was observed to be less than two
seconds when testing on a local network. The JIP Map
Window was shared with five other UC-IC users, who
could navigate and draw on the map while the planes
were moving.

SOS Data
To test the system with more typical GIS sensor data,
a standard SOS server was set up by hosting the open
source 52North SOS Server component (13). The JMS
Publisher component was tasked with polling the SOS
Server using GetObservation requests. The JMS Pub-
lisher then received a response in the OGC Observa-
tion & Measurements (O&M) format. The JMS Pub-
lisher component then sent the O&M response to the
JMS Server component, which would asynchronously
forward it to the UC-IC Server, and the UC-IC Server
would send it for parsing and display on the client us-
ing AJAX. In this case, an open source library called

JFreeChart was used to display the data as a real-time
dial (7).

Again, the real-time performance was very good
with almost no noticeable delay, and the collaborative
nature of the system made it easy to monitor and anno-
tate the data as a group.

Conclusion
This paper introduced an architecture used to deliver
real-time Flight Simulator and SOS sensor data to a
social and collaborative UC-IC environment accessible
from within a web browser. This was accomplished by
using open source technologies, including OpenLayers
to display the real-time data and JBoss to make asyn-
chronous communication possible. The system was
tested by using real-time data from Microsoft Flight
Simulator and a locally-hosted SOS server using open
source components from 52North. In both cases, the
real-time data streamed smoothly to the JIP client ap-
plication and was available for real-time collaboration
with other users of UC-IC.

Future work will attempt to address limitations of
JavaScript memory management techniques used by
browsers, which can cause performance issues if the
real-time data is left streaming for long periods of time.
The SOS standard, for example, offers a less-verbose Ge-
tResult request which is more ideal for real-time data
and would allow for more complex sets of real-time
data to be delivered to the client. Although experi-
ments with mobile devices have already been under-
taken, the great breadth of mobile web browsers has
given inconsistent results when attempting to load the
DHTML-based UC-IC environment, and are worth ex-
ploring further. Finally, other standards such as the
Sensor Alert Service could be implemented to commu-
nicate scenarios like the plane engine failure.

Rabih Dagher, Cristian Gadea, Bogdan Ionescu, Dan Ionescu and
Robin Tropper,
NCCT Laboratory
University of Ottawa
161 Louis Pasteur Room B-306
Ottawa ON K1N-6N5
CANADA
rdagher AT ncct.uottawa.ca

cgadea AT ncct.uottawa.ca

bogdan AT ncct.uottawa.ca

dan AT ncct.uottawa.ca

rtropper AT ncct.uottawa.ca

Bibliography
[1] Google Maps Terms and Conditions. URL http://www.google.

com/intl/en_ALL/help/terms_local.html. [Accessed: July
2009]

[2] Definition: Slippy Map (2005). URL http://fantomplanet.

wordpress.com/*2005/06/23/definition-slippy-map/.
[Accessed: July 2009]

Page 52 of 64

mailto:rdagher AT ncct.uottawa.ca
mailto:cgadea AT ncct.uottawa.ca
mailto:bogdan AT ncct.uottawa.ca
mailto:dan AT ncct.uottawa.ca
mailto:rtropper AT ncct.uottawa.ca
http://www.google.com/intl/en_ALL/help/ terms_local.html
http://www.google.com/intl/en_ALL/help/ terms_local.html
http:// fantomplanet.wordpress.com/ *2005/06/23/definition-slippy-map/
http:// fantomplanet.wordpress.com/ *2005/06/23/definition-slippy-map/

OSGeo Journal Volume 8 FOSS4G 2009 Conference Proceedings

[3] Desktoptwo (2008). URL http://www.desktoptwo.com/. [Ac-
cessed: July 2009]

[4] ARTIS: Secure Information Mining, Integration & Sharing (2009).
URL http://www.artisnet.com. [Accessed: July 2009]

[5] Community driven open source middleware. - JBoss Commu-
nity (2009). URL http://www.jboss.org/. [Accessed: July
2009]

[6] Google Maps (2009). URL http://maps.google.com/. [Ac-
cessed: July 2009]

[7] JFreeChart (2009). URL http://www.jfree.org/jfreechart/.
[Accessed: July 2009]

[8] Map Builder - Rapid mashup development tool for Google and
Yahoo maps! (2009). URL http://www.mapbuilder.net/. [Ac-
cessed: July 2009]

[9] MapQuest Maps - Driving Directions - Map (2009). URL
http://www.mapquest.com/. [Accessed: July 2009]

[10] OpenLayers (2009). URL http://www.openlayers.org. [Ac-
cessed: July 2009]

[11] SAS (2009). URL http://52north.org/index.php?option=

com_content&view=category&layout=blog&id=27&Itemid=

34. [Accessed: July 2009]
[12] Welcome - GeoServer (2009). URL http://www.geoserver.org.

[Accessed: July 2009]
[13] Welcome to 52North (2009). URL http://52north.org/. [Ac-

cessed: July 2009]
[14] Welcome to the OGC Website (2009). URL http://www.

opengeospatial.org/. [Accessed: July 2009]
[15] Coast, S.: OpenStreetMap (2009). URL http://www.

openstreetmap.org/. [Accessed: July 2009]
[16] Dowson, P.: FSUIPC - The Official Peter Dowson Page (2009).

URL http://www.schiratti.com/dowson.html. [Accessed:
July 2009]

[17] Kulawiak, M., Luba, M., Chybicki, A.: Web-based gis technolo-
gies dedicated for presenting semi-dynamic geospatial data. In:
IT 2008: 1st International Conference on Information Technol-
ogy, 2008., pp. 1–6. IEEE Computer Society (2008)

[18] Plesea, L.: OnEarth, JPL WMS Server (2008). URL http:

//onearth.jpl.nasa.gov/. [Accessed: July 2009]
[19] Wolf, E., Howe, K.: Web-client based distributed generaliza-

tion and geoprocessing. In: GEOWS ’09: International Con-
ference on Advanced Geographic Information Systems & Web
Services, 2009., pp. 123–128. IEEE Computer Society (2009). DOI
10.1109/GEOWS.2009.32

[20] Xu, B., Rose, M., Lin, Z.: A novel approach to convert single-user
applications into collaborative applications. In: CSCWD ’06:
10th International Conference on Computer Supported Coop-
erative Work in Design, 2006., pp. 1–5. IEEE Computer Society
(2006). DOI 10.1109/CSCWD.2006.253202

Page 53 of 64

http://www.desktoptwo.com/
http://www.artisnet.com
http://www.jboss.org/
http://maps.google.com/
http://www.jfree.org/jfreechart/
http://www.mapbuilder.net/
http://www.mapquest.com/
http://www.openlayers.org
http://52north.org/ index.php?option=com_content &view=category &layout=blog&id=27&Itemid=34
http://52north.org/ index.php?option=com_content &view=category &layout=blog&id=27&Itemid=34
http://52north.org/ index.php?option=com_content &view=category &layout=blog&id=27&Itemid=34
http://www.geoserver.org
http://52north.org/
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://www.schiratti.com/dowson.html
http://onearth.jpl.nasa.gov/
http://onearth.jpl.nasa.gov/

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

A Modular Spatial Modeling Environment
for GIS
Brian Marchionni & Daniel Ames, Idaho State University

Abstract
Development of an open source modeling environment
for use with spatial-temporal data in a Geographic In-
formation System (GIS) is presented. MapWindow GIS,
a free and open source desktop GIS, has been used
extensively in watershed modeling and is the under-
lying engine of the U.S. EPA BASINS system. To date,
legacy versions of MapWindow have lacked an inte-
grated modeling environment suitable for linking to-
gether geospatial and temporal independent processes
at a granular level. Development efforts focused on
creating an extensible graphical, open source modeling
environment with easy to use programming objects.

This development was made possible due to the
new design of the MapWindow GIS 6 project. This new
modeling environment allows users and developers
to easily create models which can take advantage of
spatial and temporal data objects and analytical tools.
The design approach involves the extensive use of in-
terfaces, which are essentially skeleton programming
tools that detail how an object programmatically inter-
acts with other objects, but not necessarily how it works
internally. By using interfaces, the new MapWindow
GIS modeler makes it relatively simple to take existing
modeling processes, wrap them in an appropriate in-
terface, and execute them as part of a more complex
model.

The central underlying design consideration of the
newest version of MapWindow GIS was to keep the
entire project as modular as possible, this has been
extended to encapsulate the development efforts of
the modeler as well. The new modeling environment
allows developers to automatically generate user in-
terfaces for their processes. Because all tools in the
MapWindow modeler must implement the same inter-
face, developers wishing to use a tool directly in their
own application need not add the graphical modeler if
they do not so desire.

MapWindow GIS 6 and the modeler are entirely de-
veloped using the Microsoft .NET Framework which
allows it to be run on a variety of operating systems
including Windows, Linux or OS X (via the Mono com-
piler).

Introduction
The goal of the project described here was to create a
cutting edge open source modeling environment that

worked within the Microsoft .Net framework and con-
tained both a graphical user interface and easy to use
programming object. The project was designed to run
along side the next generation of the MapWindow
project, MapWindow GIS 6. MapWindow GIS 4 is the
current version of the project and is under continued de-
velopment at Idaho State University in the Department
of Geosciences. MapWindow GIS 5 was a short-lived
prototype project that was never released publicly.

Originally developed at Utah State University, and
now maintained primarily at Idaho State University
with an international development team, MapWindow
GIS is a free and open source software project that is
downloaded over 6000 times per month. It has an ac-
tive community of users and developers on the Map-
Window.org web site. The community collaborates on
making updates and introducing new features.

The existing project is divided into two components:
the MapWindow GIS desktop application, and the Ac-
tiveX map control. These two components work to-
gether to form the entire project. This modularity al-
lows the ActiveX control to be used in other stand alone
applications as well as within the main MapWindow
GIS desktop application. (1)

The need to develop a modeling environment arose
from other developments in the GIS community. A
general need to simplify the task of using spatial and
temporal processes had been brought forward by many
MapWindow users and by several other communities
who are using the MapWindow components in their
own projects. Furthermore, the use of modeling in a
GIS environment has been suggested by several other
researchers including Xie and Brown in their 2007 pa-
per noting, ’simulation in spatial analysis and modeling
has been one of the key approaches of many researchers
of GeoComputation’ (9).

The modeler requirements are closely tied to other
developments in the MapWindow 6 project and in-
clude:

• all user interfaces need to be as simple to use and as
well documented as possible;

• users should need no programming experience to
use the software;

• the software must have high portability: software
should work on many different systems including
MS Windows, Linux and Macintosh OS X;

• the code needs to be highly extensible and reusable;
• the code should be easy to maintain for new devel-

opers.

The modeling environment should also be designed
such that it can be integrated into other applications

Page 54 of 64

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

with minimal dependency on external libraries, includ-
ing the MapWindow library itself. Since the design of
MapWindow GIS 6 was well underway at the time of
the modeling environment’s conception, it was decided
that components and data types from this new architec-
ture would be used because of the advantages that it
afforded, including being memory managed and highly
extensible. The data types are not directly link to their
sources, which allows many different data formats to
be present as a single data type.

MapWindow GIS 6

MapWindow GIS 6 is the next generation of the Map-
Window open source project. Early in the planning
stages of MapWindow GIS 6 it became apparent that
the technology behind the original MapWindow Ac-
tiveX map component would not be capable of meeting
all of the new project’s requirements. Specifically since
the original code was written as a Microsoft COM ob-
ject it could never be cross platform compatible. For
this reason it was decided that a complete rewrite of
the map component would be required.

The design of the new architecture focused on an ex-
tremely modular system using class interfaces. Figure 1
highlights the interface architecture of MapWindow
GIS 6. This design allows for any single component to
be replaced by another component that uses the same
interface. This design stemmed from the successful
plug-ins methodology from the original MapWindow
GIS 4 that allowed third party developers to extend the
functionality of the application by writing their own
class which implements the plug-in class interface (2).
The improvement presented in MapWindow GIS 6 is
that this interface based architecture is extended to ev-
ery modular component of the architecture and not just
to plug-ins.

Figure 1: MapWindow GIS 6 Architecture

The MapWindow Modeler Project

Project Requirements
The MapWindow Modeler environment has been de-
veloped specifically to meet the requirements of several
use cases identified by the United States Environmental
Protection Agency (EPA) Data for Environmental Mod-
eling (D4EM) project. Some of the key requirements
and constraints of the system are defined as follow:

• the tool should be written in Microsoft .NET so that
it can be ported to Windows Mobile and Mono for
Linux;

• the available tools and available data types should
be extensible;

• the tool should integrate both spatial and temporal
components;

• the tool should be easy to use for end users;
• the tool should be compatible with existing versions

of MapWindow GIS;
• the tool should be robust and easy for new develop-

ers to add to and enhance.

Several existing open source projects were identified
to see if they could meet the requirements for a model-
ing tool for MapWindow. Sextante (7) meets some of
the requirements, however it lacks temporal data type
support and is written in the Java language and hence
would not meet the requirement of being written in Mi-
crosoft .NET. No other open source modeling products
that were available were written in Microsoft .NET and
could handle both spatial and temporal data interac-
tion. The OpenMI system (4) was examined, but it too
failed to meet all of the requirements of the system as
its scope was well beyond a simple graphical tool for
linking spatial and temporal processes, but rather is
designed to link larger complex models.

Use Cases
There are three primary use cases for the modeling en-
vironment. The first covers the modelers’ use while
integrated into MapWindow GIS 6. In this mode a stan-
dard extension to the MapWindow GIS 6 desktop appli-
cation will include the modeling environment. These
two environments are tightly linked to allow data from
the MapWindow GIS 6 map component to be added
seamlessly from the modeler, and conversely they allow
data from the map to be used in models. The second
use case involves integration with the legacy code of
MapWindow GIS 4. This is similar to integration with
version 6 of MapWindow, but only a specific subset of
the data will be made available to the MapWindow GIS
4 application because of format compatibility issues.
The final use case covers using the modeler as a stand
alone component for use in third party applications.
Since all possible uses of the modeler in other appli-

Page 55 of 64

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

cations cannot be considered, the modeler must be as
versatile and customizable as possible.

Software Design Technique

Since many different users and developers will be work-
ing with the system, the initial design specifications
needed to be well defined at the outset. Once this ini-
tial design was completed a small group of developers
created a set of simple tools to test the general design. It
was at this stage that critical modifications were made
to the design to address specific problems that develop-
ers and users were facing.

The rapid prototyping development technique al-
lowed for feedback from testers and other developers
while ensuring a quick time to deployment. Initial de-
velopment efforts took only six months. Once this criti-
cal initial development stage was completed the second
phase continued until such time as all parties involved
were satisfied with the resulting architecture. Once
completed most major design considerations were done
and the overall architecture finalized. While changes
can still be made at this point they must take into ac-
count the existence of other dependant components
that need to be integrated and cannot have their func-
tionality impaired. For example, if a new version of an
interface is created once this second stage of develop-
ment is completed, it must ensure that any components
using the already existing interface must continue to
function seamlessly.

This second stage of development is potentially the
most important. Feedback from developers creating
tools that will ensure the ease of use of the interface for
new developers wishing to create tools or data types
for the system.

Software Design

Modeler Design

The MapWindow modeler is composed of two inter-
related parts: the ToolManager and the Modeler. The
ToolManager lists all of the available tools to the user
while also providing access to tools in the Modeler. The
Modeler displays, loads, saves, and executes models in
a graphical environment.

The Modeler and ToolManager itself are actually
.NET form components. Like other programming ob-
jects in the .NET environment they have a graphical
representation that allows programmers to drag and
drop it onto a form without writing any code. This
greatly reduces the time needed for programmers to
develop an application that uses the modeler. Figure 2
shows the class diagram on the ToolManager and Mod-
eler. Many of the classes are interdependent and used
by both components. Figure 3 shows an instance of the
ToolManager on the left running within MapWindow

6 displaying the tools it has found, and the Modeler
on the right displaying a simple model containing one
tool.

Figure 3: The ToolManager and Modeler running with Map-
Window 6 on Microsoft Windows

Building for Extensibility
Since the use cases for the modeler cover many different
applications it was imperative that the modeler be de-
signed such that it can be extended in several different
ways, such as:

• tool definitions;
• parameter definitions;
• user interface representation of parameter defini-

tions.

To allow each of these areas to be expanded upon, sev-
eral programming concepts needed to be employed.
These concepts are widely used through the architec-
ture of MapWindow GIS 6 so programmers familiar
with this environment can more easily add functional-
ity to the modeler.

To accomplish this, a class interface was defined
for tool definitions and parameter definitions called
ITool and IParameter, respectively. Using interfaces,
blank class templates which programmers can popu-
late with functions (5), allows developers to rapidly
develop software which implements the needed opera-
tions of software they are interacting with (3). ’A well-
recognized method for reducing program complexity
involves structuring the model as a set of distinct mod-
ules with well-defined interfaces’ (6).

Since tools and parameter types can be generated
in a variety of different ways, the Modeler never loads
ITools or IParameters from disk directly; rather, it relies
on a ToolManager to handle loading, and instantiating
tools, and parameter types as needed. The ToolMan-
ager loads tools by scanning specified folders for as-
semblies that implement the IToolProvider interface.
Once a class that implements this interface is found,
it is instantiated and queried for a list of the tools it

Page 56 of 64

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

Figure 2: The ToolManager and Modeler class diagram

is capable of providing. This allows tool providers to
create tools from a wide variety of sources. A default
tool provider is included in the ToolManager. This tool
provider scans specified folders for assemblies which
implement the ITool interface directly. Loading of pa-
rameter definitions and their user interface is also done
the same way with the ToolManager looking for assem-
blies that implement the IParameterProvider interface,
and a default provider which scans for IParameter im-
plementing assemblies.

The ITool and IToolProvider Interfaces

The goal of the ITool interface is to remove the burden
of creating a user interface and maintaining tool interop-
erability from the tool developer. Developers designing
tools need only implement the ITool interface when de-

signing their tool, and the ToolManager generates the
graphical user interface automatically for them when
the tool is instantiated. The ITool interface contains
several properties which are read by the ToolManager
when the tool is first detected and instantiated.

The Name, UniqueName, Category and Version
properties on the ITool interface are used by the Tool-
Manager to identify the tool and are require for a tool
to be loaded, if any of these fields are missing the tool
will not be added to the toolbox. HelpText, HelpIm-
age, HelpURL, Author, Icon and ToolTip are used to
populate related parts of the graphical user interface
on behalf on the developer. These are optional and
ignored if they return null.

The InputParameters and OutputParameters prop-
erties return arrays of type IParameter, which are used
by the ToolManager and Modeler to execute tools, and

Page 57 of 64

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

populate user interface dialogs with appropriate graph-
ical components. When a tool is instantiated for excu-
tion, the initialize method is called first, allowing the
tool to populate its InputParameters array with blank
parameters. Then, as the user modifies inputs in the
array, the ParameterChanged method is called allowing
tool developers to create inputs which are dependent
on changes to other inputs. Finally when the tool is
ready to be run the Execute method is called. The re-
sult of this execution is stored in the OutputParameters
array and can be transmitted to the next tool by refer-
ence or saved to disk as needed. Figure 4 displays the
methods and properties of the ITool interface.

Figure 4: The methods and properties of the ITool interface

Figure 5 illustrates the form that is automatically
generated when the Inverse Distance Weighting tool
is created. Note the help text on the right is automati-
cally displayed when the user highlights a particular
input parameter. Status lights on the left side of the
parameter field display the parameters’ validity. The
ITool interface contains all the information necessary
for running and displaying a tool.

The IToolProvider interface allows tools to be gen-
erated in a wide variety of ways. While the default
ToolProvider searches folders for assemblies that con-
tain ITools, there are many other ways that tools could
be generated. For example, a ToolProvider could con-

nect to a Web Processing Service, get a list of available
tools, and then generate a corresponding set of ITools
which would then be in charge of instantiating for the
ToolManager.

Figure 5: The Inverse Distance Weighting tool dialog running
in Window

Tools can also be generated by the Modeler. This is
done by saving the model which includes several tools
to a XML file which are then recognized by ToolMan-
ager as a stand alone Tool. These tools, when called
to be executed by the ToolManager will create a new
instance of the Modeler, load the saved model and exe-
cute it seamlessly as if it were a single tool. This new
tool will run as long as each of the Tools used to create
the model are available to the ToolManager at execution
time.

The IParameter Interfaces

Parameters are the input and output of a tool and need
to be defined so that they can have an appropriate vi-
sual representation. For example, a numerical parame-
ter should allow for a minimum and maximum value to
be specified in order to limit the users’ input to a certain
range. It should also be capable of specifying a default
value and be represented on the tool dialog by a text
box that will only accept numerical values. This can be
accomplished by creating a parameter object that speci-
fies these constraints and contains a control object that
represents how the parameter should be represented in
the tool dialog.

The IParameter interface consists of several proper-
ties which are used by the ToolManager and Modeler
to identify the parameter type. The DefaultSpecified
property is used to determine if a tool developer has
specified a value to be used as default. The HelpImage
and HelpText properties are used to populate the help
area on the right hand side of the automatically gener-
ated tool dialog. ModelName is used by the modeler
to store a unique identifier for a particular instance of
a tool. Name is used to identify the parameter input
in the tooldialog. The ParamType property returns a
string which is used to identify the parameter’s type

Page 58 of 64

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

and determine if it is compatible with another tool’s
input. ParamVisible is used on input parameters to
determine if they will be graphically displayed in the
Modeler. Finally the Value property contains the actual
parameters value.

Figure 6: The properties, methods and events of the IParame-
ter interface

The clone and copy methods are inherited from
the ICloneable class and are used for creating tempo-
rary instances of the Parameter when editing values
so that if the user cancels without saving his changes
they will not affect the underlying objects. GenerateDe-
faultOutput populates a parameter with a basic value
such that the model can be run. InputDialogElement
and OutputDialogElement return an instance of the ap-
propriate graphical representation of the parameter for
inputs and outputs respectively. OnValueChanged is
called when then parameters value have been modified
and fires the ValueChanged event, which is then used
to notify the IParameter’s parent ITool that its value

has been modified by calling the ParameterChanged
method. Figure 6 displays the IParameter Interface
including its properties, methods and events.

Figure 7: The IParameter base element as it appears in the
Microsoft Visual Studio designer. The base component is
never seen in the modeler

Figure 8: The List Parameter input element as it appears in
the Microsoft Visual Studio designer

Figure 7 displays the IParameter base graphical user
interface, which all parameters must return when the In-
putDialogElement or OutputDialogElement are called.
Figure 8 displays the List Parameter component which
implements the IParameter interface. IParameters are
responsible for generating two graphical components,
one for input and one for output parameter configura-
tions. This ensures that parameters act differently for
inputs and outputs.

Tool and Model Execution

There are two different ways that a tool can be exe-
cuted, either from the ToolManager or from the Mod-
eler. To execute tools from the ToolManager, a user
double clicks the tool’s name to create a tool dialog
populated with the tool’s inputs and outputs. Next
they populate these fields and then press the ok button.
The ToolManager, then calls the Execute method on the
tool and displays a progress dialog box.

The modeler executes tools in a similar way. The
user drags and drops tools from the ToolManager into
the Modeler and links them together by dragging link
lines. Internally the Modeler creates association be-
tween the relevant input and output parameters. The
user can then modify a tool’s parameters by double
clicking on the tool’s graphical representation to access
the corresponding tool dialog. Once the model is con-
figured the user clicks the Modeler’s execute button
which begins the model’s execution.

Once a tool is called to be executed, either from the
ToolManager or integrated into a model, a background
thread is started to carry out the tool’s execution. In the
modeler, tools that are not ready to be executed because
they depend on other tools are queued while tools that
are ready to be executed are assigned to a thread and
executed. Queued tools are then reviewed as executing
tools complete. A separated thread is used to ensure
that the tool progress dialog remains responsive to user
activity. Messages from the background thread are re-
layed to the foreground progress dialog thread to allow
progress indicators to be updated by the tool. Figure 9

Page 59 of 64

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

displays the progress indicator form running a tool. In
the event of user cancellation, tools are responsible for
cleanly exiting.

Figure 9: Progress indicator dialog

Modeler Architecture Overview
The Modeler and ToolManager are intentionaly mod-
ular, and any single component can be replaced with
another, which satisfies the interface requirements of
that component. Not all components are necessary for
the entire environment to work. If, for example, the
Modeler was not included in a project because it was
not needed, the ToolManager could be included by it-
self as a visual component or as a instantiated object
invisible to the end user. This high level of interchanga-
bility ensures that the components of the modeling
environment can be used to meet the widest ranges of
developer needs.

Figure 10: MapWindow Modeler Architecture

Figure 10 displays the overall architechture of the
entire MapWindow Modeling project. At the highest
level is the Modeler which can be used graphically
and programmatically to load, link and execute tools.
The Modeler requests instances of tools from the Tool-
Manager which is capable of creating instances of tools

and passing them to the Modeler or executing them
directly. The ToolManager can load tools using the
IToolProvider interface from the Default ToolProvider
or from Third Party ToolProviders. The Default Tool-
Provider can load tools from assemblies which imple-
ment the ITool interface directly. Finally third party
applications can use any of the MapWindow Modeler
components in their own code or they can link directly
to Tool or ToolProviders assemblies.

Modeling Environment Comparison
and Case Study
The MapWindow Modeler user interface works much
like the user interface of the ArcGIS ModelBuilder
and gvSIG Sextante Modeler. All three environments
present a graphical user interface that allows the user
to use the mouse to drag model components from a
list into the modeling area where it is represented by
a square or circle. In all three environments double
clicking on a model element such as a tool or data item,
opens a dialog box with options relating to the element.
The forms have slightly different appearance but the
same functionality. All three environments have help
text available to guide the user when configuring a
model’s elements.

A common task that is often performed when deal-
ing with flood data sets is the delineation of watersheds
from raster elevation data. One of the first steps of this
process is the generation of raster stream data (8). The
initial digital elevation model (DEM) data often con-
tains artifacts referred to as pits; these pits can interfere
with the stream delineation process and are usually
eliminated by using a pit filling algorithm.

Next the flow direction of the elevation data is calcu-
lated. Flow direction calculates the direction in which
a drop of water entering a cell would flow. A flow
accumulation layer is created next, that calculates the
total number of cells which flow into every cell of a
raster. Finally the flow accumulation data is reclassified
into a Boolean mask where 1 represents cells that have
sufficient flow accumulation to be considered a stream
and 0 for cells that do not.

This model was created in the ESRI ArcGIS Model-
Builder, the gvSIG Sextante Modeler and in the Map-
Window Modeler. Figure 11 illustrates the model as it
appears in the ArcGIS ModelBuilder modeling environ-
ment (top), in the Sextante Modeler (middle) and in the
MapWindow GIS Modeler (bottom). Note that because
of differences in the way the processes work internally,
they may produce different outputs. Also note that in
some cases different tools had to be used because the
exact same tools do not exist in all of the environments.
For example the Reclassify tool was used in the ArcGIS
model and Sextante model while the raster threshold
tool was used in the MapWindow model. In some cases

Page 60 of 64

OSGeo Journal Volume 8 A Modular Spatial Modeling Environment for GIS

a single tool in one environment is capable of produc-
ing the same result as two or more tools in another,
such as the Flow Accumulation tool in the Sextante tool
which produces the same result as the D8 and Flow
path tools in the MapWindow model. Also note that
the Sextante model does not show the intermediate or
output data in its model only the input data and model
processes.

Figure 12 shows the final delineated stream data as
created by the ArcGIS ModelBuilder and displayed in
the ArcMap (top), as created by the Sextante Modeler
and displayed in gvSIG (middle) and as created by the
MapWindow Modeler and displayed in MapWindow
GIS (bottom). Note that the DEM appears differently
in MapWindow GIS as its default elevation symbolizer
uses a hill-shading technique.

Figure 11: The stream delineation model as it appears in: (top)
the ArcGIS ModelBuilder, (middle) the Sextante Modeler, and
(bottom) the MapWindow Modeler

Figure 13 shows the results of the three models
when overlaid together above the original DEM, note
that only small differences exist between the three mod-
els, while the general trend of the stream is preserved
between them. These slight discrepancies in the vari-
ous models’ results are to be expected given that they
each implement slightly different algorithms to achieve
their result. The run time of the ArcGIS Modeler was 14
minutes 35 seconds, the run time of the Sextante Mod-
eler was 24 minutes 9 seconds while the run time of the
MapWindow Modeler was 22 minutes 33 seconds. The
process which took the longest time in all three cases
was the pit fill algorithm. It is also responsible for the
large discrepancies in times between the three models.

Figure 12: Final stream delineation and original DEM as
display in: (top) ArcMAP and produced with ArcGIS Model-
Builder, (middle) gvSIG and produced with Sextante Modeler,
(bottom) MapWindow GIS and produced with MapWindow
Modeler

Page 61 of 64

OSGeo Journal Volume 8 FOSS4G 2009 Conference Proceedings

Figure 13: The results of the three models overlaid above the original. Green is the top layer and is the result of the ArcGIS
ModelBuilder, Purple the result of the Sextante Modeler and blue the result of the MapWindow Modeler.

Discussion and Conclusions

The MapWindow GIS Modeler is a versatile model-
ing environment, which can handle many different
data types. It executes models in similar time to other
GIS modeling environments and faster than other open
source ones. Due to its modular and extensible archi-
tecture it can use tools of many different designs. The
design flexibility not only allows tools to function in a
wide variety of different ways, but it allows tools and
their associated parameters to be generated from any
number of sources. Its ease of use for end users and
developers, as well as its integration with MapWindow
GIS 6 and MapWindow GIS 4, ensures that the widest
range of users will have access to the program. By
building on the successful design of previous genera-
tions of MapWindow GIS, the MapWindow Modeler
benefits from all of the development expertise, keeping
the designs that were the most effective while eliminat-
ing some of the more constrictive problems. It is one
more tool available to both developers looking to create
new modeling tools and end users wishing to create
models with such tools.

Brian Marchionni & Daniel Ames,
Idaho State University
marcbria@isu.edu

dan.ames@isu.edu

Bibliography
[1] D. Ames. MapWinGIS Reference Manual: A function guide for the free

MapWindow GIS ActiveX map component. Lulu.com, Morrisville,
North Carolina, 2007.

[2] D. Ames, C. Michaelis, and T. Dunsford. Introducing the map-
window gis project. The Journal of the Open Source Geospatial
Foundation, 2:13–16, 2007.

[3] S. Greenberg. Toolkits and interface creativity. Multimedia Tools
and Applications, 32(2):139–159, 2007.

[4] J. B. Gregersen, P. J. A. Gijsbers, and S. J. P. Westen. Openmi:
Open modelling interface. Journal of Hydroinformatics, 9(3):175–
191, 2007.

[5] L. Liquori and A. Spiwack. Extending feathertrait java with
interfaces. Theoretical Computer Science, 398(1-3):243–260, 2008.

[6] T. Maxwell. A paris-model approach to modular simulation.
Environmental Modelling & Software, 14(6):511–517, 1999.

[7] V. Olaya and J. C. Gimenez. SEXTANTE: a gvSIG-based platform for
geographical analysis. Free and Open Source Software for Geospa-
tial, Victoria, Canada, 2007.

[8] K. L. Verdin and J. P. Verdin. A topological system for delineation
and codification of the earth’s river basins. Journal of Hydrology,
218(1-2):1–12, 1999.

[9] Y. Xie and D. G. Brown. Simulation in spatial analysis and mod-
eling. Computers, Environment and Urban Systems, 31(3):229–231,
2007.

Page 62 of 64

mailto:marcbria@isu.edu
mailto:dan.ames@isu.edu

Imprint
Editor in Chief:
Tyler Mitchell - tmitchell AT osgeo.org

Assistant Editor:
Landon Blake

Section Editors & Review Team:
Eli Adam
Daniel Ames
Dr. Franz-Josef Behr
Jason Fournier
Dimitris Kotzinos
Scott Mitchell
Barry Rowlingson
Jorge Sanz
Micha Silver
Dr. Rafal Wawer
Zachary Woolard

Acknowledgements
Daniel Holt, LATEX magic & layout support
Various reviewers & writers

The OSGeo Journal is a publication of the OSGeo Foundation. The base
of this journal, the LATEX 2εstyle source has been kindly provided by
the GRASS and R News editorial boards.

This work is licensed under the Creative Commons Attribution-No
Derivative Works 3.0 License. To view a copy of this licence, visit:
http://creativecommons.org/licenses/by-nd/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California 94105, USA.

All articles are copyrighted by the respective authors. Please use the
OSGeo Journal url for submitting articles, more details concerning
submission instructions can be found on the OSGeo homepage.

Journal online: http://www.osgeo.org/journal

OSGeo Homepage: http://www.osgeo.org

Mail contact through OSGeo, PO Box 4844, Williams Lake,
British Columbia, Canada, V2G 2V8

ISSN 1994-1897

mailto:tmitchell AT osgeo.org
http://creativecommons.org/licenses/by-nd/3.0/
http://www.osgeo.org/journal
http://www.osgeo.org

!"#$!%!&#

	Volume 8
	Announcement
	Editorial
	From the Editor

	News & Announcements
	Brief News and Event Announcements from the OSGeo Community
	OSGeo Governance
	Charter member elections

	Conferences and Meetings
	FOSS4G Denver 2011 Call For Papers
	FOSSGIS 2011 - Heidelberg
	Bolsena Hacking Event 2011
	Montreal Code Sprint

	Local OSGeo groups
	OSGeo Collaboration
	Centre for Geospatial Science and OSGeo sign MoU

	Project News
	deegree
	Geomajas
	GDAL
	GeoNetwork
	Ingres Geospatial

	r.in.swisstopo
	Abstract
	Introduction
	Swisstopo digital elevation data
	The module r.in.swisstopo
	Test runs of r.in.swisstopo
	Download and Installation of the module r.in.swisstopo
	Example shell script for processing large amounts of data
	Acknowledgments

	Case Studies
	An Image Request Application Using FOSS4G Tools
	Abstract
	Streamlined Workflow, Reduced Overhead
	Household FOSS4G Names
	Performance
	Many Uses Now and Into the Future

	Integration Examples
	Exporting Geospatial Data to Web Tiled Map Services using GRASS GIS
	Abstract
	Introduction
	Data Tiling in Google Maps and Microsoft Virtual Earth
	Map Projection
	Custom data tiling in the GRASS GIS
	Application – PVGIS web portal
	Conclusion
	Acknowledgment
	References

	FOSS4G 2009 Conference Proceedings
	From the Academic Track Chair
	Geoprocessing in the Clouds
	Abstract
	Introduction
	Background
	Cloud Computing
	Web Processing Service

	Concept
	Scalability Evaluation
	Methodology
	Results
	Evaluation

	Conclusion and Outlook

	Media Mapping
	Abstract
	Introduction
	Background
	Application Development
	Mobile Data Capture Application
	Data Analysis and Playback

	User Interaction
	Examples
	Conclusion
	Acknowledgements
	Bibliography

	MapWindow 6.0
	Abstract
	Introduction
	Background
	MapWindow
	Other GIS Extensibility Architectures

	Programming Methods
	Interfaces
	Property-Grid
	Extension Methods

	MapWindow 6.0 Symbology
	Symbol Class Hierarchy
	User Interface Design
	Discoverable Extension

	Summary and Conclusions

	A Data System for Visualizing 4-D Atmospheric CO2 Models and Data
	Abstract
	Introduction
	Background
	Atmospheric CO2 Data and Modeling
	Geovisualization

	Data System
	Data Storage
	Application Server
	Client Application

	Application: Visualizing Atmospheric CO2 Data
	Model Representation
	Atmospheric Measurements of CO2
	Air Parcel Simulation
	Sensitivity Maps

	Discussion
	CO2 Visualizations
	Using Open Source Software for Research

	Conclusions
	Acknowledgements

	Collaborative Web-Based Mapping of Real-Time Flight Simulator and Sensor Data
	Abstract
	Introduction
	Background
	System Design
	Client-Side Design
	Server-Side Design

	Results
	Flight Simulator
	SOS Data

	Conclusion

	A Modular Spatial Modeling Environment for GIS
	Abstract
	Introduction
	MapWindow GIS 6
	The MapWindow Modeler Project
	Project Requirements
	Use Cases
	Software Design Technique

	Software Design
	Modeler Design
	Building for Extensibility
	The ITool and IToolProvider Interfaces
	The IParameter Interfaces
	Tool and Model Execution
	Modeler Architecture Overview

	Modeling Environment Comparison and Case Study
	Discussion and Conclusions

	Imprint
	Imprint

